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AN ITERATIVE METHOD FOR A FOURTH ORDER
TRANSMISSION PROBLEM

NICOLAE VALENTIN PĂPARĂ

Abstract. We pursue a constructive solution to a fourth order transmission
problem on a planar domain. We use an iterative technique that reduces the
fourth order partial differential equations to second order Helmholtz-type equa-
tions. We use the layer potentials to solve the second order transmission prob-
lems. The methods that we use are suitable for numerical computations. This
work is inspired by recent papers regarding the use of iterative methods for
Neumann biharmonic problems, Robin problems and mixed problems.
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1. INTRODUCTION

The aim of this paper is to apply iterative methods to transmission problems
associated with fourth order biharmonic-type equations. This work is inspired
by several recent papers in which the authors used the iterative techniques
for Neumann or Robin boundary value problems associated with fourth order
partial differential equations.

In the article [2], the author Q.A. Dang studied the following Neumann
boundary value problem associated with a biharmonic-type equation

∆2u− a∆u+ bu = f in Ω,

∂u

∂n
= g0 on Γ,

∂∆u

∂n
= g1 on Γ.

The author used an iterative technique that reduces the fourth order equations
to second order equations, which are solved using numerical computations.

In the article [6], the authors A. Gomez-Polanco, J.M. Guevara-Jordan, B.
Molina applied a mimetic method for the following Robin problem associated
with a biharmonic-type equation

∆2u− a∆u+ bu = f in Ω,

∂u

∂n
+ σu = g0 on Γ,
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∂∆u

∂n
+ σ∆u = g1 on Γ.

In the sequel we will consider the domain D ⊂ R2 to be an unbounded
domain that has the Rellich property. Let Ω1 ⊂ D be a bounded domain and
Ω2 = D \ Ω̄1. Denote by Γ the boundary of Ω1. We will assume that Γ is
sufficiently smooth.

Let C∞c (D) be the space of all infinitely differentiable functions in D with
compact support. Denote by Hk

0 (D) the closure of C∞c (D) in Hk(D).
In this paper, we will use an iterative technique for the following transmis-

sion problem associated with the more general biharmonic-type equation

(1) ∆2ui − a∆ui + bui = f in Ωi,

(2) u1 − u2 = g1 on Γ,

(3)
∂u1

∂n
− ∂u2

∂n
= g2 on Γ,

(4) ∆u1 −∆u2 = g3 on Γ,

(5)
∂∆u1

∂n
− ∂∆u2

∂n
= g4 on Γ,

where a, b > 0 are constants and the functions f, g1, g2, g3, g4 will be specified
subsequently.

The solution u is searched in the space H4
0 (D).

Let r and s be positive numbers such that r ≤ s, r+s = a, rs = b−c, c ≥ 0.
Note that these numbers always exist. For example, if a2−4b ≥ 0, then we can
set c = 0 and the numbers r, s can be chosen to be the roots of the quadratic
equation x2 − ax+ b = 0.

If the numbers r, s, c are defined as mentioned before, then the equations
(1) can be factorized into the following equations

(6) (∆− r) ◦ (∆− s)ui = f − cui in Ωi.

If we denote ∆ui − sui = vi, then we can write the equations (6) as a system
of four equations

∆vi − rvi = f − cui in Ωi,

∆ui − sui = vi in Ωi.

Furthermore, from the boundary conditions (2),(4) and the definition of vi,
we deduce the following transmission condition for vi

v1 − v2 = ∆u1 − su1 −∆u2 + su2 = g3 − sg1 on Γ.

The other transmission condition for vi is obtained in a similar way from
conditions (3) and (5)

∂v1

∂n
− ∂v2

∂n
=
∂∆u1

∂n
− s∂u1

∂n
− ∂∆u2

∂n
+ s

∂u2

∂n
= g4 − sg2 on Γ.
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Therefore the transmission problem (1)–(5), that is associated with the
biharmonic-type operator, can be replaced with the following equivalent sys-
tem of equations associated with the Helmholtz operator

∆vi − rvi = f − cui in Ωi,

v1 − v2 = g3 − sg1 on Γ,

∂v1

∂n
− ∂v2

∂n
= g4 − sg2 on Γ,

∆ui − sui = vi in Ωi,

u1 − u2 = g1 on Γ,

∂u1

∂n
− ∂u2

∂n
= g2 on Γ.

If we denote φi = −cui, then the equations above become

(7) ∆vi − rvi = f + φi in Ωi,

(8) v1 − v2 = g3 − sg1 and
∂v1

∂n
− ∂v2

∂n
= g4 − sg2 on Γ,

(9) ∆ui − sui = vi in Ωi,

(10) u1 − u2 = g1 and
∂u1

∂n
− ∂u2

∂n
= g2 on Γ.

The equations (7)–(10) can be regarded as transmission problems associated
with second order Helmholtz-type equations, that could be solved using tech-
niques based on boundary element computations. But the Helmholtz equa-
tions cannot be separated, because the functions φi are not determined and
they depend on the functions ui. For this reason we will use an iteration
process that manages to reduce the fourth order equation to second order
equations.

2. MAIN RESULTS

We pursue a constructive solution u ∈ H4
0 (D) of the transmission problem

(7)–(10), using the following iteration process IP that requires solving two
second order Helmholtz equations at each step.

1. Let φ
(0)
1 ∈ H0(Ω1) and φ

(0)
2 ∈ H0(Ω2).

2. Given φ
(k)
i , solve the transmission problems associated with the second

order Helmholtz equations

(11) ∆v
(k)
i − rv

(k)
i = f + φ

(k)
i in Ωi,

(12) v
(k)
1 − v(k)

2 = g3 − sg1 and
∂v

(k)
1

∂n
− ∂v

(k)
2

∂n
= g4 − sg2 on Γ,

(13) ∆u
(k)
i − su

(k)
i = v

(k)
i in Ωi,
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(14) u
(k)
1 − u

(k)
2 = g1 and

∂u
(k)
1

∂n
− ∂u

(k)
2

∂n
= g2 on Γ.

3. Compute the functions φ
(k+1)
i for the next step

φ
(k+1)
i = (1− τ)φ

(k)
i − cτu

(k)
i ,

where τ is a parameter that will be defined subsequently.

In the sequel, we will present the convergence of the sequence
(
u

(k)
i

)
defined

by the iterative process given before, to the solution of the system of equations
(7)–(10), that are equivalent to the transmission problem (1)–(5).

We write the solutions ui, vi of the system (7)–(10) in the form

(15) ui = µi + Ui, vi = νi + Vi,

where µi, Ui, νi, Vi are the solutions of the system of equations

(16) ∆νi − rνi = φi in Ωi,

(17) ν1 − ν2 = 0 on and
∂ν1

∂n
− ∂ν2

∂n
= 0 on Γ,

(18) ∆µi − sµi = νi in Ωi,

(19) µ1 − µ2 = 0 and
∂µ1

∂n
− ∂µ2

∂n
= 0 on Γ,

(20) ∆Vi − rVi = f in Ωi,

(21) V1 − V2 = g3 − sg1 and
∂V1

∂n
− ∂V2

∂n
= g4 − sg2 on Γ,

(22) ∆Ui − sUi = Vi in Ωi,

(23) U1 − U2 = g1 and
∂U1

∂n
− ∂U2

∂n
= g2 on Γ.

We need to have some simpler relations between the functions defined by
sequences in the iterative process IP. We introduce the operator A that is
defined by the relation

A(φ1 ⊕ φ2) = u1 ⊕ u2,

where ui is the solution of the following system denoted by HS

∆vi − rvi = φi in Ωi,

v1 − v2 = 0 and
∂v1

∂n
− ∂v2

∂n
= 0 on Γ,

∆ui − sui = vi in Ωi,

u1 − u2 = 0 and
∂u1

∂n
− ∂u2

∂n
= 0 on Γ,

and ⊕ is the concatenation operator.
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We also write Aφi = ui instead of A(φ1 ⊕ φ2) = u1 ⊕ u2.
If we return to the system (16)–(23), then the definition of the operator A

implies
Aφi = µi.

From the definitions of φi, µi, Ui given before, we deduce

φi = −cui = −cµi − cUi = −cAφi − cUi,

and consequently we obtain the relation

φi + cAφi = −cUi,

that can also be written as

(24) (I + cA)φi = −cUi.

The purpose of introducing the operator A was to find a more succinct
form for the sequences of functions defined by the 3-step iteration process IP.
The succinct relation between the elements of the sequences is given by the
following lemma.

Lemma 2.1. For a given φ
(0)
i ∈ H0(D \ Γ), the functions φ

(k)
i defined by

the iterative process IP coincide with the functions φ
(k)
i defined by the iterative

scheme
φ

(k+1)
i − φ(k)

i

τ
+ (I + cA)φ

(k)
i = −cUi.

Proof. The relation given in the third step of the iterative process IP can
be written as

(25)
φ

(k+1)
i − φ(k)

i

τ
+ φ

(k)
i + cu

(k)
i = 0.

Let Ui, Vi be the solutions of the system (20)–(23), and let
(
u

(k)
i

)
,
(
v

(k)
i

)
be the sequences of functions given by the iterative process IP.

We introduce the sequences µ
(k)
i , ν

(k)
i defined by

u
(k)
i = µ

(k)
i + Ui and v

(k)
i = ν

(k)
i + Vi.

From the equalities (11), (12), (20), (21) we deduce

(26) ∆ν
(k)
i − rν(k)

i = φ
(k)
i in Ωi,

(27) ν
(k)
1 − ν(k)

2 = 0 on and
∂ν

(k)
1

∂n
− ∂ν

(k)
2

∂n
= 0 on Γ,

and, from the equalities (13), (14), (22), (23) we deduce

(28) ∆µ
(k)
i − sµ

(k)
i = ν

(k)
i in Ωi,

(29) µ
(k)
1 − µ

(k)
2 = 0 and

∂µ
(k)
1

∂n
− ∂µ

(k)
2

∂n
= 0 on Γ,
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Therefore, from (26)-(29) and the definition of A, it follows that

Aφ
(k)
i = µ

(k)
i .

Using the equalities above, we obtain successively

φ
(k)
i + cu

(k)
i = φ

(k)
i + cµ

(k)
i + cUi = (I + cA)φ

(k)
i + cUi,

and, if we substitute in relation (25), we get

φ
(k+1)
i − φ(k)

i

τ
+ (I + cA)φ

(k)
i = −cUi.

This ends the proof. �

In order to prove the convergence of the sequence u
(k)
i , defined by the iter-

ative process IP, to the solution of the system of equations (7)–(10), we need
the following lemma from the article [4]. We simply state the lemma without
proof. The proof can be found in [4].

Lemma 2.2. Suppose that A is a linear, symmetric, positive and compact
operator in a Hilbert space H and y is the solution of the equation

Ay = f, f ∈ R(A).

Then the iterative method

yk+1 − yk
τ

+Ayk = f, with y0 given,

converges if

0 < τ <
2

‖A‖
.

We will apply Lemma 2.2 to the sequence φ
(k)
i , using the relation that we

have already proved in Lemma 2.1. First we need to show that the operator
A is linear, symmetric, positive and compact.

We assume that the problem HS is well-posed and that it has a unique
solution ui ∈ H4

0 (D).

Lemma 2.3. The operator A is linear, symmetric, positive and compact on
H0(D).

Proof. From the definition of the operator A we have

Aφi = ui, ∆vi − rvi = φi and ∆ui − sui = vi,

where ui, vi are the solutions of the transmission system HS consisting of the
homogeneous boundary equations as specified in the definition of the operator
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A. We deduce the following

(Aφi, φ̄i) =

∫
Ω1

u1(∆v̄1 − rv̄1)dx+

∫
D\Ω̄1

u2(∆v̄2 − rv̄2)dx

= −
∫

Ω1

(∇u1∇v̄1 + ru1v̄1)dx−
∫
D\Ω̄1

(∇u2∇v̄2 + ru2v̄2)dx

=

∫
Ω1

(v̄1∆u1 − ru1v̄1)dx+

∫
D\Ω̄1

(v̄2∆u2 − ru2v̄2)dx

=

∫
Ω1

v̄1v1dx+ (s− r)
∫

Ω1

u1v̄1dx

+

∫
D\Ω̄1

v̄2v2dx+ (s− r)
∫
D\Ω̄1

u2v̄2dx.

We also have∫
Ω1

u1v̄1dx+

∫
D\Ω̄1

u2v̄2dx =

∫
Ω1

u1(∆ū1 − sū1)dx+

∫
Ω2

u2(∆ū2 − sū2)dx

= −
∫

Ω1

(∇u1∇ū1 + su1ū1)dx−
∫

Ω2

(∇u2∇ū2 + su2ū2)dx.

Therefore we obtain (Aφi, φ̄i) = (Aφ̄i, φi). Thus the operator A is a symmetric
operator. If we write (Aφ, φ), we get (Aφ, φ) ≥ 0. Therefore A is positive.

Obviously the operator A is linear.
Since the problem HS has a unique solution, it follows that the operator A

maps H0(D) into H4
0 (D). But the space H4

0 (D) is compactly embedded into
H0(D), because the domain D has the Rellich property. Thus the operator A
is compact. This finishes the proof. �

Theorem 2.4. Consider the functions

f ∈ H0(Ω), g1 ∈ H7/2(Γ), g2 ∈ H5/2(Γ), g3 ∈ H3/2(Γ), g4 ∈ H1/2(Γ).

Suppose that ui is the solution of the problem (1)–(5), and let τ satisfy the con-

dition in Lemma 2.2. Then the sequence u
(k)
i , defined by the iterative process

IP, converges to ui.

Proof. From Lemma 2.1 and Lemma 2.2, we deduce that the sequence φ
(k)
i

is convergent. Then we have

∆
(
v

(k+1)
i − v(k)

i

)
− r

(
v

(k+1)
i − v(k)

i

)
= φ

(k+1)
i − φ(k)

i in Ωi,(
v

(k+1)
1 − v(k)

1

)
−
(
v

(k+1)
2 − v(k)

2

)
= 0 on Γ,

∂
(
v

(k+1)
1 − v(k)

1

)
∂n

−
∂
(
v

(k+1)
2 − v(k)

2

)
∂n

= 0 on Γ,

∆
(
u

(k+1)
i − u(k)

i

)
− s

(
u

(k+1)
i − u(k)

i

)
= v

(k+1)
i − v(k)

i in Ωi,



8 An iterative method for a fourth order transmission problem 67(
u

(k+1)
1 − u(k)

1

)
−
(
u

(k+1)
2 − u(k)

2

)
= 0 on Γ,

∂
(
u

(k+1)
1 − u(k)

1

)
∂n

−
∂
(
u

(k+1)
2 − u(k)

2

)
∂n

= 0 on Γ.

Since the system HS, consisting of homogeneous boundary conditions, is uniquely
solvable, it follows that

‖u(k+1)
i − u(k)

i ‖ ≤ C1‖v(k+1)
i − v(k)

i ‖ ≤ C2‖φ(k+1)
i − φ(k)

i ‖.

Thus u
(k)
i is a Cauchy sequence that converges to the solution ui of the trans-

mission system (1)–(5). �

3. SOLVING THE SECOND ORDER TRANSMISSION PROBLEMS ASSOCIATED WITH

THE HELMHOLTZ OPERATOR

Now consider the transmission problem associated with the second order
Helmholtz equation

∆ui − sui = f in Ωi,

u1 − u2 = g1 on Γ,

∂u1

∂n
− ∂u2

∂n
= g2 on Γ,

with f ∈ H0(D \ Γ).
The iterative process IP reduces the fourth order equations to this type of

second order transmission equations.
We have two cases: (g1, g2) ∈ H7/2(Γ)×H5/2(Γ) and (g1, g2) ∈ H3/2(Γ)×

H1/2(Γ). It suffices to consider just the second case.
If we use the domain potential, we can find solutions up,i ∈ H4

0 (D) for the
nonhomogeneous equations

∆ui − sui = f in Ωi.

Making adjustments for the traces of the solutions up,i in the boundary con-
ditions g1, g2, it will suffice to solve the homogeneous problem

∆ui − sui = 0 in Ωi,

u1 − u2 = g1 on Γ,

∂u1

∂n
− ∂u2

∂n
= g2 on Γ.

We will use the boundary layer potentials to find a solution for the ho-
mogeneous second order transmission problem. First we recall the following
well-known facts about the layer potentials and their boundary behaviour. Let
E(x, y) be the fundamental solution of the Helmholtz equation.
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Definition 3.1. For h ∈ H−1/2(Γ) define the single layer potential S with
density h by

Sh(x) =

∫
Γ
E(x, y)h(y) dy, x ∈ Rn \ Γ,

and the double layer potential D with density h by

Dh(x) =

∫
Γ

∂E(x, y)

∂n
h(y) dy, x ∈ Rn \ Γ.

Lemma 3.2. The single layer potential operator S : H−1/2(Γ)→ H1/2(Γ) is
given by

Sh(x) =

∫
Γ
E(x, y)h(y) dy = lim

z→x

∫
Γ
E(z, y)h(y) dy, x ∈ Γ.

The double layer potential operator K : H1/2(Γ) → H1/2(Γ)
is given by

Kh(x) =

∫
Γ

∂E(x, y)

∂n
h(y) dy = lim

z→x, z∈Ω1

Dh(z) +
1

2
h(x), x ∈ Γ.

The single layer potential operator satisfies the jump relation

∂Sh(x)

∂n
=

1

2
h(x) +K ′h(x), x ∈ Γ,

where K ′ is the adjoint operator of K.

We set ui = vi+Dg1. Using the jump relation for the double layer potential,
we deduce that (u1, u2) is a solution of the transmission problem stated before
if and only if (v1, v2) is a solution of the following transmission problem

∆vi − svi = 0 in Ωi,

v1 − v2 = 0 on Γ,
∂v1

∂n
− ∂v2

∂n
= F on Γ,

where F is given by

F = g2 −
(
∂Dg1

∂n

)
+

+

(
∂Dg1

∂n

)
−
.

From the properties of the layer potentials, we also have

(
∂Dg1

∂n

)
+

=

(
∂Dg1

∂n

)
−

and thus F = g2.
Since v1 − v2 = 0, we search for a function v such that v = v1 on Ω1 and

v = v2 on Ω2. We pursue the function v in the form of a single layer potential
Sh with density h ∈ H−1/2(Γ).

From the jump relations for the layer potentials, we deduce that the second
boundary condition of the transmission problem leads to the boundary integral

equation

(
1

2
h−K ′h

)
+

(
1

2
h+K ′h

)
= F, which reduces to h = F . Thus
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ui = Sg2 +Dg1 ∈ H4
0 (D) solves the transmission problem associated with the

Helmholtz equation.
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