MATHEMATICA, 58 (81), N° 1–2, 2016, pp. 3–13

ON OPERATORS IN IDEAL MINIMAL SPACES

AHMAD AL-OMARI and TAKASHI NOIRI

Abstract. A collection m_X of subsets of a nonempty set X is called a minimal structure [6] on X if $\phi \in m_X$ and $X \in m_X$. As a generalization of the local closure function $\Gamma(A)$ [1] in an ideal topological space (X, τ, \mathcal{I}) , we introduce and investigate an operator $A_m^*(\mathcal{I}, m_X)$ in an ideal minimal space (X, m_X, \mathcal{I}) , where \mathcal{I} is an ideal.

MSC 2010. 54A05, 54A10.

Key words. Minimal structure, ideal minimal structure, minimal local closure function.

1. INTRODUCTION AND PRELIMINARIES

Let (X, τ) be a topological space with no separation properties assumed. For a subset A of a topological space (X, τ) , Cl(A) and Int(A) denote the closure and the interior of A in (X, τ) , respectively. An ideal \mathcal{I} on a topological space (X, τ) is a non-empty collection of subsets of X which satisfies the following properties:

- (1) $A \in \mathcal{I}$ and $B \subseteq A$ implies that $B \in \mathcal{I}$.
- (2) $A \in \mathcal{I}$ and $B \in \mathcal{I}$ implies $A \cup B \in \mathcal{I}$.

An ideal topological space is a topological space (X, τ) with an ideal \mathcal{I} on X and is denoted by (X, τ, \mathcal{I}) . For a subset $A \subseteq X$, $A^*(\mathcal{I}, \tau) = \{x \in X :$ $A \cap U \notin \mathcal{I}$, for every open set U containing x is called the local function of A with respect to \mathcal{I} and τ (see [2]). We simply write A^* instead of $A^*(\mathcal{I}, \tau)$, in case there is no reason for confusion. For every ideal topological space (X, τ, \mathcal{I}) , there exists a topology $\tau^*(\mathcal{I})$, finer than τ , generated by the base $\beta(\mathcal{I},\tau) = \{U - J : U \in \tau \text{ and } J \in \mathcal{I}\}.$ It is shown in Example 3.6 of [2] that $\beta(\mathcal{I},\tau)$ is not always a topology. When there is no ambiguity, $\tau^*(\mathcal{I})$ is denoted by τ^* . Recall that A is said to be *-dense in itself (resp., τ^* -closed, *perfect) if $A \subseteq A^*$ (resp., $A^* \subseteq A$, $A = A^*$). For a subset $A \subseteq X$, $Cl^*(A)$ and $Int^*(A)$ will denote the closure and the interior of A in (X, τ^*) , respectively. A subfamily m_X of the power set $\mathcal{P}(X)$ of a nonempty set X is called a minimal structure [6] on X if $\phi \in m_X$ and $X \in m_X$. By (X, m_X) , we denote a nonempty set X with a minimal structure m_X on X and call it a minimal space. Set $m_X(x) = \{U \in m_X : x \in U\}$. For a subset A of X, the m-closure of A and the *m*-interior of A in (X, m_X) are defined in [7] as follows:

$$m - Int(A) = \bigcup \{U : U \subseteq A, U \in m_X\}, m - Cl(A) = \cap \{U : A \subseteq F, X - F \in m_X\}.$$

- (1) X = m Int(X) and $\phi = m Cl(\phi)$.
- (2) $m Int(A) \subseteq A$ and $A \subseteq m Cl(A)$.
- (3) If $A \in m_X$, then m Int(A) = A and, if $X F \in m_X$, then m Cl(F) = F.
- (4) If $A \subseteq B$, then $m Int(A) \subseteq m Int(B)$ and $m Cl(A) \subseteq m Cl(B)$.
- (5) m Int(m Int(A)) = m Int(A) and m Cl(m Cl(A)) = m Cl(A).
- (6) m Cl(X A) = X m Int(A) and m Int(X A) = X m Cl(A).

DEFINITION 1.2. A minimal structure m_X on X is said to have

- (1) property (B), if m_X is closed under arbitrary unions,
- (2) property [I], if m_X is closed under finite intersections.

LEMMA 1.3. ([7]) Let m_X have property B. Then the following properties hold:

- (1) $A \in m_X$ if and only if $m_X Int(A) = A$,
- (2) A is m_X -closed if and only if $m_X Cl(A) = A$,
- (3) $m_X Int(A) \in m_X$ and $m_X Cl(A)$ is m_X -closed.

2. LOCAL OPERATOR FUNCTIONS IN IDEAL MINIMAL SPACES

DEFINITION 2.1. Let (X, m_X, \mathcal{I}) be an ideal minimal space. For a subset A of X, we define the following set operators: $A_m^*(\mathcal{I}, m_X) = \{x \in X : A \cap U \notin \mathcal{I}, for every <math>U \in m_X(x)\}$ (see [8]), $A_m^{\overline{*}}(\mathcal{I}, m_X) = \{x \in X : A \cap m - Cl(U) \notin \mathcal{I}, for every <math>U \in m_X(x)\}$. In the case there is no confusion, $A_m^{\overline{*}}(\mathcal{I}, \tau)$ (resp., $A_m^*(\mathcal{I}, \tau)$) is briefly denoted by $A_m^{\overline{*}}$ (resp. A_m^*) and is called the minimal local closure (resp., minimal local) function of A with respect to \mathcal{I} and m_X .

REMARK 2.2. If an m_X -structure m_X is a topology τ , then $A_m^* = A^*$ and $A_m^* = \Gamma(A)$ (see [1]).

LEMMA 2.3. Let (X, m_X, \mathcal{I}) be an ideal minimal space. Then $A_m^*(\mathcal{I}, m_X) \subseteq A_m^*(\mathcal{I}, m_X)$, for every subset A of X.

Proof. Let $x \in A_m^*(\mathcal{I}, m_X)$. Then, $A \cap U \notin \mathcal{I}$, for every *m*-open set U containing x. Since $A \cap U \subseteq A \cap m - cl(U)$, we have $A \cap m - cl(U) \notin \mathcal{I}$, therefore $x \in A_m^{\overline{*}}(\mathcal{I}, m_X)$.

DEFINITION 2.4. ([7]) Let A a subset of (X, m_X) . A point $x \in X$ is called

- (1) an m_{θ} -adherent point of A, if $m Cl(U) \cap A \neq \phi$, for every $U \in m_X(x)$.
- (2) an m_{θ} -interior point of A, if $m Cl(U) \subseteq A$, for every $U \in m_X(x)$.

The set of all m_{θ} -adherent points of A is called the m_{θ} -closure of A and is denoted by $m - Cl_{\theta}(A)$. If $A = m - Cl_{\theta}(A)$, then A is said to be m_{θ} closed. The complement of an m_{θ} -closed set is said to be m_{θ} -open. The set of all m_{θ} -interior points of A is called the m_{θ} -interior of A and is denoted by $m - Int_{\theta}(A).$

LEMMA 2.5. ([7]) Let (X, m_X) be a minimal space and A be a subset of X. Then:

- (1) If A is m-open, then $m cl(A) = m cl_{\theta}(A)$.
- (2) If A is m-closed, then $m Int(A) = m Int_{\theta}(A)$.

THEOREM 2.6. Let (X, m_X) be a minimal space, \mathcal{I} and \mathcal{J} be two ideals on X, and let A and B be subsets of X. Then the following properties hold:

- (1) If $A \subseteq B$, then $A_{\overline{m}}^{\overline{*}} \subseteq B_{\overline{m}}^{\overline{*}}$. (2) If $\mathcal{I} \subseteq \mathcal{J}$, then $A_{\overline{m}}^{\overline{*}}(\mathcal{I}) \supseteq A_{\overline{m}}^{\overline{*}}(\mathcal{J})$. (3) $A_{\overline{m}}^{\overline{*}} = m cl(A_{\overline{m}}^{\overline{*}}) \subseteq m cl_{\theta}(A)$ and $A_{\overline{m}}^{\overline{*}}$ is m-closed, if m_X has property (B).
- (4) If $A \subseteq A_m^{\overline{*}}$ and $A_m^{\overline{*}}$ is m-open, then $A_m^{\overline{*}} = m cl_{\theta}(A)$. (5) If $A \in \mathcal{I}$, then $A_m^{\overline{*}} = \emptyset$.

Proof. (1) Suppose that $x \notin B_m^{\overline{*}}$. Then there exists $U \in m_X(x)$ such that $B \cap m - cl(U) \in \mathcal{I}$. Since $A \cap m - cl(U) \subseteq B \cap m - cl(U), A \cap m - cl(U) \in \mathcal{I}$. Hence $x \notin A_m^*$. Thus $X \setminus B_m^* \subseteq X \setminus A_m^*$ or $A_m^* \subseteq B_m^*$.

(2) Suppose that $x \notin A_m^{\overline{*}}(\mathcal{I})$. There exists $U \in m_X(x)$ such that $A \cap m$ – $cl(U) \in \mathcal{I}$. Since $\mathcal{I} \subseteq \mathcal{J}, A \cap m - cl(U) \in \mathcal{J}$ and $x \notin A_m^{\overline{*}}(\mathcal{J})$. Therefore, $A_m^{\overline{*}}(\mathcal{J}) \subseteq A_m^{\overline{*}}(\mathcal{I}).$

(3) We have $A_m^{\overline{*}} \subseteq m - cl(A_m^{\overline{*}})$ in general. Let $x \in m - cl(A_m^{\overline{*}})$. Then $A_m^{\overline{*}} \cap U \neq \emptyset$, for every $U \in m_X(x)$. Therefore, there exists some $y \in A_m^{\overline{*}} \cap U$ and $U \in m_X(y)$. Since $y \in A_{\overline{m}}^{\overline{*}}$, $A \cap m - cl(U) \notin \mathcal{I}$ and hence $x \in A_{\overline{m}}^{\overline{*}}$. Hence we have $m - cl(A_{\overline{m}}^{\overline{*}}) \subseteq A_{\overline{m}}^{\overline{*}}$ and thus $A_{\overline{m}}^{\overline{*}} = m - cl(A_{\overline{m}}^{\overline{*}})$. Again, let $x \in m - cl(A_{\overline{m}}^{\overline{*}}) = A_{\overline{m}}^{\overline{*}}$. Then $A \cap m - cl(U) \notin \mathcal{I}$, for every $U \in m_X(x)$. This implies $A \cap m - cl(U) \neq \emptyset$, for every $U \in m_X(x)$. Therefore, $x \in m - cl_{\theta}(A)$. This shows that $A_m^{\overline{*}}(\mathcal{I}) = m - cl(A_m^{\overline{*}}) \subseteq m - cl_{\theta}(A).$

(4) For any subset A of X, by (3) we have $A_m^{\overline{*}} = m - cl(A_m^{\overline{*}}) \subseteq m - cl_{\theta}(A)$. Since $A \subseteq A_m^{\overline{*}}$ and $A_m^{\overline{*}}$ is m-open, by Lemma 2.5, we have $m - cl_{\theta}(A) \subseteq m - cl_{\theta}(A_m^{\overline{*}}) = m - cl(A_m^{\overline{*}}) = A_m^{\overline{*}} \subseteq m - cl_{\theta}(A)$ and hence $A_m^{\overline{*}} = m - cl_{\theta}(A)$. (5) Suppose that $x \in A_m^{\overline{*}}$. Then, for any $U \in m_X(x)$, $A \cap m - cl(U) \notin \mathcal{I}$.

But $A \cap m - cl(U) \subseteq A$ and $A \notin \mathcal{I}$. This is a contradiction. Hence $A_m^{\overline{*}} = \emptyset$. \Box

LEMMA 2.7. Let (X, m_X, \mathcal{I}) be an ideal minimal space. If m_X has property [I] and U is m_{θ} -open, then $U \cap A_m^{\overline{*}} = U \cap (U \cap A)_m^{\overline{*}} \subseteq (U \cap A)_m^{\overline{*}}$, for any subset A of X.

Proof. Suppose that U is m_{θ} -open and $x \in U \cap A_m^{\overline{*}}$. Then $x \in U$ and $x \in A_m^{\overline{*}}$. Since U is m_{θ} -open, then there exists $W \in m_X$ such that $x \in W \subseteq$ $m-cl(W) \subseteq U$. Let V be any m-open set containing x. Then $V \cap W \in$ $m_X(x)$ and $m - cl(V \cap W) \cap A \notin \mathcal{I}$ and hence $m - cl(V) \cap (U \cap A) \notin \mathcal{I}$. This shows that $x \in (U \cap A)_m^*$ and hence we obtain $U \cap A_m^* \subseteq (U \cap A)_m^*$. Moreover, $U \cap A_{\overline{m}}^{\overline{*}} \subseteq U \cap (U \cap A)_{\overline{m}}^{\overline{*}}$ and, by Theorem 2.6, $(U \cap A)_{\overline{m}}^{\overline{*}} \subseteq A_{\overline{m}}^{\overline{*}}$ and $U \cap (U \cap A)_{\overline{m}}^{\overline{*}} \subseteq U \cap A_{\overline{m}}^{\overline{*}}$. Therefore, $U \cap A_{\overline{m}}^{\overline{*}} = U \cap (U \cap A)_{\overline{m}}^{\overline{*}}$.

THEOREM 2.8. Let (X, m_X, \mathcal{I}) be an ideal minimal space. If m_X has property [I] and A, B are subsets of X, then the following properties hold:

- (1) $(\emptyset)_m^{\overline{*}} = \emptyset.$
- (2) $A_m^{\overline{*}} \cup B_m^{\overline{*}} = (A \cup B)_m^{\overline{*}}.$

Proof. (1) The proof is obvious.

(2) It follows from Theorem 2.6 that $(A \cup B)_m^{\overline{*}} \supseteq A_m^{\overline{*}} \cup B_m^{\overline{*}}$. To prove the reverse inclusion, let $x \notin A_m^{\overline{*}} \cup B_m^{\overline{*}}$. Then x belongs neither to $A_m^{\overline{*}}$ nor to $B_m^{\overline{*}}$. Therefore there exist $U_x, V_x \in m_X(x)$ such that $m - cl(U_x) \cap A \in \mathcal{I}$ and $m - cl(V_x) \cap B \in \mathcal{I}$. Since \mathcal{I} is additive, $(m - cl(U_x) \cap A) \cup (m - cl(V_x) \cap B) \in \mathcal{I}$. Moreover, since \mathcal{I} is hereditary and

$$m - cl(U_x \cap V_x) \cap (A \cup B) = (mCl(U_x \cap V_x) \cap A) \cup (mCl(U_x \cap V_x) \cap B)$$
$$\subseteq (m - cl(U_x) \cap A) \cup (m - cl(V_x) \cap B),$$

 $\begin{array}{l} m-cl(U_x\cap V_x)\cap (A\cup B)\in \mathcal{I}. \text{ Since } U_x\cap V_x\in m_X(x), \, x\notin (A\cup B)_m^{\overline{*}}. \text{ Hence } \\ (X\setminus A_m^{\overline{*}})\cap (X\setminus B_m^{\overline{*}}\subseteq X\setminus (A\cup B)_m^{\overline{*}} \text{ or } (A\cup B)_m^{\overline{*}}\subseteq A_m^{\overline{*}}\cup B_m^{\overline{*}}. \text{ Hence, we obtain } A_m^{\overline{*}}\cup B_m^{\overline{*}}=(A\cup B)_m^{\overline{*}}. \end{array}$

LEMMA 2.9. Let (X, m_X, \mathcal{I}) be an ideal minimal space. Let m_X have property [I] and A, B be subsets of X. Then $A_m^{\overline{*}} - B_m^{\overline{*}} = (A - B)_m^{\overline{*}} - B_m^{\overline{*}}$.

Proof. We have, by Theorem 2.8, $A_{\overline{m}}^{\overline{*}} = [(A-B) \cup (A \cap B)]_{\overline{m}}^{\overline{*}} = (A-B)_{\overline{m}}^{\overline{*}} \cup (A \cap B)_{\overline{m}}^{\overline{*}} \subseteq (A-B)_{\overline{m}}^{\overline{*}} \cup B_{\overline{m}}^{\overline{*}}$. Thus $A_{\overline{m}}^{\overline{*}} - B_{\overline{m}}^{\overline{*}} \subseteq (A-B)_{\overline{m}}^{\overline{*}} - B_{\overline{m}}^{\overline{*}}$. By Theorem 2.6, we get $(A-B)_{\overline{m}}^{\overline{*}} \subseteq A_{\overline{m}}^{\overline{*}}$ and hence $(A-B)_{\overline{m}}^{\overline{*}} - B_{\overline{m}}^{\overline{*}} \subseteq A_{\overline{m}}^{\overline{*}} - B_{\overline{m}}^{\overline{*}}$. Hence $A_{\overline{m}}^{\overline{*}} - B_{\overline{m}}^{\overline{*}} = (A-B)_{\overline{m}}^{\overline{*}} - B_{\overline{m}}^{\overline{*}}$.

COROLLARY 2.10. Let (X, m_X, \mathcal{I}) be an ideal minimal space. Let m_X have property [I] and A, B be subsets of X with $B \in \mathcal{I}$. Then $(A \cup B)_{\overline{m}}^{\overline{*}} = A_{\overline{m}}^{\overline{*}} = (A - B)_{\overline{m}}^{\overline{*}}$.

Proof. Since $B \in \mathcal{I}$, by Theorem 2.6, we have $B_m^{\overline{*}} = \emptyset$. By Lemma 2.9, we have $A_m^{\overline{*}} = (A - B)_m^{\overline{*}}$ and, by Theorem 2.8, $(A \cup B)_m^{\overline{*}} = A_m^{\overline{*}} \cup B_m^{\overline{*}} = A_m^{\overline{*}}$. \Box

3. CLOSURE COMPATIBILITY OF MINIMAL SPACES

DEFINITION 3.1. Let (X, m_X, \mathcal{I}) be an ideal minimal space. We say the m_X is closure *m*-compatible with the ideal \mathcal{I} and we denote $m_X \eqsim \mathcal{I}$, if the following holds, for every $A \subseteq X$: if, for every $x \in A$, there exists $U \in m_X(x)$ such that $m - cl(U) \cap A \in \mathcal{I}$, then $A \in \mathcal{I}$.

REMARK 3.2. If m_X is *m*-compatible with \mathcal{I} , then m_X is closure *m*-compatible with \mathcal{I} .

THEOREM 3.3. Let (X, m_X, \mathcal{I}) be an ideal minimal space. Then the implications $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4)$ and $(5) \Rightarrow (1)$ hold. If m_X has property [I], then the following properties are equivalent:

- (1) $m_X \overline{\sim} \mathcal{I}$.
- (2) If a subset A of X has a cover of m-open sets each of whose m-closure intersection with A is in \mathcal{I} , then $A \in \mathcal{I}$.
- (3) For every $A \subseteq X$, $A \cap A_{\underline{m}}^{\overline{*}} = \emptyset$ implies that $A \in \mathcal{I}$.
- (4) For every $A \subseteq X$, $A A_m^{\overline{*}} \in \mathcal{I}$.
- (5) For every $A \subseteq X$, if A contains no nonempty subset B with $B \subseteq B_m^*$, then $A \in \mathcal{I}$.

Proof. (1) \Rightarrow (2): The proof is obvious.

(2) \Rightarrow (3): Let $A \subseteq X$ and $x \in A$. Then $x \notin A_m^{\overline{*}}$ and there exists $V_x \in$ $m_X(x)$ such that $m - cl(V_x) \cap A \in \mathcal{I}$. Therefore, we have $A \subseteq \bigcup \{V_x : x \in A\}$ and $V_x \in m_X(x)$ and, by (2), $A \in \mathcal{I}$.

(3) \Rightarrow (4): For any $A \subseteq X$, $A - A_m^{\overline{*}} \subseteq A$ and $(A - A_m^{\overline{*}}) \cap (A - A_m^{\overline{*}})_m^{\overline{*}} \subseteq (A - A_m^{\overline{*}}) \cap A_m^{\overline{*}} = \emptyset$. By (3), $A - A_m^{\overline{*}} \in \mathcal{I}$.

(4) \Rightarrow (5): By (4), for every $A \subseteq X$, $A - A_m^{\overline{*}} \in \mathcal{I}$. Let $A - A_m^{\overline{*}} = J \in \mathcal{I}$. Then $A = J \cup (A \cap A_m^{\overline{*}})$ and, by Theorem 2.8 (2) and Theorem 2.6 (5), $A_m^{\overline{*}} = J_m^{\overline{*}} \cup (A \cap A_m^{\overline{*}})_m^{\overline{*}} = (A \cap A_m^{\overline{*}})_m^{\overline{*}}$. Therefore, we have $A \cap A_m^{\overline{*}} = A \cap (A \cap A_m^{\overline{*}})_m^{\overline{*}} \subseteq (A \cap A_m^{\overline{*}})_m^{\overline{*}}$ and $A \cap A_m^{\overline{*}} \subseteq A$. By the assumption $A \cap A_m^{\overline{*}} = \emptyset$, we have $A = A - A_m^{\overline{*}} \in \mathcal{I}$.

 $(5) \Rightarrow (1)$: Let $A \subseteq X$ and assume that, for every $x \in A$, there exists $U \in m_X(x)$ such that $m - cl(U) \cap A \in \mathcal{I}$. Then $A \cap A_m^* = \emptyset$. Suppose that A contains some B such that $B \subseteq B_m^{\overline{*}}$. Then $B = B \cap B_m^{\overline{*}} \subseteq A \cap A_m^{\overline{*}} = \emptyset$. Therefore, A contains no nonempty subset B with $B \subseteq B_m^{\overline{*}}$. Hence $A \in \mathcal{I}$. \Box

THEOREM 3.4. Let (X, m_X, \mathcal{I}) be an ideal minimal space. If m_X is closure *m*-compatible with \mathcal{I} , then the implications (1) \Rightarrow (2) and (3) \Rightarrow (1) hold. If m_X has property [I], then the following properties are equivalent:

- (1) For every $A \subseteq X$, $A \cap A_m^{\overline{*}} = \emptyset$ implies that $A_m^{\overline{*}} = \emptyset$. (2) For every $A \subseteq X$, $(A A_m^{\overline{*}})_m^{\overline{*}} = \emptyset$. (3) For every $A \subseteq X$, $(A \cap A_m^{\overline{*}})_m^{\overline{*}} = A_m^{\overline{*}}$.

Proof. First, we show that (1) holds, if m_X is closure compatible with \mathcal{I} . Let A be any subset of X such that $A \cap A_m^{\overline{*}} = \emptyset$. By Theorem 3.3, $A \in \mathcal{I}$ and, by Theorem 2.6 (5), $A_m^{\overline{*}} = \emptyset$.

(1) \Rightarrow (2): Assume that, for every $A \subseteq X$, $A \cap A_m^{\overline{*}} = \emptyset$ implies that $A_m^{\overline{*}} = \emptyset$. Let $B = A - A_m^{\overline{*}}$. Then

$$B \cap B_m^{\overline{*}} = (A - A_m^{\overline{*}}) \cap (A - A_m^{\overline{*}})_m^{\overline{*}}$$

= $(A \cap (X - A_m^{\overline{*}})) \cap (A \cap (X - A_m^{\overline{*}}))_m^{\overline{*}}$
 $\subseteq [A \cap (X - A_m^{\overline{*}})] \cap [A_m^{\overline{*}} \cap ((X - A_m^{\overline{*}})_m^{\overline{*}})] = \emptyset.$

By (1), we have $B_m^{\overline{*}} = \emptyset$. Hence $(A - A_m^{\overline{*}})_m^{\overline{*}} = \emptyset$.

5

(2) \Rightarrow (3): Assume that, for every $A \subseteq X$, $(A - A_m^{\overline{*}})_m^{\overline{*}} = \emptyset$.

$$A = (A - A_m^{\overline{*}}) \cup (A \cap A_m^{\overline{*}})$$
$$A_m^{\overline{*}} = [(A - A_m^{\overline{*}}) \cup (A \cap A_m^{\overline{*}})]_m^{\overline{*}}$$
$$= (A - A_m^{\overline{*}})_m^{\overline{*}} \cup (A \cap A_m^{\overline{*}})_m^{\overline{*}} \quad \text{by Theorem 2.8}$$
$$= (A \cap A_m^{\overline{*}})_m^{\overline{*}}.$$

(3) \Rightarrow (1): Assume that, for every $A \subseteq X$, $A \cap A_m^{\overline{*}} = \emptyset$ and $(A \cap A_m^{\overline{*}})_m^{\overline{*}} = A_m^{\overline{*}}$. This implies that $\emptyset = (\emptyset)_m^{\overline{*}} = A_m^{\overline{*}}$.

THEOREM 3.5. Let (X, m_X, \mathcal{I}) be an ideal minimal space. Then the implications (1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4) hold. If m_X has property (B), then the following properties are equivalent:

- (1) For every m-clopen $G, G \subseteq G_m^{\overline{*}}$.
- (2) $X = X_m^*$.
- (3) $m cl(m_X) \cap \mathcal{I} = \emptyset$, where $m cl(m_X) = \{m cl(V) : V \in m_X\}$. (4) If $I \in \mathcal{I}$, then $m - Int_{\theta}(I) = \emptyset$.

Proof. (1) \Rightarrow (2): Since X is *m*-clopen, then $X = X_m^{\overline{*}}$.

 $(2) \Rightarrow (3): X = X_m^{\overline{*}} = \{x \in X : m - cl(U) \cap X = m - cl(U) \notin \mathcal{I}, \text{ for each } u \in \mathcal{I}\}$ *m*-open set U containing x}. Hence $m - cl(m_X) \cap \mathcal{I} = \emptyset$.

 $(3) \Rightarrow (4)$: Let $m - cl(m_X) \cap \mathcal{I} = \emptyset$ and $I \in \mathcal{I}$. Suppose that $x \in m - Int_{\theta}(I)$. Then there exists an *m*-open set U such that $x \in U \subseteq m - cl(U) \subseteq I$. Since $I \in \mathcal{I}, \ \emptyset \neq \{x\} \subseteq m - cl(U) \in m - cl(m_X) \cap \mathcal{I}.$ This is in contradiction with $m - cl(m_X) \cap \mathcal{I} = \emptyset$. Therefore, $m - Int_{\theta}(I) = \emptyset$.

 $(4) \Rightarrow (1)$: Let $x \in G$. Assume $x \notin G_m^{\overline{*}}$. Then there exists $U_x \in m_X(x)$ such that $G \cap m - cl(U_x) \in \mathcal{I}$ and hence $G \cap U_x \in \mathcal{I}$. Since G is m-clopen, by (4) and Lemma 2.5, $x \in G \cap U_x = m - Int(G \cap U_x) \subseteq m - Int(G \cap m - cl(U_x)) =$ $m - Int_{\theta}(G \cap m - cl(U_x)) = \emptyset$. This is a contradiction. Hence $x \in G_m^{\overline{*}}$ and $G \subseteq G_m^{\overline{*}}$.

THEOREM 3.6. Let (X, m_X, \mathcal{I}) be an ideal minimal space, m_X be closure *m*-compatible with \mathcal{I} . Then, for every m_{θ} -open set G and any subset A of X, $m - cl((G \cap A)_{\overline{m}}^{\overline{*}}) = (G \cap A)_{\overline{m}}^{\overline{*}} \subseteq (G \cap A_{\overline{m}}^{\overline{*}})_{\overline{m}}^{\overline{*}} \subseteq m - cl_{\theta}(G \cap A_{\overline{m}}^{\overline{*}}).$

Proof. By Theorem 3.4(3) and Theorem 2.6, we have $(G \cap A)_m^{\overline{*}} = ((G \cap A)$ $\bigcap (G \cap A)_{m}^{\overline{*}})_{m}^{\overline{*}} \subseteq (G \cap A_{m}^{\overline{*}})_{m}^{\overline{*}}.$ Moreover, by Theorem 2.6, we have that $m - cl((G \cap A)_{m}^{\overline{*}}) = (G \cap A)_{m}^{\overline{*}} \subseteq (G \cap A_{m}^{\overline{*}})_{m}^{\overline{*}} \subseteq m - cl_{\theta}(G \cap A_{m}^{\overline{*}}).$

4. THE $\overline{\Psi}$ -OPERATOR

DEFINITION 4.1. Let (X, m_X, \mathcal{I}) be an ideal minimal space. The operator $\overline{\Psi}: \mathcal{P}(X) \to m_X$ is defined as follows: for every $A \in X, \overline{\Psi}(A) = \{x \in X : X \in X\}$ there exists $U \in m_X(x)$ such that $m - cl(U) - A \in \mathcal{I}$. Observe that $\overline{\Psi}(A) =$ $X - (X - A)_m^*.$

Several basic facts concerning the behavior of the operator Ψ are included in the following theorem.

THEOREM 4.2. Let (X, m_X, \mathcal{I}) be an ideal minimal space. Then the following properties hold:

- (1) If $A \subseteq X$ and m_X has property (B), then $\overline{\Psi}(A)$ is m-open.
- (2) If $A \subseteq B$, then $\overline{\Psi}(A) \subseteq \overline{\Psi}(B)$.
- (3) If $A \subseteq X$, then $\overline{\Psi}(A) = \overline{\Psi}(\overline{\Psi}(A))$ if and only if

$$(X-A)_m^{\overline{*}} = ((X-A)_m^{\overline{*}})_m^{\overline{*}}.$$

Proof. (1) This follows from Theorem 2.6 (3).

- (2) This follows from Theorem 2.6 (1).
- (3) This follows from the below facts:
 - i) $\overline{\Psi}(A) = X (X A)_m^{\overline{*}}$.

ii)
$$\overline{\Psi}(\overline{\Psi}(A)) = X - [X - (X - (X - A)_{\overline{m}}^{\overline{*}})]_{\overline{m}}^{\overline{*}} = X - ((X - A)_{\overline{m}}^{\overline{*}})_{\overline{m}}^{\overline{*}}.$$

THEOREM 4.3. Let (X, m_X, \mathcal{I}) be an ideal minimal space and m_X have property [I]. Then the following properties hold:

- (1) If $A, B \in \mathcal{P}(X)$, then $\overline{\Psi}(A \cap B) = \overline{\Psi}(A) \cap \overline{\Psi}(B)$.
- (2) If $A \in \mathcal{I}$, then $\overline{\Psi}(A) = X X_m^{\neq}$.
- (3) If $A \subseteq X$, $I \in \mathcal{I}$, then $\overline{\Psi}(A I) = \overline{\Psi}(A)$.
- (4) If $A \subseteq X$, $I \in \mathcal{I}$, then $\overline{\Psi}(A \cup I) = \overline{\Psi}(A)$.
- (5) If $(A B) \cup (B A) \in \mathcal{I}$, then $\overline{\Psi}(A) = \overline{\Psi}(B)$.

Proof.

(1)
$$\overline{\Psi}(A \cap B) = X - (X - (A \cap B))_m^{\overline{*}} = X - [(X - A) \cup (X - B)]_m^{\overline{*}}$$

$$= X - [(X - A)_m^{\overline{*}} \cup (X - B)_m^{\overline{*}}]$$
$$= [X - (X - A)_m^{\overline{*}} \cap [X - (X - B)_m^{\overline{*}}]$$
$$= \overline{\Psi}(A) \cap \overline{\Psi}(B).$$

(2) By Corollary 2.10, we obtain that $(X - A)_m^{\overline{*}} = X_m^{\overline{*}}$ if $A \in \mathcal{I}$. (3) This follows from Corollary 2.10 and $\overline{\Psi}(A - I) = X - [X - (A - I)]_m^{\overline{*}} =$ $X - [(X - A) \cup I]_m^{\overline{*}} = X - (X - A)_m^{\overline{*}} = \overline{\Psi}(\underline{A}).$

(4) This follows from Corollary 2.10 and $\overline{\Psi}(A \cup I) = X - [X - (A \cup I)]_m^{\overline{*}} =$ $X - [(X - A) - I]_m^{\overline{*}} = X - (X - A)_m^{\overline{*}} = \overline{\Psi}(A).$

(5) Assume $(A - B) \cup (B - A) \in \mathcal{I}$. Let A - B = I and B - A = J. Observe that $I, J \in \mathcal{I}$, by heredity. Also observe that $B = (A - I) \cup J$. Thus $\overline{\Psi}(A) = \overline{\Psi}(A - I) = \Psi[(A - I) \cup J] = \overline{\Psi}(B)$, by (3) and (4).

COROLLARY 4.4. Let (X, m_X, \mathcal{I}) be an ideal minimal space. Then $U \subseteq$ $\overline{\Psi}(U)$, for every m_{θ} -open set $U \subseteq X$.

7

Proof. We know that $\overline{\Psi}(U) = X - (X - U)_m^*$. Now $(X - U)_m^* \subseteq m - cl_\theta(X - U) = X - U$, since X - U is m_θ -closed. Therefore, $U = X - (X - U) \subseteq X - (X - U)_m^* = \overline{\Psi}(U)$.

THEOREM 4.5. Let (X, m_X, \mathcal{I}) be an ideal minimal space and $A \subseteq X$. Then the following properties hold:

- (1) $\overline{\Psi}(A) = \bigcup \{ U \in m_X : m cl(U) A \in \mathcal{I} \}.$
- (2) $\overline{\Psi}(A) \supseteq \cup \{U \in m_X : (m cl(U) A) \cup (A m cl(U)) \in \mathcal{I}\}.$

Proof. (1) This follows immediately from the definition of the $\overline{\Psi}$ -operator. (2) By the heredity of \mathcal{I} , it is obvious that $\cup \{U \in m_X : (m - cl(U) - A) \cup (A - m - cl(U)) \in \mathcal{I}\} \subseteq \cup \{U \in m_X : m - cl(U) - A \in \mathcal{I}\} = \overline{\Psi}(A)$, for every $A \subseteq X$.

THEOREM 4.6. Let (X, m_X, \mathcal{I}) be an ideal minimal space and assume that m_X has property [I]. If $\sigma = \{A \subseteq X : A \subseteq \overline{\Psi}(A)\}$, then σ is a topology for X.

Proof. Let $\sigma = \{A \subseteq X : A \subseteq \overline{\Psi}(A)\}$. Since $\phi \in \mathcal{I}$, by Theorem 2.6 (5), $(\phi)_m^{\overline{*}} = \phi$ and $\overline{\Psi}(X) = X - (X - X)_m^{\overline{*}} = X - (\phi)_m^{\overline{*}} = X$. Moreover, $\overline{\Psi}(\phi) = X - (X - \phi)_m^{\overline{*}} \supseteq X - X = \phi$. Therefore, we obtain that $\phi \subseteq \overline{\Psi}(\phi)$ and $X \subseteq \overline{\Psi}(X) = X$, and thus ϕ and $X \in \sigma$. Now if $A, B \in \sigma$, then by Theorem 4.3 (1) $A \cap B \subseteq \overline{\Psi}(A) \cap \overline{\Psi}(B) = \overline{\Psi}(A \cap B)$, which implies that $A \cap B \in \sigma$. If $\{A_\alpha : \alpha \in \Delta\} \subseteq \sigma$, then $A_\alpha \subseteq \overline{\Psi}(A_\alpha) \subseteq \overline{\Psi}(\cup A_\alpha)$, for every α , and hence $\cup A_\alpha \subseteq \overline{\Psi}(\cup A_\alpha)$. This shows that σ is a topology. \Box

By Theorem 4.3 and Corollary 4.4 the following relations hold:

$$m_{\theta}$$
-open $\longrightarrow m$ -open
 \downarrow
 σ -open

THEOREM 4.7. Let (X, m_X, \mathcal{I}) be an ideal minimal space. Then $m_X \overline{\sim} \mathcal{I}$ if and only if $\overline{\Psi}(A) - A \in \mathcal{I}$, for every $A \subseteq X$.

Proof. Necessity. Assume $m_X \overline{\sim} \mathcal{I}$ and let $A \subseteq X$. Observe that $x \in \overline{\Psi}(A) - A$ if and only if $x \notin A$ and $x \notin (X - A)_m^{\overline{*}}$ if and only if $x \notin A$ and there exists $U_x \in m_X(x)$ such that $m - cl(U_x) - A \in \mathcal{I}$ if and only if there exists $U_x \in m_X(x)$ such that $x \in m - cl(U_x) - A \in \mathcal{I}$. Now, for each $x \in \overline{\Psi}(A) - A$ and $U_x \in m_X(x)$, $m - cl(U_x) \cap (\overline{\Psi}(A) - A) \in \mathcal{I}$, by heredity, and hence $\overline{\Psi}(A) - A \in \mathcal{I}$, by the assumption that $m_X \overline{\sim} \mathcal{I}$.

Sufficiency. Let $A \subseteq X$ and assume that, for each $x \in A$, there exists $U_x \in m_X(x)$ such that $m - cl(U_x) \cap A \in \mathcal{I}$. Observe that $\overline{\Psi}(X - A) - (X - A) = A - A_m^{\overline{*}} = \{x : \text{there exists } U_x \in m_X(x) \text{ such that } x \in m - cl(U_x) \cap A \in \mathcal{I}\}.$ Thus we have $A \subseteq \overline{\Psi}(X - A) - (X - A) \in \mathcal{I}$ and hence $A \in \mathcal{I}$, by the heredity of \mathcal{I} .

11

PROPOSITION 4.8. Let (X, m_X, \mathcal{I}) be an ideal minimal space with $m_X \overline{\sim} \mathcal{I}$, $A \subseteq X$. If N is a nonempty m-open subset of $A_m^{\overline{*}} \cap \overline{\Psi}(A)$, then $N - A \in \mathcal{I}$ and $m - cl(N) \cap A \notin \mathcal{I}$.

Proof. If $N \subseteq A_m^{\overline{*}} \cap \overline{\Psi}(A)$, then $N - A \subseteq \overline{\Psi}(A) - A \in \mathcal{I}$ by Theorem 4.7 and hence $N - A \in \mathcal{I}$ by heredity. Since $N \in m_X - \{\phi\}$ and $N \subseteq A_m^{\overline{*}}$, we have $m - cl(N) \cap A \notin \mathcal{I}$ by the definition of $A_m^{\overline{*}}$.

In [4], Newcomb defines $A = B \pmod{\mathcal{I}}$ if $(A - B) \cup (B - A) \in \mathcal{I}$ and observes that = [mod \mathcal{I}] is an equivalence relation. By Theorem 4.3(5), we have that if $A = B \pmod{\mathcal{I}}$, then $\overline{\Psi}(A) = \overline{\Psi}(B)$.

DEFINITION 4.9. Let (X, m_X, \mathcal{I}) be an ideal minimal space. A subset A of X is called an *m*-Baire set with respect to m_X and \mathcal{I} (we denote $A \in \mathcal{B}_r(X, m_X, \mathcal{I})$), if there exists an m_θ -open set U such that $A = U \pmod{\mathcal{I}}$.

LEMMA 4.10. Let (X, m_X, \mathcal{I}) be an ideal minimal space with $m_X \overline{\sim} \mathcal{I}$. If Uand V are m_{θ} -open sets and $\overline{\Psi}(U) = \overline{\Psi}(V)$, then $U = V \mod \mathcal{I}$.

Proof. Since U is m_{θ} -open, by Corollary 4.4, we have $U \subseteq \overline{\Psi}(U)$ and hence $U - V \subseteq \overline{\Psi}(U) - V = \overline{\Psi}(V) - V \in \mathcal{I}$, by Theorem 4.7. Therefore, $U - V \in \mathcal{I}$. Similarly $V - U \in \mathcal{I}$. Now $(U - V) \cup (V - U) \in \mathcal{I}$, by additivity. Hence U = V [mod \mathcal{I}].

THEOREM 4.11. Let (X, m_X, \mathcal{I}) be an ideal minimal space with $m_X \overline{\sim} \mathcal{I}$. If m_X has property [I], $A, B \in \mathcal{B}_r(X, m_X, \mathcal{I})$ and $\overline{\Psi}(A) = \overline{\Psi}(B)$, then A = B [mod \mathcal{I}].

Proof. Let U and V be m_{θ} -open sets such that $A = U \mod \mathcal{I}$ and $B = V \mod \mathcal{I}$. [mod \mathcal{I}]. Now $\overline{\Psi}(A) = \overline{\Psi}(U)$ and $\overline{\Psi}(B) = \overline{\Psi}(V)$, by Theorem 4.3 (5). Since $\overline{\Psi}(A) = \overline{\Psi}(B), \ \overline{\Psi}(U) = \overline{\Psi}(V)$ and hence $U = V \mod \mathcal{I}$, by Lemma 4.10. Hence $A = B \mod \mathcal{I}$, by transitivity.

PROPOSITION 4.12. Let (X, m_X, \mathcal{I}) be an ideal minimal space.

- (1) If $B \in \mathcal{B}_r(X, m_X, \mathcal{I}) \mathcal{I}$, then there exists nonempty m_{θ} -open set A such that $B = A \mod \mathcal{I}$.
- (2) Let $m cl(m_X) \cap \mathcal{I} = \phi$. Then $B \in \mathcal{B}_r(X, m_X, \mathcal{I}) \mathcal{I}$ if and only if there exists a nonempty m_{θ} -open set A such that $B = A \mod \mathcal{I}$.

Proof. (1) Assume that $B \in \mathcal{B}_r(X, m_X, \mathcal{I}) - \mathcal{I}$. Then $B \in \mathcal{B}_r(X, m_X, \mathcal{I})$. Hence there exists m_{θ} -open set A such that $B = A \pmod{\mathcal{I}}$. If $A = \phi$, then we have $B = \phi \pmod{\mathcal{I}}$. This implies that $B \in \mathcal{I}$, which is a contradiction.

(2) Assume there exists a nonempty m_{θ} -open set A such that B = A [mod \mathcal{I}]. Hence, by Definition 4.9, $B \in \mathcal{B}_r(X, m_X, \mathcal{I})$. Then $A = (B - J) \cup I$, where J = B - A, $I = A - B \in \mathcal{I}$. If $B \in \mathcal{I}$, then $A \in \mathcal{I}$, by heredity and additivity. Since $A \in \mathcal{M}_{\theta} - \{\phi\}$, $A \neq \phi$ and there exists $U \in m_X$ such that $\phi \neq U \subseteq m - cl(U) \subseteq A$. Since $A \in \mathcal{I}$, $m - cl(U) \in \mathcal{I}$ and thus $m - cl(U) \in m - cl(m_X) \cap \mathcal{I}$. This contradicts $m - cl(m_X) \cap \mathcal{I} = \phi$.

PROPOSITION 4.13. Let (X, m_X, \mathcal{I}) be an ideal minimal space with $m_X \overline{\sim} \mathcal{I}$. If $B \in \mathcal{B}_r(X, m_X, \mathcal{I}) - \mathcal{I}$ and m_X has property [I], then $\overline{\Psi}(B) \cap m - Int_{\theta}(B_m^{\overline{*}}) \neq \phi$.

Proof. Assume that $B \in \mathcal{B}_r(X, m_X, \mathcal{I}) - \mathcal{I}$. Then, by Proposition 4.12(1), there exists $A \in \mathcal{M}_{\theta} - \{\phi\}$ such that $B = A \mod \mathcal{I}$. By Theorem 3.5 and Lemma 2.7, $A = A \cap X = A \cap X_m^{\overline{*}} \subseteq (A \cap X)_m^{\overline{*}} = A_m^{\overline{*}}$. This implies that $\phi \neq A \subseteq A_m^{\overline{*}} = ((B - J) \cup I)_m^{\overline{*}} = B_m^{\overline{*}}$, where $J = B - A, I = A - B \in \mathcal{I}$ by Corollary 2.10. Since A is m_{θ} -open set, $A \subseteq m - Int_{\theta}(B_m^{\overline{*}})$. Also, $\phi \neq A \subseteq \overline{\Psi}(A) = \overline{\Psi}(B)$, by Corollary 4.4 and Theorem 4.3(5). Consequently, we obtain $A \subseteq \overline{\Psi}(B) \cap m - Int_{\theta}(B_m^{\overline{*}})$.

Given an ideal minimal space (X, m_X, \mathcal{I}) , let $\mathcal{U}(X, m_X, \mathcal{I})$ denote $\{A \subseteq X :$ there exists $B \in \mathcal{B}_r(X, m_X, \mathcal{I}) - \mathcal{I}$ such that $B \subseteq A\}$.

PROPOSITION 4.14. Let (X, m_X, \mathcal{I}) be an ideal minimal space with $m_X \overline{\sim} \mathcal{I}$. If every m-open set is m_{θ} -open, then the following statements are equivalent:

- (1) $A \in \mathcal{U}(X, m_X, \mathcal{I});$
- (2) $\overline{\Psi}(A) \cap m Int_{\theta}(A_{\overline{m}}^{\overline{*}}) \neq \phi;$
- (3) $\overline{\Psi}(A) \cap A_m^{\overline{*}} \neq \phi;$
- (4) There exists $N \in m_X \{\phi\}$ such that $N A \in \mathcal{I}$ and $N \cap A \notin \mathcal{I}$.

Proof. (1) \Rightarrow (2): Let $A \in \mathcal{U}(X, m_X, \mathcal{I})$. Then there exists $B \in \mathcal{B}_r(X, m_X, \mathcal{I})$ $\mathcal{I} - \mathcal{I}$ such that $B \subseteq A$. Then $m - Int_{\theta}(B_{\overline{m}}^{\overline{*}}) \subseteq m - Int_{\theta}(A_{\overline{m}}^{\overline{*}})$ and $\overline{\Psi}(B) \subseteq \overline{\Psi}(A)$ and hence $m - Int_{\theta}(B_{\overline{m}}^{\overline{*}}) \cap \overline{\Psi}(B) \subseteq m - Int_{\theta}(A_{\overline{m}}^{\overline{*}}) \cap \overline{\Psi}(A)$. By Proposition 4.13, we have $\overline{\Psi}(A) \cap m - Int_{\theta}(A_{\overline{m}}^{\overline{*}}) \neq \phi$.

 $(2) \Rightarrow (3)$: The proof is obvious.

(3) \Rightarrow (4): Suppose that $\overline{\Psi}(A) \cap A_m^* \neq \phi$. Then there exists a point $x \in X$ such that $x \in \overline{\Psi}(A)$ and $x \in A_m^*$. Since $x \in \overline{\Psi}(A)$, there exists $U \in m_X(x)$ such that $m - Cl(U) - A \in \mathcal{I}$. Furthermore, since $x \in A_m^*$, $m - Cl(V) \cap A \notin \mathcal{I}$, for every $V \in m_X(x)$. By our assumption, we deduce that $U \in m_X(x)$ and $m_X = \mathcal{M}_\theta$ and there exists $N \in m_X$ such that $x \in N \subset m - Cl(N) \subset U$. Hence $U \cap A \notin \mathcal{I}$. On the other hand, $U - A \subset m - Cl(U) - A \in \mathcal{I}$ and hence $U - A \in \mathcal{I}$. Therefore, (4) holds.

 $(4) \Rightarrow (1): \text{ Let } B = N \cap A \notin \mathcal{I} \text{ with } N \text{ nonempty } m_{\theta} \text{-open set and } N - A \in \mathcal{I}.$ Then $B \in \mathcal{B}_r(X, m_X, \mathcal{I}) - \mathcal{I}$, since $B \notin \mathcal{I}$ and $(B - N) \cup (N - B) = N - A \in \mathcal{I}.$

THEOREM 4.15. Let (X, m_X, \mathcal{I}) be an ideal minimal space with $m_X \overline{\sim} \mathcal{I}$, if m_X has property [I], where $m-cl(m_X) \cap \mathcal{I} = \phi$. Then for $A \subseteq X$, $\overline{\Psi}(A) \subseteq A_m^{\overline{*}}$.

Proof. Suppose $x \in \overline{\Psi}(A)$ and $x \notin A_m^{\overline{*}}$. Then there exists a nonempty neighborhood $U_x \in m_X(x)$ such that $m - cl(U_x) \cap A \in \mathcal{I}$. Since $x \in \overline{\Psi}(A)$, by Theorem 4.5 we deduce that $x \in \bigcup \{U \in m_X : m - cl(U) - A \in \mathcal{I}\}$ and that there exists $V \in m_X(x)$ such that $m - cl(V) - A \in \mathcal{I}$. Now we have $U_x \cap V \in m_X(x), m - cl(U_x \cap V) \cap A \in \mathcal{I}$ and $m - cl(U_x \cap V) - A \in \mathcal{I}$, by heredity. Hence, by finite additivity, we have $(m-cl(U_x \cap V) \cap A) \cup (m-cl(U_x \cap V) - A) = m - cl(U_x \cap V) \in \mathcal{I}$. Since $(U_x \cap V) \in m_X(x)$, this is in contradiction with $m - cl(m_X) \cap \mathcal{I} = \phi$. Therefore, $x \in A_m^{\overline{*}}$. This implies that $\overline{\Psi}(A) \subseteq A_m^{\overline{*}}$. \Box

REFERENCES

- AL-OMARI, A. and NOIRI, T., Local closure functions in ideal topological spaces, Novi Sad J. Math., 43 (2013), 139–149.
- [2] JANKOVIĆ, D. and HAMLET, T.R., New topologies from old via ideals, Amer. Math. Monthly, 97 (1990), 295–310.
- [3] MAKI, H., RAO, C.K. and NAGOOR GANI, A., On generalizing semi-open sets and pre-open sets, Pure Appl. Math. Soc., 49 (1999), 17–29.
- [4] NEWCOMB, R.L., Topologies which are compact modulo and ideal, Ph.D. Dissertation, University of California at Santa Barbara, 1967.
- [5] NJÅSTAD, O., Remarks on topologies defined by local properties, Anh. Norske Vid-Akad. Oslo (N. S.), 8 (1966), 1–6.
- [6] POPA, V. and NOIRI, T., On M-continuous functions, Anal. Univ. "Dunărea de Jos" Galați. Ser. Mat. Fiz. Mec. Teor., Fasc. II, 18 (2000), 31–41.
- [7] POPA, V. and NOIRI, T., A unified theory of weak continuity for functions, Rend. Circ. Mat. Palermo (2), 51 (2002), 439–464.
- [8] OZBAKIR, O.B. and YILDIRIM, E.D., On some closed sets in ideal minimal spaces, Acta Math. Hungar., 125 (2009), 227–235.

Received June 16, 2016 Accepted April 20, 2017 Al al-Bayt University Faculty of Sciences, Department of Mathematics P.O. Box 130095, Mafraq 25113, Jordan E-mail: omarimutah1@yahoo.com

2949-1 Shiokita-cho, Hinagu, Yatsushiro-shi Kumamoto-ken, 869-5142, Japan E-mail: t.noiri@nifty.com