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SOLVABILITY FOR A NONLINEAR FOURTH-ORDER
THREE-POINT BOUNDARY VALUE PROBLEM

ZOUAOUI BEKRI and SLIMANE BENAICHA

Abstract. In this paper, we study the existence of a nontrivial solution for the
fourth-order three-point boundary value problem having the following form

u(4)(t) + f(t, u(t)) = 0, 0 < t < 1,

u(0) = 0, u′′(0) = u′′′(0) = 0, u′(1) = αu′(η),

where η ∈ (0, 1), α ∈ R, α 6= 1, f ∈ C([0, 1] × R,R). By using the Leray-
Schauder nonlinear alternative, we prove the existence of at least one solution of
the above problem. As an application, we also given some examples to illustrate
the obtained results.
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1. INTRODUCTION

The study of fourth-order three-point boundary value problems (BVP) for
ordinary differential equations arises in a variety of different areas of applied
mathematics and physics.

Many authors studied the existence of positive solutions for the nth-order
m-point boundary value problems, using different methods such as fixed point
theorems in cones, nonlinear alternative of Leray-Schauder and the Kras-
nosel’skii fixed point theorem (see [1, 4, 5, 12] and the references therein).

In 2003, by using the Leray-Schauder degree theory, Yuji Liu and Weigao
Ge [8] proved the existence of positive solutions for the (n− 1, 1) three-point
boundary value problems with a coefficient that changes sign, given as follows:

u(n)(t) + λa(t)f(u(t)) = 0, t ∈ (0, 1),

u(0) = αu(η), u(1) = βu(η), u(i)(0) = 0, for i = 1, 2, . . . , n− 2, u(n−2)(0)

= αu(n−2)(η), u(n−2)(1) = βu(n−2)(η), u(i)(0) = 0, for i = 1, 2, . . . , n− 3,

where η ∈ (0, 1), α ≥ 0, β ≥ 0, R = (−∞,∞), f(0) > 0, λ > 0 is a parameter
and a : (0, 1)→ R may change sign.

In 2005, Paul W. Eloea and Bashir Ahmad [3] studied the existence of po-
sitive solutions of a nonlinear nth-order boundary value problem with nonlocal
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conditions, given as follows:

u(n)(t) + a(t)f(u(t)) = 0, t ∈ (0, 1),

u(0) = 0, u′(0) = 0, . . . , u(n−2)(0) = 0, αu(η) = u(1),

where 0 < η < 1, 0 < αηn−1 < 1, f is either superlinear or sublinear. They
used the fixed point theorem in cones due to Krasnosel’skii and Guo.

Then, in 2009, Xie, Liu and Bai [11] used the fixed-point theory to study
the existence of positive solutions of a singular nth-order three-point boundary
value problem on time scales, which is given in the following:

u(n)(t) + h(t)f(u(t)) = 0, t ∈ (0, 1),

u(a) = αu(η), u′(a) = 0, . . . , u(n−2)(a) = 0, u(b) = βu(η),

where a < η < b, 0 ≤ α < 1, 0 < β(η−a)n−1 < (1−α)(b−a)n−1+α(η−a)n−1,
f ∈ C([a, b]× [0,∞), [0,∞)) and h ∈ C([a, b], [0,∞)) may be singular at t = a
and t = b.

In 2004, Yong-Ping Sun [9] studied the existence of a nontrivial solution for
the three-point boundary value problem

u′′(t) + f(t, u(t)) = 0, 0 ≤ t ≤ 1,

u′(0) = 0, u(1) = αu′(η),

where η ∈ (0, 1), α ∈ R, f ∈ C([0, 1] × R,R), using the Leray-Schauder
nonlinear alternative. In [10], the same author used a similar method to
study nontrivial symmetric solutions of the nonlinear second-order three-point
boundary value problem

u′′(t) + f(t, u(t)) = 0, 0 ≤ t ≤ 1,

u(0) = u(1) = αu(η),

where η ∈ (0, 1), α ∈ R, f ∈ C([0, 1]×R,R), f(·, x) is symmetric on [0, 1], for
every x ∈ R.

Moreover, Li and Sun [7] used the above mentioned method to study the
nontrivial solutions of the nonlinear second-order three-point boundary value
problem

u′′(t) + f(t, u(t)) = 0, 0 ≤ t ≤ 1,

au(0)− bu′(0) = 0, u(1)− αu(η) = 0,

where η ∈ (0, 1), a, b, α ∈ R, with a2 + b2 > 0.
Motivated by the above works, we extend the results obtained for the

second-order boundary value problems to the fourth-order boundary value
problems with new boundary conditions (see (2) below), by using a different
approach than that in the above mentioned papers. More precisely, we prove
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the existence of a nontrivial solution for the fourth-order three-point boundary
value problem (BVP)

u(4)(t) + f(t, u(t)) = 0, 0 < t < 1.(1)

u(0) = 0, u′′(0) = u′′′(0) = 0, u′(1) = αu′(η),(2)

where 0 < η < 1, α ∈ R, α 6= 1, f ∈ C([0, 1]× R,R), R = (−∞,∞).
This paper is organized as follows. In Section 2, we present two lemmas that

will be used to prove the some results. In Section 3, we present and prove our
main results, which are given by some existence theorems and a corollary for
the nontrivial solution of the BVP (1)–(2). Then we establish some criteria for
the existence of at least one solution, by using the Leray-Schauder nonlinear
alternative. Finally, in Section 4, as an application, we give some examples to
illustrate the results that we have obtained.

2. PRELIMINARIES

Let E = C([0, 1]) with the norm given by ‖y‖ = supt∈[0,1] |y(t)|, for any

y ∈ E. A solution u(t) of the BVP (1)–(2) is called a nontrivial solution if
u(t) 6= 0. To get our results, we need the following lemma.

Lemma 2.1. Let y ∈ C([0, 1]), α 6= 1, then the boundary value problem

u(4)(t) + y(t) = 0, 0 < t < 1,

u(0) = 0, u′′(0) = u′′′(0) = 0, u′(1) = αu′(η),

has a unique solution

u(t) = −1

6

∫ t

0
(t− s)3y(s)ds+

t

2(1− α)

∫ 1

0
(1− s)2y(s)ds

− αt

2(1− α)

∫ η

0
(η − s)2y(s)ds.

Proof. Rewriting the differential equation as u(4)(t) = −y(t) and integrating
four times from 0 to t, we obtain

(3) u(t) = −1

6

∫ t

0
(t− s)3y(s)ds+

t3

6
c+

t2

2
c1 + tc2 + c3.

By the boundary condition (2), we have u(0) = 0, u′′(0) = u′′′(0) = 0, i.e.,
c1 = c3 = c = 0 and u′(1) = αu′(η), and thus we get

(4) c2 =
1

2(1− α)

∫ 1

0
(1− s)2y(s)ds− α

2(1− α)

∫ η

0
(η − s)2y(s)ds.
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Using the equations (3) and (4), we obtain

u(t) = −1

6

∫ t

0
(t− s)3y(s)ds+

t

2(1− α)

∫ 1

0
(1− s)2y(s)ds

− αt

2(1− α)

∫ η

0
(η − s)2y(s)ds.

This completes the proof. �

Define the integral operator T : E → E, by

Tu(t) =− 1

6

∫ t

0
(t− s)3f(s, u(s))ds+

t

2(1− α)

∫ 1

0
(1− s)2f(s, u(s))ds

− αt

2(1− α)

∫ η

0
(η − s)2f(s, u(s))ds.

(5)

By Lemma 2.1, the BVP (1)–(2) has a solution if and only if the operator T
has a fixed point in E. So we only need to find a fixed point of T in E. By
the Ascoli-Arzela theorem, we can prove that T is a completely continuous
operator. Next, we present the Leray-Schauder nonlinear alternative.

Lemma 2.2 ([2]). Let E be a Banach space and Ω be a bounded open subset
of E, 0 ∈ Ω. Let T : Ω→ E be a completely continuous operator. Then, either
(i) there exists u ∈ ∂Ω and λ > 1 such that T (u) = λu, or (ii) there exists a
fixed point u∗ ∈ Ω of T .

3. EXISTENCE OF NONTRIVIAL SOLUTIONS

In this section, we prove the existence of a nontrivial solution for the BVP
(1)–(2). Suppose that f ∈ C([0, 1]× R,R).

Theorem 3.1. Suppose that f(t, 0) 6= 0, α 6= 1 and that there exist non-
negative functions k, h ∈ L1[0, 1] such that

|f(t, x)| ≤ k(t)|x|+ h(t), a.e. (t, x) ∈ [0, 1]× R,

1

6

∫ 1

0
(1− s)3k(s)ds+

1

2|1− α|

∫ 1

0
(1− s)2k(s)ds

+
|α|

2|1− α|

∫ η

0
(η − s)2k(s)ds < 1.

Then the BVP (1)–(2) has at least one nontrivial solution u∗ ∈ C([0, 1]).
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Proof. Let

M =
1

6

∫ 1

0
(1− s)3k(s)ds+

1

2|1− α|

∫ 1

0
(1− s)2k(s)ds

+
|α|

2|1− α|

∫ η

0
(η − s)2k(s)ds,

N =
1

6

∫ 1

0
(1− s)3h(s)ds+

1

2|1− α|

∫ 1

0
(1− s)2h(s)ds

+
|α|

2|1− α|

∫ η

0
(η − s)2h(s)ds.

Then M < 1. Since f(t, 0) 6= 0, there exists an interval [a, b] ⊂ [0, 1] such that
mina≤t≤b |f(t, 0)| > 0. As h(t) ≥ |f(t, 0)|, a.e. t ∈ [0, 1], we know that N > 0.

Let A = N(1−M)−1 and Ω = {u ∈ E : ‖u‖ < A}. Let u ∈ ∂Ω and λ > 1
be such that Tu = λu. Then

λA = λ‖u‖ = ‖Tu‖ = max
0≤t≤1

|(Tu)(t)|

≤ 1

6
max
0≤t≤1

∫ t

0
(t− s)3|f(s, u(s))|ds

+ max
0≤t≤1

∣∣∣∣ t

2(1− α)

∣∣∣∣ ∫ 1

0
(1− s)2|f(s, u(s))|ds

+ max
0≤t≤1

∣∣∣∣ αt

2(1− α)

∣∣∣∣ ∫ η

0
(η − s)2|f(s, u(s))|ds

≤ 1

6

∫ 1

0
(1− s)3|f(s, u(s))|ds+

1

2|1− α|

∫ 1

0
(1− s)2|f(s, u(s))|ds

+
|α|

2|1− α|

∫ η

0
(η − s)2|f(s, u(s))|ds

≤
[

1

6

∫ 1

0
(1− s)3k(s)|u(s)|ds+

1

2|1− α|

∫ 1

0
(1− s)2k(s)|u(s)|ds

+
|α|

2|1− α|

∫ η

0
(η − s)2k(s)|u(s)|ds

]
+

[
1

6

∫ 1

0
(1− s)3h(s)ds

+
1

2|1− α|

∫ 1

0
(1− s)2h(s)ds+

|α|
2|1− α|

∫ η

0
(η − s)2h(s)ds

]
= M‖u‖+N

Therefore,

λ ≤M +
N

A
= M +

N

N(1−M)−1
= M + (1−M) = 1.

This contradicts λ > 1. By Lemma 2.2, T has a fixed point u∗ ∈ Ω. In view
of f(t, 0) 6= 0, the BVP (1)–(2) has a nontrivial solution u∗ ∈ E.
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This completes the proof. �

Theorem 3.2. Suppose that f(t, 0) 6= 0, α < 1 and that there exist non-
negative functions k, h ∈ L1[0, 1] such that

|f(t, x)| ≤ k(t)|x|+ h(t), a.e. (t, x) ∈ [0, 1]× R.

If one of the following conditions is fulfilled
(1) there exists a constant p > 1 such that∫ 1

0
kp(s)ds <

[
6(1− α)(1 + 2q)1/q(1 + 3q)1/q

(1− α)(1 + 2q)1/q + 3(1 + 3q)1/q(1 + |α|η(1+2q)/q)

]p
,

where 1
p + 1

q = 1,

(2) there exists a constant µ > −1 such that

k(s) ≤ (1− α)(1 + µ)(2 + µ)(3 + µ)(4 + µ)

(1− α) + (4 + µ)(1 + |α|η3+µ)
sµ, a.e. s ∈ [0, 1],

meas

{
s ∈ [0, 1] : k(s) <

(1− α)(1 + µ)(2 + µ)(3 + µ)(4 + µ)

(1− α) + (4 + µ)(1 + |α|η3+µ)
sµ
}
> 0,

(3) there exists a constant µ > −3 such that

k(s) ≤ 6(1− α)(3 + µ)(4 + µ)

(1− α)(3 + µ) + 3(1 + |α|)(4 + µ)
(1− s)µ, a.e. s ∈ [0, 1],

meas

{
s ∈ [0, 1] : k(s) <

6(1− α)(3 + µ)(4 + µ)

(1− α)(3 + µ) + 3(1 + |α|)(4 + µ)
(1− s)µ

}
> 0,

(4) k satisfies

k(s) ≤ 24(1− α)

(1− α) + 4(1 + |α|η3)
, a.e. s ∈ [0, 1],

meas

{
s ∈ [0, 1] : k(s) <

24(1− α)

(1− α) + 4(1 + |α|η3)

}
> 0,

then the BVP (1)–(2) has at least one nontrivial solution u∗ ∈ E.

Proof. Let M be defined as in the proof of Theorem 3.1. To prove Theorem
3.2, we only need to prove that M < 1. Since α < 1, we have

M =
1

6

∫ 1

0
(1− s)3k(s)ds

+
1

2(1− α)

∫ 1

0
(1− s)2k(s)ds+

|α|
2(1− α)

∫ η

0
(η − s)2k(s)ds.
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(1) Using the Hölder inequality, we have

M ≤
[∫ 1

0
kp(s)ds

]1/p{
1

6

[∫ 1

0
(1− s)3qds

]1/q
+

1

2(1− α)

[∫ 1

0
(1− s)2qds

]1/q
+

|α|
2(1− α)

[∫ η

0
(η − s)2qds

]1/q }
≤
[∫ 1

0
kp(s)ds

]1/p [
1

6

(
1

1 + 3q

)1/q

+
1

2(1− α)

(
1

1 + 2q

)1/q

+
|α|

2(1− α)

(
η1+2q

1 + 2q

)1/q ]
<

6(1− α)(1 + 2q)1/q(1 + 3q)1/q

(1− α)(1 + 2q)1/q + 3(1 + 3q)1/q(1 + |α|η(1+2q)/q)

× (1− α)(1 + 2q)1/q + 3(1 + 3q)1/q(1 + |α|η(1+2q)/q)

6(1− α)(1 + 2q)1/q(1 + 3q)1/q
= 1.

(2) In this case, we have

M <
(1− α)(1 + µ)(2 + µ)(3 + µ)(4 + µ)

(1− α) + (4 + µ)(1 + |α|η3+µ)

[
1

6

∫ 1

0
(1− s)3sµds+

1

2(1− α)

×
∫ 1

0
(1− s)2sµds+

|α|
2(1− α)

∫ η

0
(η − s)2sµds

]
≤ (1− α)(1 + µ)(2 + µ)(3 + µ)(4 + µ)

(1− α) + (4 + µ)(1 + |α|η3+µ)
[

1

(1 + µ)(2 + µ)(3 + µ)(4 + µ)

+
1

(1− α)

1

(1 + µ)(2 + µ)(3 + µ)
+

|α|
(1− α)

η3+µ

(1 + µ)(2 + µ)(3 + µ)
]

=
(1− α)(1 + µ)(2 + µ)(3 + µ)(4 + µ)

(1− α) + (4 + µ)(1 + |α|η3+µ)

× (1− α) + (4 + µ)(1 + |α|η3+µ)

(1− α)(1 + µ)(2 + µ)(3 + µ)(4 + µ)
= 1.

(3) In this case, we have

M <
6(1− α)(3 + µ)(4 + µ)

(1− α)(3 + µ) + 3(1 + |α|)(4 + µ)

[
1

6

∫ 1

0
(1− s)3+µds

+
1

2(1− α)

∫ 1

0
(1− s)2+µds+

|α|
2(1− α)

∫ η

0
(η − s)2(1− s)µds

]
≤ 6(1− α)(3 + µ)(4 + µ)

(1− α)(3 + µ) + 3(1 + |α|)(4 + µ)

[
1

6

∫ 1

0
(1− s)3+µds
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+
1

2(1− α)

∫ 1

0
(1− s)2+µds+

|α|
2(1− α)

∫ 1

0
(1− s)2+µds

]
=

6(1− α)(3 + µ)(4 + µ)

(1− α)(3 + µ) + 3(1 + |α|)(4 + µ)

(1− α)(3 + µ) + 3(1 + |α|)(4 + µ)

6(1− α)(3 + µ)(4 + µ)

= 1.
(4) In this case, we have

M <
24(1− α)

(1− α) + 4(1 + |α|η3)

[
1

6

∫ 1

0
(1− s)3ds

+
1

2(1− α)

∫ 1

0
(1− s)2ds+

|α|
2(1− α)

∫ η

0
(η − s)2ds

]
=

24(1− α)

(1− α) + 4(1 + |α|η3)
(1− α) + 4(1 + |α|η3)

24(1− α)
= 1.

This completes the proof. �

Theorem 3.3. Suppose that f(t, 0) 6= 0, α > 1 and that there exist non-
negative functions k, h ∈ L1[0, 1] such that

|f(t, x)| ≤ k(t)|x|+ h(t), a.e. (t, x) ∈ [0, 1]× R.
If one of the following conditions holds

(1) there exists a constant p > 1 such that∫ 1

0
kp(s)ds <

[
6(α− 1)(1 + 2q)1/q(1 + 3q)1/q

(α− 1)(1 + 2q)1/q + 3(1 + 3q)1/q(1 + αη(1+2q)/q)

]p
,

where 1
p + 1

q = 1,

(2) there exists a constant µ > −1 such that

k(s) ≤ (α− 1)(1 + µ)(2 + µ)(3 + µ)(4 + µ)

(α− 1) + (4 + µ)(1 + αη3+µ)
sµ, a.e. s ∈ [0, 1],

meas

{
s ∈ [0, 1] : k(s) <

(α− 1)(1 + µ)(2 + µ)(3 + µ)(4 + µ)

(α− 1) + (4 + µ)(1 + αη3+µ)
sµ
}
> 0,

(3) there exists a constant µ > −3 such that

k(s) ≤ 6(α− 1)(3 + µ)(4 + µ)

(α− 1)(3 + µ) + 3(1 + α)(4 + µ)
(1− s)µ, a.e. s ∈ [0, 1],

meas

{
s ∈ [0, 1] : k(s) <

6(α− 1)(3 + µ)(4 + µ)

(α− 1)(3 + µ) + 3(1 + α)(4 + µ)
(1− s)µ

}
> 0,

(4) k satisfies

k(s) ≤ 24(α− 1)

(α− 1) + 4(1 + αη3)
, a.e. s ∈ [0, 1],

meas

{
s ∈ [0, 1] : k(s) <

24(α− 1)

(α− 1) + 4(1 + αη3)

}
> 0.
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then the BVP (1)–(2) has at least one nontrivial solution u∗ ∈ E.

Proof. Let M be defined as in the proof of Theorem 3.1. To prove Theorem
3.3, we only need to prove that M < 1. Since α > 1, we have

M =
1

6

∫ 1

0
(1− s)3k(s)ds+

1

2(α− 1)

∫ 1

0
(1− s)2k(s)ds

+
α

2(α− 1)

∫ η

0
(η − s)2k(s)ds.

(1) Using the Hölder inequality, we have

M ≤
[∫ 1

0
kp(s)ds

]1/p{
1

6

[∫ 1

0
(1− s)3qds

]1/q
+

1

2(α− 1)

[∫ 1

0
(1− s)2qds

]1/q
+

α

2(α− 1)

[∫ η

0
(η − s)2qds

]1/q }
≤
[∫ 1

0
kp(s)ds

]1/p [
1

6

(
1

1 + 3q

)1/q

+
1

2(α− 1)

(
1

1 + 2q

)1/q

+
α

2(α− 1)

(
η1+2q

1 + 2q

)1/q ]
<

6(α− 1)(1 + 2q)1/q(1 + 3q)1/q

(α− 1)(1 + 2q)1/q + 3(1 + 3q)1/q(1 + αη(1+2q)/q)

× (α− 1)(1 + 2q)1/q + 3(1 + 3q)1/q(1 + αη(1+2q)/q)

6(α− 1)(1 + 2q)1/q(1 + 3q)1/q
= 1.

(2) In this case, we have

M <
(α− 1)(1 + µ)(2 + µ)(3 + µ)(4 + µ)

(α− 1) + (4 + µ)(1 + αη3+µ)

[
1

6

∫ 1

0
(1− s)3sµds

+
1

2(α− 1)

∫ 1

0
(1− s)2sµds+

α

2(α− 1)

∫ η

0
(η − s)2sµds

]
=

(α− 1)(1 + µ)(2 + µ)(3 + µ)(4 + µ)

(α− 1) + (4 + µ)(1 + αη3+µ)

× (α− 1) + (4 + µ)(1 + αη3+µ)

(α− 1)(1 + µ)(2 + µ)(3 + µ)(4 + µ)
= 1.

(3) In this case, we have

M <
6(α− 1)(3 + µ)(4 + µ)

(α− 1)(3 + µ) + 3(1 + α)(4 + µ)

[
1

6

∫ 1

0
(1− s)3+µds

+
1

2(α− 1)

∫ 1

0
(1− s)2+µds+

α

2(α− 1)

∫ η

0
(η − s)2(1− s)µds

]
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≤ 6(α− 1)(3 + µ)(4 + µ)

(α− 1)(3 + µ) + 3(1 + α)(4 + µ)

[
1

6

∫ 1

0
(1− s)3+µds

+
1

2(α− 1)

∫ 1

0
(1− s)2+µds+

α

2(α− 1)

∫ 1

0
(1− s)2+µds

]
=

6(α− 1)(3 + µ)(4 + µ)

(α− 1)(3 + µ) + 3(1 + α)(4 + µ)

(α− 1)(3 + µ) + 3(1 + α)(4 + µ)

6(α− 1)(3 + µ)(4 + µ)
= 1.

(4) In this case, we have

M <
24(α− 1)

(α− 1) + 4(1 + αη3)

[
1

6

∫ 1

0
(1− s)3ds+

1

2(α− 1)

∫ 1

0
(1− s)2ds

+
α

2(α− 1)

∫ η

0
(η − s)2ds

]
=

24(α− 1)

(α− 1) + 4(1 + αη3)

(α− 1) + 4(1 + αη3)

24(α− 1)
= 1.

This completes the proof. �

Corollary 3.4. Suppose f(t, 0) 6= 0, α < 1 and that there exist non-
negative functions k, h ∈ L1[0, 1] such that

|f(t, x)| ≤ k(t)|x|+ h(t), a.e. (t, x) ∈ [0, 1]× R.

If one of following conditions holds
(1) there exists a constant p > 1 such that∫ 1

0
kp(s)ds <

[
6(1− α)(1 + 2q)1/q(1 + 3q)1/q

(1− α)(1 + 2q)1/q + 3(1 + 3q)1/q(1 + |α|)

]p
,

where 1
p + 1

q = 1,

(2) there exists a constant µ > −1 such that

k(s) ≤ (1− α)(1 + µ)(2 + µ)(3 + µ)(4 + µ)

(1− α) + (4 + µ)(1 + |α|)
sµ, a.e. s ∈ [0, 1],

meas

{
s ∈ [0, 1] : k(s) <

(1− α)(1 + µ)(2 + µ)(3 + µ)(4 + µ)

(1− α) + (4 + µ)(1 + |α|)
sµ
}
> 0,

(3) k satisfies

k(s) ≤ 24(1− α)

(1− α) + 4(1 + |α|)
, a.e. s ∈ [0, 1],

meas

{
s ∈ [0, 1] : k(s) <

24(1− α)

(1− α) + 4(1 + |α|)

}
> 0,

then the BVP (1)–(2) has at least one nontrivial solution u∗ ∈ E.
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Proof. In this case, we have

M =
1

6

∫ 1

0
(1− s)3k(s)ds+

1

2(1− α)

∫ 1

0
(1− s)2k(s)ds

+
|α|

2(1− α)

∫ η

0
(η − s)2k(s)ds

≤ 1

6

∫ 1

0
(1− s)3k(s)ds+

1

2(1− α)

∫ 1

0
(1− s)2k(s)ds

+
|α|

2(1− α)

∫ 1

0
(1− s)2k(s)ds

=
1

6

∫ 1

0
(1− s)3k(s)ds+

1 + |α|
2(1− α)

∫ 1

0
(1− s)2k(s)ds.

Now, the proof follows, by using the same method as the one used in the proof
of Theorem 3.2. The proof is complete. �

Corollary 3.5. Suppose that f(t, 0) 6= 0, α > 1 and that there exist
nonnegative functions k, h ∈ L1[0, 1] such that

|f(t, x)| ≤ k(t)|x|+ h(t), a.e. (t, x) ∈ [0, 1]× R.

If one of the following conditions holds
(1) there exists a constant p > 1 such that∫ 1

0
kp(s)ds < [

6(α− 1)(1 + 2q)1/q(1 + 3q)1/q

(α− 1)(1 + 2q)1/q + 3(1 + 3q)1/q(1 + α)
]p,

where 1
p + 1

q = 1,

(2) there exists a constant µ > −1 such that

k(s) ≤ (α− 1)(1 + µ)(2 + µ)(3 + µ)(4 + µ)

(α− 1) + (4 + µ)(1 + α)
sµ, a.e. s ∈ [0, 1],

meas

{
s ∈ [0, 1] : k(s) <

(α− 1)(1 + µ)(2 + µ)(3 + µ)(4 + µ)

(α− 1) + (4 + µ)(1 + α)
sµ
}
> 0,

(3) k satisfies

k(s) ≤ 24(α− 1)

(α− 1) + 4(1 + α)
, a.e. s ∈ [0, 1],

meas

{
s ∈ [0, 1] : k(s) <

24(α− 1)

(α− 1) + 4(1 + α)

}
> 0,

then the BVP (1)–(2) has at least one nontrivial solution u∗ ∈ E.
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Proof. In this case, we have

M =
1

6

∫ 1

0
(1− s)3k(s)ds+

1

2(α− 1)

∫ 1

0
(1− s)2k(s)ds

+
α

2(α− 1)

∫ η

0
(η − s)2k(s)ds

≤ 1

6

∫ 1

0
(1− s)3k(s)ds+

1

2(α− 1)

∫ 1

0
(1− s)2k(s)ds

+
α

2(α− 1)

∫ 1

0
(1− s)2k(s)ds

=
1

6

∫ 1

0
(1− s)3k(s)ds+

1 + α

2(α− 1)

∫ 1

0
(1− s)2k(s)ds.

The rest of the proof follows in the same way as in the proof of Theorem
3.3. This completes the proof. �

4. EXAMPLES

In order to illustrate the above results, we consider some examples.

Example 4.1. Consider the three-point boundary value problem

u(4) +
t√
2
u sinu− t− 2 = 0, 0 < t < 1,

u(0) = 0, u′′(0) = u′′′(0) = 0, u′(1) = −3u′(1/2).

(6)

Set η = 1/2, α = −3 6= 1 and

f(t, x) =
t√
2
x sinx− t− 2,

k(t) = t, h(t) = t+ 2.

It is easy to prove that k, h ∈ L1[0, 1] are nonnegative functions and

|f(t, x)| ≤ k(t)|x|+ h(t), a.e. (t, x) ∈ [0, 1]× R.

Moreover, we have

M =
1

6

∫ 1

0
(1− s)3k(s)ds+

1

2|1− α|

∫ 1

0
(1− s)2k(s)ds

+
|α|

2|1− α|

∫ η

0
(η − s)2k(s)ds

=
1

6

∫ 1

0
(1− s)3sds+

1

8

∫ 1

0
(1− s)2sds+

3

8

∫ 1/2

0
(
1

2
− s)2sds = 0.019 < 1.

Hence, by Theorem 3.1, the BVP (6) has at least one nontrivial solution u∗ in
E.
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Example 4.2. Consider the three-point boundary value problem

u(4) +
3

25
(7 + t)u− et + 1 = 0, 0 < t < 1,

u(0) = 0, u′′(0) = u′′′(0) = 0, u′(1) = −2u′(1/4).
(7)

Set η = 1/4, α = −2 < 1 and

f(t, x) =
3

25
(7 + t)x− et + 1,

k(t) =
1

2
(7 + t), h(t) = et + 1.

It is easy to prove that k, h ∈ L1[0, 1] are nonnegative functions and

|f(t, x)| ≤ k(t)|x|+ h(t), a.e. (t, x) ∈ [0, 1]× R.

Let p = q = 2 be such that 1
p + 1

q = 1. Then∫ 1

0
kp(s)ds =

∫ 1

0

1

4
(7 + s)2ds =

169

12
.

Moreover, we have[
6(1− α)(1 + 2q)1/q(1 + 3q)1/q

(1− α)(1 + 2q)1/q + 3(1 + 3q)1/q(1 + |α|η(1+2q)/q)

]p
= 49.454.

Therefore,∫ 1

0
kp(s)ds <

[
6(1− α)(1 + 2q)1/q(1 + 3q)1/q

(1− α)(1 + 2q)1/q + 3(1 + 3q)1/q(1 + |α|η(1+2q)/q)

]p
.

Hence, by Theorem 3.2 (1), the BVP (7) has at least one nontrivial solution
u∗ in E.

Example 4.3. Consider the three-point boundary value problem

(8)
u(4) + tu2

9(5+u) cosu− et − 1 = 0, 0 < t < 1,

u(0) = 0, u′′(0) = u′′′(0) = 0, u′(1) = −4u′(1/3).

Set η = 1/3, α = −4 < 1 and

f(t, x) =
tx2

9(5 + x)
cosx− et − 1,

k(t) =
1

9
t, h(t) = et + 1.

It is easy to prove that k, h ∈ L1[0, 1] are nonnegative functions and

|f(t, x)| ≤ k(t)|x|+ h(t), a.e. (t, x) ∈ [0, 1]× R.
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Let µ = 1 > −1. Then

(1− α)(1 + µ)(2 + µ)(3 + µ)(4 + µ)

(1− α) + (4 + µ)(1 + |α|η3+µ)
= 58.559.

Therefore,

k(s) =
1

9
s < 58.559.s,

meas

{
s ∈ [0, 1] : k(s) <

(1− α)(1 + µ)(2 + µ)(3 + µ)(4 + µ)

(1− α) + (4 + µ)(1 + |α|η3+µ)
sµ
}
> 0.

Hence, by Theorem 3.2 (2), the BVP (8) has at least one nontrivial solution
u∗ in E.

Example 4.4. Consider the three-point boundary value problem

u(4) +
5u3

8(1 + u)(1− t)−2
sinu+ t4 − 3 = 0, 0 < t < 1,

u(0) = 0, u′′(0) = u′′′(0) = 0, u′(1) = −6u′(1/2).

(9)

Set η = 1/2, α = −6 < 1 and

f(t, x) =
5x3

8(1 + x)(1− t)−2
sinx+ t4 − 3,

k(t) =
5

8(1− t)−2
, h(t) = t4 + 3.

It is easy to prove that k, h ∈ L1[0, 1] are nonnegative functions and

|f(t, x)| ≤ k(t)|x|+ h(t), a.e. (t, x) ∈ [0, 1]× R.

Let µ = 2 > −3. Then
6(1− α)(3 + µ)(4 + µ)

(1− α)(3 + µ) + 3(1 + |α|)(4 + µ)
=

1260

161
. Therefore,

k(s) =
5

8
(1− s)2 < 1260

161
(1− s)2,

meas

{
s ∈ [0, 1] : k(s) <

6(1− α)(3 + µ)(4 + µ)

(1− α)(3 + µ) + 3(1 + |α|)(4 + µ)
(1− s)µ

}
> 0.

Hence, by Theorem 3.2 (3), the BVP (9) has at least one nontrivial solution
u∗ in E.

Example 4.5. Consider the three-point boundary value problem

u(4) +
tu2

5(3 + u)
+ et − 3 = 0, 0 < t < 1,

u(0) = 0, u′′(0) = u′′′(0) = 0, u′(1) = −5u′(1/5).

(10)

Set η = 1/5, α = −5 < 1, f(t, x) =
tx2

5(3 + x)
+et−3, k(t) =

t

5
and h(t) = et+3.

It is easy to prove that k, h ∈ L1[0, 1] are nonnegative functions and

|f(t, x)| ≤ k(t)|x|+ h(t), a.e. (t, x) ∈ [0, 1]× R.



38 Z. Bekri and S. Benaicha 15

Moreover, we have
24(1− α)

(1− α) + 4(1 + |α|η3)
=

1800

127
. Therefore,

k(s) =
s

5
<

1800

127
, s ∈ [0, 1],

and

meas

{
s ∈ [0, 1] : k(s) <

24(1− α)

(1− α) + 4(1 + |α|η3)

}
> 0.

Hence, by Theorem 3.2 (4), the BVP (10) has at least one nontrivial solution
u∗ in E.

Remark 4.6. We can give similar examples for Theorem 3.3, Corollary 3.1
and Corollary 3.2.
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