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DIFFERENTIABLE MAPS
WITH UNCOUNTABLE CRITICAL SETS

IOAN RADU PETER and CORNEL PINTEA

Abstract. In this paper we provide some sufficient conditions on two manifolds
which ensure uncountable critical sets for all smooth maps between the two
manifolds. These sufficient conditions are given in terms of Stiefel-Whitney
classes of the two manifolds and their duals.
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1. PRELIMINARY RESULTS

Theorem 1.1. If M is a connected differential manifold and A ⊂ M is a
closed countable set, then

πr(M,M\A) ' 0, for all r ∈ {0, . . . , n− 1}.
In particular the inclusion i : M\A ↪→M is (n-1)-connected.

The proof of Theorem (1.1) relies on the homotopy sequences of the pairs

(M,M\A)

and works along the same lines as in [5, Proposition 2.3]. By using the well-
known Whitehead theorem [1, 8], we get the following:

Corollary 1.2. If M is a connected differential manifold and A ⊂ M is
a closed countable set, then the induced homomorphism

ik : Hk(M\A,Z)→ Hk(M,Z)

by the inclusion i : M\A ↪→ M is an isomorphism for k < n and an epimor-
phism for k = n.

If we combine the following isomorphisms, which follow via the universal
coefficient theorem,

Hk(M\A,Z2) ∼= Hk(M\A,Z)⊗ Z2,
Hk(M,Z2) ∼= Hk(M,Z)⊗ Z2,

by Corollary 1.2 we obtain the isomorphisms, induced by the inclusions i,

ik : Hk(M\A,Z2)→ Hk(M,Z2)
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2 Differentiable maps with uncountable critical sets 71

for k < n and an epimorphism for k = n. By using the equivalences stated in
[1, p. 310] we obtain the isomorphisms, induced by the inclusions i,

ik : Hk(M,Z2)→ Hk(M\A,Z2),

for k < n and a monomorphism for k = n.

Remark 1.3. If A is a subset of a differential manifold Mm, then the
equality ω̄i(M \ A) = j∗A (ω̄i(M)) holds, where jA : M \ A −→ M is the

inclusion, and ω̄i(M \ A) and ω̄i(M) stand for the ith dual Stiefel-Whitney
class of M \A and M , respectively. If A is additionally closed and countable,
then jiA : H i(M,Z2) −→ H i(M \ A,Z2) is an isomorphism for i < m and a
monomorphism for i = m.

Indeed, the dual Stiefel-Whitney classes can be expressd in terms of Stiefel-
Whitney classes [6, p. 40] as follows:

(1) ω̄r = ω1ω̄r−1 + ω2ω̄r−2 + · · ·+ ωr−1ω̄1 + ωr

i.e.,

ω̄1 = ω1

ω̄2 = ω2
1 + ω2

ω̄3 = ω3
1 + ω3

ω̄4 = ω4
1 + ω2

1ω2 + ω2 + ω4
...

The equality ω̄i(M \A) = j∗A (ω̄i(M)) follows by using the representations (1)
of the dual Stiefel-Whitney classes by taking into account that

jiA : H i(M,Z2) −→ H i(M \A,Z2)

is a ring homomorphism and

ωi(M \A) = ωi(τM\A) = ωi(j
∗
A(τM )) = j∗A (ωi(M)) ,

for all i ≥ 0. Note that τ
M\A and τM stand for the tangent bundle of M \ A

and M , respectively. The property of jiA : H i(M,Z2) −→ H i(M \A,Z2) to be
an isomorphism for i < m and a monomorphism for i = m follows from the
above considerations.

2. MAPS WITH UNCOUNTABLE CRITICAL SETS

Theorem 2.1. Let Mm, Nn be smooth boundaryless manifolds such that
m < n < m + k, for some k ≥ 1. If ω̄k(M) 6= 0 and and ω(N) = 1, then the
critical set of every smooth map from M to N is uncountable.

Proof. Assume that the critical set C(f) of the smooth map f : M → N ,
which is obviously closed, is countable. Then the restriction

g := f
∣∣
M\C(f)

: M\C(f)→ N
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is an immersion and g∗τN ' τM\C(f)
⊕ νg , where νg is the associated (n−m)-

normal bundle of the immersion g. Therefore we have successively

1 = ω0(g∗τN ) = g∗(ω0(τN )) = g∗(1) = g∗(ω(N))
= ω(g∗τN ) = ω(τ

M\C(f)
⊕ νg) = ω(τ

M\C(f))
) ∪ ω(νg)

= ω(M\C(f))ω(νg),

which shows that ω(νg) = ω̄(M\C(f)). By using now Remark 1.3 we obtain

ω
k
(νg) = ω̄

k
(M\C(f)) = jk

C(f)
(ω̄

k
(M)) 6= 0,

as ω̄
k
(M) 6= 0. On the other hand, ω

k
(νg) = 0 as rank(νg) = n−m < k. �

Example 2.2. Let N be the sphere Sn or an n-dimensional Lie group. If
2 ≤ m < n < 2m−1, then the critical set of every smooth map f : RPm −→ N
is uncountable.

Theorem 2.3. Let Mm, Nn be smooth manifolds such that M is compact
and m < n. If M is immersible in N and A ⊆ N is a closed countable subset
of N , then M is immersible in N\A, too. Moreover, the homotopy class of
any immersion f : M → N contains an immersion g such that g(M) ⊆ N\A.

In order to prove Theorem 2.3, we need to prove first its local version.

Lemma 2.4. Let Mm, Nn be smooth manifolds such that M is compact and
m < n and M is immersible in N. Let also A ⊆ N be a closed countable subset
of N . If f : M → N is an immersion, then, for each q ∈ f(M) ∩ A, there
exists an open neighborhood of q, say Vq , whose topological border ∂Vq avoids
the set A, i.e., ∂Vq ∩A = ∅, and an immersion gq : M → N such that

gq(f
−1(Vq))∩A = ∅, gq

∣∣∣
M\f−1(Vq )

= f
∣∣∣
M\f−1(Vq )

and f ' gq
(
rel M\f−1(Vq)

)
.

Proof. Let f : M → N be an immersion. For q ∈ f(M) ∩ A, we observe
that k := #[f−1(q)] is finite, and we consider an open connected neighbor-
hood V ′

q
of q, small enough such that its inverse image f−1(V ′

q
) has k con-

nected components U ′
1
, . . . , U ′

k
. Consider a smaller connected open neighbor-

hood Vq ⊆ V ′
q

which is also bounded with respect to a certain Riemann-

ian metric on N such that V̄q ⊆ V ′
q
, ∂Vq ∩ A = ∅ whose inverse image

f−1(Vq) has the connected components U1 , . . . , Uk that obviously satisfy Ū1 ⊆
U ′

1
, . . . , Ū

k
⊆ U ′

k
. We can also assume that U ′

1
, . . . , U ′

k
are the domains of cer-

tain local charts (U ′
1
, ϕ1), . . . , (U ′

q
, ϕ

k
) and that V ′

q
is the common domain of

some local charts (V ′
q
, ψ1), . . . , (V ′

q
, ψ

k
) such that (ψi ◦ f ◦ ϕ−1

i
)(x1, . . . , xm) =

(x1, . . . , xm, 0, . . . , 0︸ ︷︷ ︸
n-m times

), for all i ∈ {1, . . . , k} and all x = (x1, . . . , xm) ∈ ϕi(Ui).
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Consider a smooth real positive function θ : N → R such that θ−1(0) =
N\Vq and the smooth vector fields X1, . . . , Xk which are defined on N by

Xi(z) =

{
θ(z) ∂

ψi

∂xn

∣∣∣
z
, if z ∈ V ′

q

0, if z ∈ N\V̄q .

Obviously the norms ||X1||, . . . , ||Xk
|| of the fields X1, . . . , Xk

are bounded
with respect to the considered Riemannian metric on N , namely they are
completely integrable (see [3, pp. 183]). Denote by αi

t the global flow induced
by Xi and consider the projection πn : Rn → R, πn(x1, . . . , xn) = xn. Observe
that

(πn ◦ ψi ◦ f ◦ ϕ−1
i )(x1, . . . , xm) = 0 for all x = (x1, . . . , xm) ∈ ϕi(Ui), namely

(πn ◦ ψi ◦ f)(x) = 0, for all x ∈ Ui .
One can easily prove that

πn(ψi(α
i
t(f(z))) =

∫ t

0
θi(α

i
s(f(z)))ds,

for all t 6= 0 and all z ∈ Ui .

ψi((f(ϕ−1(x1, . . . , xm))) = ψi(α
i
0(f(ϕ−1(x1, . . . , xm))) = (c1 , . . . , cn−1 , cn)

we have that cm+1 = · · · = cn = 0. Consequently it implies that

ψi(α
i
t(y)) = (c1 , . . . , cm , 0, . . . ,

∫ t

0
θi(α

i
s(y))ds),

and, for t 6= 0 and z ∈ Ui , we have

πn(ψi(α
i
t(f(z))) =

∫ t

0
θi(α

i
s(f(z)))ds 6= 0.

Consequently, t 6= 0 ⇒ αi
t(f(Ui)) ∩ f(Ui) = ∅ or equivalently, t 6= t′ ⇒

αi
t(f(Ui)) ∩ αi

t′(f(Ui) = ∅.
Indeed, assuming that αi

t(f(Ui)) ∩ f(Ui) 6= ∅, for some t 6= 0, one can
consider p, p′ ∈ Ui such that αi

t(f(p)) = f(p′). But such an equality is impos-
sible, because it would imply the following relations: 0 6= πn(ψi(α

i
1(f(p))) =

πn(ψi(f(p′)) = 0. Therefore there exists ti > 0 such that αi
ti(f(Ui))) ∩A = ∅,

for all i ∈ {1, . . . , k}, since A is countable. Define the map gq in the following
way:

gq(x) =



α1
t1(f(x)), if x ∈ U ′

1
...

...
αk
tk

(f(x)), if x ∈ U ′
k

f(x), if x ∈M\
p⋃

i=1

Ūi .
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Because α1
ti , . . . , α

k
tk

are diffeomorphisms and f is an immersion, it follows that
gq is also an immersion that has the additional property gq(U1∪· · ·∪Uk)∩A =
∅. Therefore, for the fixed q ∈ f(M)∩A, we have constructed a neighborhood
Vq and an immersion gq : M → N such that

gq(f
−1(Vq)) ∩A = ∅ and gq

∣∣∣
M\f−1(Vq )

= f
∣∣∣
M\f−1(Vq )

.

Finally, let us observe that that H : [0, 1]×M → N given by

Hq(t, x) =



α1
t·t1(f(x)), if x ∈ U ′

1
...

...
αk
t·tk(f(x)), if x ∈ U ′

k

f(x), if x ∈M\
p⋃

i=1

Ūi ,

is a homotopy between f and gq relative to the subset M\f−1(Vq). �

Proof of Theorem 2.3. If A is finite, then Theorem 2.3 follows by applying
successively Lemma 2.4. Otherwise the open sets {Vq}q∈f(M)∩A constructed in
Lemma 2.4 form an open covering of the compact set f(M)∩A and there exist
q1, . . . , qr ∈ f(M) ∩ A with the property f(M) ∩ A ⊆ Vq1 ∪ · · · ∪ Vqr . We can

obviously assume that Vqi\
p⋃
j=1

j 6=i

Vqj 6= ∅ and that qi ∈ Vqi\
p⋃
j=1

j 6=i

Vqj . By applying

the same procedure like in Lemma 2.4, we can successively reconstruct the
immersions gq2 , . . . , gqr in such a way that the following properties hold:

gq1 (f−1(Vq1 )) ∩A = ∅,
gq2 (f−1(Vq2\V̄q1 )) ∩A = ∅,
gq3 (f−1(Vq3\(V̄q1 ∪ V̄q2 ))) ∩A = ∅,
...
gqr (f−1(Vqr \(V̄q1 ∪ · · · ∪ V̄qr−1

))) ∩A = ∅

and

gq1

∣∣∣
M\f−1(Vq1 )

= f
∣∣∣
M\f−1(Vq1 )

,

gq2

∣∣∣
M\f−1(Vq2 \V̄q1 )

= gq1

∣∣∣
M\f−1(Vq2 \V̄q1 )

,

gq3

∣∣∣
M\f−1(Vq3 \(V̄q1∪V̄q2 ))

= gq2

∣∣∣
M\f−1(Vq3 \(V̄q1∪V̄q2 ))

,

...

gqr

∣∣∣
M\f−1(Vqr \(V̄q1∪···∪V̄qr−1

))
= gqr−1

∣∣∣
M\f−1(Vqr \(V̄q1∪···∪V̄qr−1

))
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and f ' gq1 ' gq2 ' . . . ' gqr . In order to show that the immersion gqr has
the property gqr (M) ⊆ N\A, we first show, by mathematical induction on i,

that gqi
(
f−1(Vq1 ∪ · · · ∪ Vqi )

)
∩ A = ∅. Indeed, for i = 1 the statement is

obviously true such that we assume that it is true for i and prove its validity
for i+ 1. In this respect, we have

gqi+1

(
f−1(Vq1 ∪ · · · ∪ Vqi ∪ Vqi+1

)
)

=

= gqi+1

(
f−1(Vq1 ∪ · · · ∪ Vqi )

)
∪ gqi+1

(
f−1(Vqi+1

\(Vq1 ∪ · · · ∪ Vqi )
)
.

But, since the inclusion f−1(Vq1 ∪ · · · ∪ Vqi ) ⊆M\f
−1(Vqi+1

\(V̄q1 ∪ · · · ∪ V̄qi )
)

is obvious, it follows that

gqi+1

(
f−1(Vq1 ∪ · · · ∪ Vqi )

)
∩A = gqi

(
f−1(Vq1 ∪ · · · ∪ Vqi )

)
∩A = ∅,

such that it remains only to prove that gqi+1

(
f−1(Vqi+1

\(Vq1∪· · ·∪Vqi )
)
∩A = ∅.

Indeed, otherwise we may consider q ∈ gqi+1

(
f−1(Vqi+1

\(Vq1 ∪ · · · ∪ Vqi )
)
∩A,

namely q = gqi+1
(p), for some p such that f(p) ∈ Vqi+1

\(Vq1 ∪ · · · ∪ Vqi ). If

f(p) 6∈ V̄qj , for all j ∈ {1, . . . , i}, then p ∈ f−1(Vqi+1
\(V̄q1 ∪ · · · ∪ V̄qi )

)
, which

shows that

q = gqi+1
(p) ∈ gqi+1

(
f−1(Vqi+1

\(V̄q1 ∪ · · · ∪ V̄qi )
))
∩A,

a contradiction with the construction of gqi+1
. Consequently, f(p) ∈ V̄qj , for

some j ∈ {1, . . . , i}. But, since

f(p) ∈ Vqi+1
\(Vq1 ∪ · · · ∪ Vqi ) ⊆M\(Vq1 ∪ · · · ∪ Vqi ) ⊆M\Vqj = M\V qj

,

it follows that f(p) ∈ ∂Vqj . Because f(p) ∈ V̄qj ⊆ V̄q1 ∪ · · · ∪ V̄qi , it follows

that f(p) 6∈ Vqi+1
\(V̄q1 ∪ · · · ∪ V̄qi ), i.e., p ∈ M\f−1

(
Vqi+1

\(V̄q1 ∪ · · · ∪ V̄qi )
)
,

which means that q = gqi+1
(p) = gqi (p). Since f(p) ∈ Vqi+1

\(Vq1 ∪ · · · ∪ Vqi ) it

follows that f(p) 6∈ Vqk for all k ∈ {1, . . . , i} which, in particular, implies that

f(p) 6∈ Vqk\(Vq1 ∪ · · · ∪ Vqk−1
) for all k ∈ {1, . . . , i}. Consequently

p ∈M\f−1
(
Vqk\(V̄q1 ∪ · · · ∪ V̄qk−1

)
)
, ∀k ∈ {1, . . . , i},

which means that q = gqi (p) = · · · = gq1 (p) = f(p) ∈ ∂Vqj , a contradiction

with the construction of Vqj . The inductive proof is now completely done.

In what follows, we will show that the immersion gqr satisfies the desired
condition, i.e., its image avoids the set A.

gqr (M)∩A = [gqr
(
M\f−1

(
Vq1∪· · ·∪Vqr )

))
∩A]∪[gqr

(
f−1

(
Vq1∪· · ·∪Vqr )

))
∩A] =

= gqr
(
M\f−1

(
Vq1 ∪ · · · ∪ Vqr )

))
∩A.

From the obvious inclusions

Vqi\(V̄q1 ∪ · · · ∪ V̄qi−1
) ⊆ Vq1 ∪ · · · ∪ Vqr , ∀i ∈ {1, . . . , r},
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we obtain

f−1
(
Vqi\(V̄q1 ∪ · · · ∪ V̄qi−1

)
)
⊆ f−1

(
Vq1 ∪ · · · ∪ Vqr

)
⇔M\f−1

(
Vq1 ∪ · · · ∪ Vqr

)
⊆M\f−1

(
Vqi\(V̄q1 ∪ · · · ∪ V̄qi−1

)
)
,(2)

and the relation (2) is obviously satisfied for all i ∈ {1, . . . , r}. Therefore, we
obtain

gqr
(
M\f−1

(
Vq1 ∪ · · · ∪ Vqr )

))
∩A = gqr−1

(
M\f−1

(
Vq1 ∪ · · · ∪ Vqr )

))
∩A

= gqr−2

(
M\f−1

(
Vq1 ∪ · · · ∪ Vqr )

))
∩A

...
= f

(
M\f−1

(
Vq1 ∪ · · · ∪ Vqr )

))
∩A

= ∅,

and the emptiness of f
(
M\f−1

(
Vq1 ∪ · · ·∪Vqr )

))
∩A follows, as {Vq1 , . . . , Vqr }

is a covering of f(M) ∩A. �

Corollary 2.5. Let Mm, Nn, Ee be smooth manifolds such that m < e ≤
n < m+ k. Assume that M is immersible in E and ω(N) = 1. If ω̄k(M) 6= 0
for some k ≥ 1, then then the critical set of every smooth map f : E −→ N is
uncountable.

Proof. Assume that there exists a smooth map f : E → N with countably
many critical points, i.e., its critical set C(f) is a closed countable subset of
E. If h : M → E is an immersion such that h(N)∩C(f) = ∅, whose existence
is ensured by Theorem 2.3, then f ◦ h : M → N is obviously an immersion
and also ω

k
(ν
f◦h) = ω̄

k
(M) 6= 0, where ν

f◦h is the associated (n−m)-normal
bundle of the immersion f ◦ h, impossible since 0 < n−m < k. �

Corollary 2.6. Let Nn be a differential manifold and let π : Ee → Mm

be a smooth fibration which admits a smooth cross-section s : M → E, i.e.
π◦s = idM . If ω(N) = 1, ω̄k(M) 6= 0, for some k ≥ 1 and m < e ≤ n < m+k,
then the critical set of every smooth map f : E −→ N is uncountable.

Proof. We only need to observe that M is immersible in E, as

(dπ)
s(x)
◦ dsx = id

Tx(M)
, ∀x ∈M,

which shows that s is an immersion. �

Particular pairs of manifolds satisfying the hypothesis of Corollary 2.6 are
provided by the next example.

Example 2.7. Let Xk be a differential manifold, let n be a natural number
such that n+ 1 is not a power of 2, and let r be the integer [log2 n] + 1, where
[r] stands for the the greatest integer smaller than or equal to r. If Mm is
a Lie group or a sphere such that 2n + k < m < 2r+1 − 3, then the critical
set of any smooth map f : G2,n × X −→ M is uncountable. In particular,
the critical set of any smooth map G2,n ×X −→ Rm or G2,n ×X −→ Tm is
uncountable.
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Remark 2.8. The lists provided by examples 2.2 and 2.7 can be conside-
rably extended by using the non-triviality of the dual Stiefel-Whitney classes

ω̄
3(s−n)−3

(G3,n), ω̄s+3(G3,s−2), ω̄2s(G3,s−1), ω̄
3(2s−n)−3

(G3,n),

proved in [2].
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