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Abstract. In this paper we present the main properties of layer potentials as-
sociated to some pseudodifferential matrix type operators on Lipschitz domains
in compact Riemannian manifolds of arbitrary dimension. We focus on a class
of Brinkman operators and show compactness and invertibility results of associ-
ated layer potential operators, and well-posedness results for related transmission
problems with the boundary data in some Sobolev spaces.

MSC 2000. Primary 35J25; Secondary 42B20, 46E35, 76D, 76M

Key words. Brinkman operator, Lipschitz domain, Riemannian manifold, layer
potential operator, compactness, invertibility, transmission problem, well-posed-
ness.

1. INTRODUCTION

The layer potential theory has a significant role in the analysis of various
elliptic boundary value problems. For example, Fabes, Kenig and Verchota
[5] developed a layer potential analysis in the treatment of the L2 Dirichlet
problem for the Stokes system on Lipschitz domains in Rn, n ≥ 3. Mitrea
and Wright [18] used layer potential methods to prove the well-posedness of
the main boundary value problems for the Stokes system in Lipschitz domains
in Rn, n ≥ 2, with the boundary data in various function spaces. Hofmann,
Mitrea and Taylor [6] studied boundary value problems for elliptic partial
differential equations on (two-sided) NTA domains (in the sense of Jerison
and Kenig [8]) with Ahlfors regular boundaries and small mean oscillations of
the unit normals, by using layer potential methods. Escauriaza and Mitrea [4]
shown the well-posedness of transmission problems for the Laplace operator on
Lipschitz domains in Rn and boundary data in Lebesgue and Hardy spaces (see
also [12]). Well-posedness of transmission problems for the Laplace-Beltrami
operator in Sobolev or Besov spaces on Lipschitz domains in non-smooth man-
ifolds have been obtained by Mitrea et al. [14]. Mitrea and Taylor [17] studied
the L2 Dirichlet problem for the Stokes system on arbitrary Lipschitz domains
in compact Riemannian manifolds, by using a method based on single-layer
potentials. Dindos̆ and Mitrea [3] developed a layer potential analysis for the
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Poisson problem associated to the Stokes system, as well as the Dirichlet prob-
lem for the Navier-Stokes equations on Lipschitz and C1 domains in a smooth
compact Riemannian manifold, when the boundary data belong to Sobolev or
Besov spaces. We treated in [9, 10] transmission problems for the Stokes and
Brinkman operators on Lipschitz domains of dimension ≤ 3, or on C1 domains
of arbitrary dimension in Riemannian manifolds, by employing layer potential
techniques. The purpose of this paper is to obtain the main properties of layer
potentials associated to some pseudodifferential matrix type operators on Lip-
schitz domains in compact Riemannian manifolds of arbitrary dimension. We
focus on a class of Brinkman operators and show compactness and invertibility
results of associated layer potential operators, and well-posedness results for
related transmission problems with boundary data in some Sobolev spaces.

2. SPECIAL PSEUDODIFFERENTIAL MATRIX TYPE OPERATORS ON COMPACT

RIEMANNIAN MANIFOLDS

In this section we show the invertibility property for a special class of pseu-
dodifferential matrix type operators on compact Riemannian manifolds.

2.1. Preliminaries. Consider a smooth vector bundle E equipped with a C∞-
inner product 〈·, ·〉Ex , x ∈ M . Thus, E is a Hermitian bundle. For sections
u, v ∈ C∞(M, E) one then defines the scalar product

(2.1) 〈u, v〉E :=

∫
M
〈u(x), v(x)〉ExdVol(x).

Next, consider two smooth, Hermitian vector bundles E , F → M , and a
differential operator of order k ≥ 1

(2.2) D : C∞(M, E)→ C∞(M,F).

Then its formal adjoint D∗ is defined by means of the inner products 〈·, ·〉E
and 〈·, ·〉F , as 〈Du, v〉F = 〈u,D∗v〉E , ∀ u ∈ C∞(M, E), v ∈ C∞(M,F).

In particular, let (M, g) be a compact boundaryless Riemannian manifold
of dim(M) := m ≥ 2 and let g := gjkdxj ⊗ dxk be its smooth metric tensor.

Hereafter one uses the summation convention rule and denote by (gjk) the
inverse of (gjk). The tangent and cotangent bundles are TM =

⋃
p∈M TpM

and T ∗M =
⋃
p∈M T ∗pM , respectively, and X(M) is the space of smooth vector

fields on M . Also, Λ1TM is the first exterior power bundle corresponding to
TM . The adjoint of the exterior derivative d : C∞(M) → C∞(M,Λ1TM) is
usually denoted by δ, i.e., δ : C∞(M,Λ1TM)→ C∞(M), and 〈du, v〉 = 〈u, δv〉
for every u ∈ C∞(M) and v ∈ C∞(M,Λ1TM).

Let ∇ be the Levi-Civita connection on M . If X ∈ X(M), the symmetric
part of the tensor field

∇X : X(M)× X(M)→ C∞(M), (∇X)(Y,Z) = 〈∇YX,Z〉,
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is called the deformation of X and is denoted by Def X. Thus,

(2.3) (Def X)(Y,Z) =
1

2
{〈∇YX,Z〉+ 〈∇ZX,Y 〉}, ∀ Y, Z ∈ X(M).

A vector field X ∈ X(M) such that Def X = 0 on M is called a Killing field.
Further, assume that M does not have any nontrivial Killing field (see [17]).

By OPS`cl one denotes the class of classical pseudodifferential operators of
order `. The symbol p(x, ξ) of such an operator P admits an asymptotic
expansion of the form p(x, ξ) ∼ p`(x, ξ) + p`−1(x, ξ) + · · · , where pk(x, ξ) is
smooth in x and ξ, positively homogeneous of degree k in ξ ∈ Rm. The term
σ0
P (x, ξ) := p`(x, ξ) is called the principal symbol of P (for more details on

pseudodifferential operators on smooth manifolds see [7, 19, 21]).
For p ∈ (1,∞) and s ∈ R, denote by Lps(M) the Sobolev scales on M . Also,

Lps(M, E) := Lps(M)⊗C∞(M, E) is the space of sections u : M → E whose local
representations have coefficients in Lps(M). In particular, L2

s(M,Λ1TM) :=
L2
s(M) ⊗ Λ1TM are the Sobolev spaces of one forms, which, locally, have

coefficients in L2
s(M) (for more details see e.g., [17, 19, 20, 21]).

Note that every P ∈ OPS`cl(M, E) extends to a linear and bounded operator
P : Lps+`(M, E) → Lps(M, E) for any p ∈ (1,∞) and s ∈ R (see e.g., [21,
Theorem 8.38, Theorem 8.45]).

2.2. Special pseudodifferential matrix type operators. Let us consider
the smooth, Hermitian vector bundles E ,F , G→M , and let

(2.4) D : C∞(M, E)→ C∞(M,F), P0 : C∞(M,G)→ C∞(M, E)

be two first-order differential operators (note that C∞(M) = C∞(M,R)).
With respect to the corresponding scalar products of the Hermitian vector
bundles E , F and G (see (2.1)), their adjoint operators

(2.5) D∗ : C∞(M,F)→ C∞(M, E), P ∗0 : C∞(M, E)→ C∞(M,G)

are pseudodifferential of order one, i.e., D∗ ∈ OPS1
cl(F , E), P ∗0 ∈ OPS1

cl(E , G).
Next, assume that second-order differential operator

(2.6) LD := 2D∗D : C∞(M, E)→ C∞(M, E)

is elliptic, i.e., the principal symbol of LD satisfies the condition

(2.7) σ0 (D∗D;x, ξ) is invertible, ∀ x ∈M, ξ ∈ T ∗xM \ {0}.

In addition, assuming that D is one-to-one, one finds that LD is invertible.
Further, let P ∈ OPS0

cl(E , E) be self-adjoint and non-negative with respect
to the L2(M, E)-inner product, i.e.,

(2.8) 〈Pu,w〉E = 〈u, Pw〉E , 〈Pu, u〉E ≥ 0 for all u,w ∈ L2(M, E).

By (2.8), the pseudodifferential operator (a zero-order perturbation of LD)

(2.9) LD,P := LD + P = 2D∗D + P : C∞(M, E)→ C∞(M, E)
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is elliptic, self-adjoint, and one-to-one, i.e., it is invertible. It extends to a
Fredholm operator of index zero

(2.10) LD,P : L2
1(M, E)→ L2

−1(M, E),

which is also one-to-one, and hence invertible. Next, assume that LD,P is
L2

1(M, E)-elliptic, i.e., there is α0 > 0 such that (see e.g., [21])

(2.11) 〈u,LD,Pu〉L2(M,E) ≥ α0‖u‖2L2
1(M,E), ∀ u ∈ L

2
1(M, E).

Finally, assume that the 1th-differential operator P0 : L2(M,G)→ L2
−1(M, E)

has closed range and finite-dimensional kernel, i.e.,

(2.12) dim
(
Ker

(
P0 : L2(M,G)→ L2

−1(M, E
))

:= n0 <∞.

Hence, L2
∗(M,G) is closed in L2(M,G) and has the codimension n0, where

(2.13) L2
∗(M,G) :=

{
f ∈ L2(M,G) : 〈f, ψ〉L2(M,G) = 0, ∀ ψ ∈ Ker P0

}
.

We now define the pseudodifferential matrix type operator

(2.14)
BD,P,P0 : C∞(M, E)× C∞(M,G)→ C∞(M, E)× C∞(M,G)

BD,P,P0 :=

(
LD,P P0

P ∗0 0

)
=

(
2D∗D + P P0

P ∗0 0

)
and its extension, denoted as before,

(2.15) BD,P,P0 : L2
1(M, E)× L2(M,G)→ L2

−1(M, E)× L2(M,G).

The restriction

B0
D,P,P0

: L2
1(M, E)× L2

∗(M,G)→ L2
−1(M, E)× L2

∗(M,G),

B0
D,P,P0

:= BD,P,P0 |L2
1(M,E)×L2

∗(M,G),
(2.16)

is one-to-one, where L2
∗(M,G) is given by (2.13). Taking into account (2.7),

(2.11) and (2.12), and using similar arguments to those for [10, Theorem 3.1],
one obtains the following main invertibility result:

Theorem 2.1. The operator B0
D,P,P0

, given by (2.16), is invertible, and

(2.17) (B0
D,P,P0

)−1 :=

(
AD,P,P0 BD,P,P0

CD,P,P0 DD,P,P0

)
,

where AD,P,P0∈OPS−2
cl (E , E), BD,P,P0∈OPS−1

cl (G, E), CD,P,P0∈OPS−1
cl (E , G)

and DD,P,P0∈OPS0
cl(G,G).

The proof of Theorem 2.1 will be given in a forthcoming paper. In view of
this result one finds that

(2.18) LD,PAD,P,P0 + P0CD,P,P0 = I, P ∗0AD,P,P0 = 0 on M.

Thus, the Schwartz kernels (GD,P,P0(x, y),ΠD,P,P0(x, y)) of the operatorsAD,P,P0

and CD,P,P0 determine the fundamental solution of the operator B0
D,P,P0

, i.e.,

(2.19) (LD + P )GD,P,P0(·, y) + P0ΠD,P,P0(·, y) = Diracy, P
∗
0 GD,P,P0(·, y) = 0,
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where Diracy is the Dirac distribution with mass at y.
In addition, one has the formula

(2.20) B0
D,P,P0

= B0
D,P0

+

(
P 0
0 0

)
, B0

D,P0
:=

(
LD P0

P ∗0 0

)
.

The operators B0
D,P,P0

and B0
D,P0

:= B0
D,0,P0

are invertible on the space

L2
1(M, E)× L2

∗(M,G). Let us also consider the inverse of the operator B0
D,P0

,

(2.21) (B0
D,P0

)−1 :=

(
AD,P0 BD,P0

CD,P0 DD,P0

)
.

In view of (2.20), one then obtains the relation

(2.22) AD,P,P0 −AD,P0 = −AD,P0PAD,P,P0 ∈ OPS−4
cl (E , E),

which implies that ṼD,P,0,P0 ∈ OPS−4
cl (M, E), where ṼD,P,0,P0 is the Newtonian

potential with the kernel GD,P,0,P0 := GD,P,P0 − GD,0,P0 , and GD,0,P0 is the
Schwartz kernel of the operator AD,P0 (corresponding to P = 0).

2.3. Pseudodifferential matrix operator of type (2.14). Let us now con-
sider the second-order partial differential operator

(2.23) L : X(M)→ X(M), L := 2Def∗Def = −4+ dδ − 2Ric,

where Def∗ is the adjoint of Def, 4 := −(dδ + δd) is the Hodge Laplacian
and Ric is the Ricci tensor. Note that the role of the operator D from above
is played here by the deformation operator Def. Recall that the deformation
operator is indeed injective, due to the lack of non-trivial Killing vector fields
on M . The operator L is elliptic and extends to a Fredholm operator of
index zero, L : L2

1(M,Λ1TM)→ L2
−1(M,Λ1TM). Also consider a self-adjoint

and non-negative operator P ∈ OPS0
cl(Λ

1TM,Λ1TM) with respect to the
L2(M,Λ1TM) - inner product, i.e.,

(2.24) 〈Pu,w〉 = 〈u,Pw〉, 〈Pu, u〉 ≥ 0 for all u,w ∈ L2(M,Λ1TM).

The pseudodifferential Brinkman operator [10]

(2.25)
BP : C∞(M,Λ1TM)× C∞(M)→ C∞(M,Λ1TM)× C∞(M),

BP :=

(
L d
δ 0

)
+

(
P 0
0 0

)
=

(
LP d
δ 0

)
, LP := L + P,

is of type (2.14), and satisfies the conditions (2.7), (2.11) and (2.12). Then,
by Theorem 2.1, the following operator is invertible1 (see also [10, Theorem
3.1]):

(2.26) BP=

(
LP d
δ 0

)
:L2

1(M,Λ1TM)×L2
∗(M)→L2

−1(M,Λ1TM)×L2
∗(M),

1One uses the same notation BP for both operators (2.25) and (2.26).
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where L2
∗(M) := {ϕ ∈ L2(M) : 〈ϕ, 1〉L2(M) = 0}. The inverse of BP has the

form

(2.27) (BP)−1 :=

(
AP BP
CP DP

)
,

and AP ∈OPS−2
cl (Λ1TM,Λ1TM), BP ∈OPS−1

cl (M,R), CP∈OPS−1
cl (Λ1TM,R)

and DP ∈OPS0
cl(M,R). The Schwartz kernels (GP ,ΠP) of the operators AP

and CP determine the fundamental solution of the operator BP . Hence,

(L + P)xGP(x, y) + dxΠP(x, y) = Diracy(x), δxGP(x, y) = 0.

For P = 0 one obtains the Stokes operator B0.

2.4. Sobolev spaces of sections in vector bundles. Le Ω+ := Ω ⊂M be a
Lipschitz domain (i.e., the boundary ∂Ω of Ω can be described in appropriate
local coordinates by means of graphs of Lipschitz functions) and assume that
Ω− := M \ Ω is connected. Fix κ = κ(∂Ω) > 1, sufficiently large, and define
the non-tangential maximal operator N := Nκ by

(2.28) N (u)(x) := sup{|u(y)| : y ∈ γ±(x)}, x ∈ ∂Ω,

for arbitrary u : Ω± → R, where

(2.29) γ±(x) := {y ∈ Ω± : dist(x, y) < κ dist (y, ∂Ω)}, x ∈ ∂Ω,

are non-tangential approach regions (lying in Ω+ and Ω−, respectively). De-
note by Tr± the non-tangential boundary trace operators on ∂Ω, given by

(Tr±u)(x) := lim
γ±(x)�y→x

u(y), x ∈ ∂Ω,(2.30)

Tr± : C0(Ω±)→ C0(∂Ω), Tr±u = u|∂Ω.(2.31)

Also, for p ∈ (1,∞) and s ≥ 0, consider the Sobolev spaces of functions

Lps(Ω±) := {f |Ω± : f ∈ Lps(M)}, L̃ps(Ω±) := {f ∈ Lps(M) : suppf ⊆ Ω±},

and denote by Lp−s(Ω±) =
(
L̃qs(Ω±)

)∗
the dual of the space L̃qs(Ω±), where

q ∈ (1,∞), 1
p + 1

q = 1. Recall that for a smooth, Hermitian vector bundle

E →M , the set of smooth sections of E on M is denoted by C∞(M, E). Then

Lps(Ω±, E) := Lps(Ω±)⊗ C∞(M, E), L̃ps(Ω±, E) := L̃ps(Ω±)⊗ C∞(M, E)

are the Sobolev spaces of sections u : Ω± → E having their coefficients in

Lps(Ω±) and L̃ps(Ω±), respectively, and Lp−s(Ω±, E) =
(
L̃qs(Ω±, E)

)∗
.

For any p ∈ (1,∞) and s ∈ [0, 1], the boundary Sobolev space Lps(∂Ω) can
be obtained by using the Euclidean space Lps(Rm−1), a partition of unity and
pull-back, and Lps(∂Ω, E|∂Ω) := Lps(∂Ω)⊗ C∞(M, E)|∂Ω.

Now, for any s ∈ (0, 1), define the spaces of sections

(2.32) L̃2
s− 3

2

(Ω±, E) :=
{

f ∈ L2
s− 3

2

(M, E) : supp f ⊆ Ω±

}
,
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L2
s+ 1

2

(Ω±,LD,P,P0) :=
{

(u, π, f) : u ∈ L2
s+ 1

2

(Ω±, E), π ∈ Lp
s− 1

2

(Ω±, G),

f ∈ L̃2
s− 3

2

(Ω±, E) such that LD,P,P0(u, π) = f |Ω± and P ∗0 u = 0 in Ω±
}
,

(2.33) LD,P,P0(u, π) := (LD + P )u + P0π.

The non-tangential boundary trace operator has the following property (see
e.g., [1, 3, 18]):

Lemma 2.2. For every s ∈
(

1
2 ,

3
2

)
, the restriction operator to the bound-

ary, C∞(Ω±,Λ
1TM) � u 7→ u|∂Ω±, extends to a linear and bounded oper-

ator Tr± : L2
s(Ω±,Λ

1TM) → L2
s− 1

2

(∂Ω±,Λ
1TM), which is onto, having a

bounded right inverse Z± : L2
s− 1

2

(∂Ω±,Λ
1TM)→ L2

s(Ω±,Λ
1TM). For s > 3

2 ,

Tr± : L2
s(Ω±,Λ

1TM)→ L2
1(∂Ω±,Λ

1TM) is also bounded.

Remark 2.3. Lemma 2.2 can be extended to Sobolev spaces of sections,
as: For any r ∈ (0, 1) the trace operator Tr± : L2

r+ 1
2

(Ω±, E) → L2
r(∂Ω, E) is

bounded and onto, and has a right inverse Z± : L2
r(∂Ω, E) → L2

r+ 1
2

(Ω±, E),

which is bounded as well (see e.g., [3] in the case of one forms).

2.5. The conormal derivative operator on Lipschitz boundaries. Let
r ∈ [0, 1] and ν ∈ L2

−r(∂Ω,Λ1TM) be the outward unit conormal to ∂Ω, which
is defined with respect to the L2(∂Ω,Λ1TM)-inner product and the outward
unit normal field n ∈ L∞(∂Ω, TM). Note that n is defined a.e., with respect
to the surface element dσ, on ∂Ω. The next result extends the notion of the
conormal derivative operator, given by Mitrea and Wright [18] for the Stokes
system on Lipschitz domains in Rn to the matrix type operator (2.14) on
Sobolev spaces of sections in Riemannian manifolds (see also [3, 9, 10] for the
Stokes or Brinkman systems in the context of compact Riemanian manifolds):

Lemma 2.4. For p ∈ (1,∞) and s ∈ (0, 1), the conormal derivative operator
∂+
ν;D,P,P0

: L2
s+ 1

2

(Ω,LD,P,P0) → L2
s−1(∂Ω, E), given for any Ψ ∈ L2

1−s(∂Ω, E)

by

〈∂+
ν;D,P,P0

(u, π, f),Ψ〉
∂Ω

:= 2

∫
Ω
〈Du, D(Z+Ψ)〉dVol +

∫
Ω
〈Pu,Z+Ψ〉dVol

+

∫
Ω

〈
π, P ∗0 (Z+Ψ)

〉
dVol− 〈f |Ω,Z+Ψ〉Ω,(2.34)

is well defined and bounded. In addition, for any (u, π, f) ∈ L2
s+ 1

2

(Ω,LD,P,P0)

and w ∈ L2
3
2
−s(Ω, E), one has the Green formula:

〈∂+
ν;D,P,P0

(u, π, f),Tr+ w〉
∂Ω
− 2

∫
Ω
〈Du, Dw〉dVol−

∫
Ω
〈Pu,w〉dVol =∫

Ω
〈π, P ∗0 w〉 dVol− 〈f |Ω,w〉Ω.(2.35)
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Proof. Let us observe that all duality pairings in the right-hand side of
(2.34) are well defined. This shows that ∂+

ν;D,P,P0
(u, π, f) ∈ L2

s−1(∂Ω, E) and,

in addition, ‖∂+
ν;D,P,P0

(u, π, f)‖L2
s−1(∂Ω±,E) ≤ c‖(u, π, f)‖L2

s+ 1
2

(Ω,LD,P,P0
) with

some constant c > 0 and for every (u, π, f) ∈ L2
s+ 1

2

(Ω,LD,P,P0). This shows

the well posedness and boundedness of the operator (2.34). The Green formula
(2.35) follows with similar arguments to those for [10, Lemma 2.2]. �

Remark 2.5. By considering the Brinkman operator (2.25) and choosing

L2
s+ 1

2

(Ω±,LP) :=
{

(u, π) ∈L2
s+ 1

2

(Ω±,Λ
1TM)× Lp

s− 1
2

(Ω±) :

LP(u, π) = 0 and δu = 0 in Ω±
}
,(2.36)

one obtains the conormal derivative ∂±ν;P :L2
s+ 1

2

(Ω±,LP)→L2
s−1(∂Ω,Λ1TM).

In addition, the Green formula (2.35) becomes (see [10])

±〈∂±ν;P(u, π),Tr± w〉
∂Ω

= 2

∫
Ω±

〈Def u,Def w〉dVol +

∫
Ω±

〈Pu,w〉dVol

+

∫
Ω±

〈π, δw〉 dVol, w ∈ L2
1−s(Ω±,Λ

1TM)(2.37)

for any (u, π) ∈ L2
s+ 1

2

(Ω±,LP), where LP(u, π) := (L + P)u+ dπ. From now

on we will use the notation ∂±ν instead of ∂±ν;P whenever the operator BP is
involved.

3. LAYER POTENTIAL THEORY FOR THE OPERATOR B0
D,P,P0

Let us now present the main properties of the layer potentials associated
to the pseudodifferential matrix operator B0

D,P,P0
given by (2.16). As in the

previous section, Ω ⊂ M is a Lipschitz domain. Also let f : ∂Ω → E and h :
∂Ω→ E be given sections. Then one defines the layer potentials VD,P,P0;∂Ωf :
M \ ∂Ω→ E and QsD,P,P0;∂Ωf : M \ ∂Ω→ G as

(VD,P,P0;∂Ωf)(x) :=

∫
∂Ω
〈GD,P,P0(x, y), f(y)〉ydσ(y)

(QsD,P,P0;∂Ωf)(x) :=

∫
∂Ω
〈ΠD,P,P0(x, y), f(y)〉ydσ(y)

, x ∈M \ ∂Ω,

where VD,P,P0;∂Ωf is the single-layer potential with density f .

Let WD,P,P0;∂Ωh : M \∂Ω→ E and QdD,P,P0;∂Ωh : M \∂Ω→ G be the layer

potentials given on M \ ∂Ω by

WD,P,P0;∂Ωh :=

∫
∂Ω

〈
∂νy ;D,P,P0

(
GD,P,P0(·, y), (ΠD,P,P0)>(y, ·)

)
,h(y)

〉
y

dσ,

QdD,P,P0;∂Ωh :=

∫
∂Ω

〈
∂νy ;D,P,P0 (ΠD,P,P0(·, y),−ΞD,P,P0(·, y)) ,h(y)

〉
y

dσ,
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where ∂ν;D,P,P0 := ∂+
ν;D,P,P0

. Also, ΞD,P,P0(x, y) is the Schwartz kernel of the

operator (−DD,P,P0)> ∈ OPS0
cl(G,G), and satisfies the relation (see [9, 10] in

the context of one forms)

(3.1) (LD,P )x (ΠD,P,P0)> (y, x) = (P0)xΞD,P,P0(x, y).

Note that WD,P,P0;∂Ωh : M \ ∂Ω → E is called the double-layer potential
with the density h. The corresponding principal value version is denoted by
KD,P,P0;∂Ωh and is given a.e. on ∂Ω by

KD,P,P0;∂Ωh := p.v.

∫
∂Ω

〈
∂νy ;D,P,P0

(
GD,P,P0(·, y), (ΠD,P,P0)>(y, ·)

)
, f(y)

〉
y

dσ.

In view of (2.19),
(
VD,P,P0;∂Ωf ,QsD,P,P0;∂Ωf

)
satisfies on M \∂Ω the equations

(3.2) (LD + P ) VD,P,P0;∂Ωf + P0QsD,P,P0;∂Ωf = 0, P ∗0 (VD,P,P0;∂Ωf) = 0.

Similarly, by (2.19) and (3.1) one obtains on M \ ∂Ω the equations

(3.3) (LD + P )WD,P,P0;∂Ωh + P0QdD,P,P0;∂Ωh = 0, P ∗0 WD,P,P0;∂Ωh = 0.

Now, using the theory developed in [15] (see also the corresponding results
for the Stokes system in [17, Proposition 3.3, Theorem 3.1], [3, Theorem 2.1]),
one obtains the following property:

Theorem 3.1. Let Ω ⊂ M be a Lipschitz domain. Also let s ∈ [0, 1]. If
h ∈ L2

s(∂Ω, E) and f ∈ L2
s−1(∂Ω, E), then one has a.e. on ∂Ω

Tr+(VD,P,P0;∂Ωf) = Tr−(VD,P,P0;∂Ωf) := VD,P,P0;∂Ωf ,(3.4)

Tr±(WD,P,P0;∂Ωh) =
(
± 1

2
I + KD,P,P0;∂Ω

)
h,(3.5)

∂±ν;D,P,P0
(VD,P,P0;∂Ωf ,QsD,P,P0;∂Ωf) =

(
∓ 1

2
I + K∗D,P,P0;∂Ω

)
f ,(3.6)

H+
D,P,P0;∂Ωh−H−D,P,P0;∂Ωh ∈ KerVD,P,P0;∂Ω,(3.7)

where K∗D,P,P0;∂Ω is the formal transpose of KD,P,P0;∂Ω, and

H±D,P,P0;∂Ω := ∂±ν;D,P,P0
(WD,P,P0;∂Ω,QdD,P,P0;∂Ω).

3.1. Single- and double-layer potentials for the Brinkman operator.
We now refer to the Brinkman operator BP given by (2.26). With respect to
the one forms f ∈ L2

r−1(∂Ω,Λ1TM) and h ∈ L2
r(∂Ω,Λ1TM), r ∈ [0, 1], the

associated single- and double-layer potentials are given a.e. on M \ ∂Ω by
(3.8)

VP;∂Ωf :=

∫
∂Ω
〈GP(·, y), f(y)〉dσ(y), QsP;∂Ωf :=

∫
∂Ω
〈ΠP(·, y), f(y)〉dσ(y),

WP;∂Ωh :=

∫
∂Ω

〈
Π>P(y, ·)ν(y)− 2Defy GP(·, y)ν(y),h(y)

〉
dσ(y),

Qd
P;∂Ωh :=

∫
∂Ω
〈−2Defy ΠP(·, y)ν(y)− ΞP(x, y)ν(y),h(y)〉dσ(y),
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where ΞP(x, y) is the Schwartz kernel of the operator (−DP)> ∈ OPS0
cl(M,R),

and satisfies the relation (see [9, 10])

(3.9) (LP)x (ΠP)> (y, x) = dxΞP(x, y).

These layer potentials satisfy the pseudodifferential equations

(3.10)
(L + P)VP ;∂Ωf + dQsP ;∂Ωf = 0, δ(VP ;∂Ωf) = 0

(L + P)WP ;∂Ωh + dQdP ;∂Ωh = 0, δWP ;∂Ωh = 0,
on M \ ∂Ω.

Also, the principal value of WP ;∂Ωh is given a.e. on M \ ∂Ω by

(3.11) KP;∂Ωh := p.v.

∫
∂Ω

〈
Π>P(y, ·)ν(y)− 2Defy GP(·, y)ν(y),h(y)

〉
dσ(y).

In addition, the relations (3.4)-(3.7) remain valid for the layer potential oper-
ators associated to the Brinkman operator BP , i.e., one has a.e. on ∂Ω (see
[10], [17, Proposition 3.3, Theorem 3.1], [3, Theorem 2.1])
(3.12)

Tr+(VP;∂Ωf) = Tr−(VP;∂Ωf) = VP;∂Ωf , Tr±(WP;∂Ωh)=
(
± 1

2I + KP;∂Ω

)
h,

∂±ν;P(VP;∂Ωf ,QsP;∂Ωf) :=
(
∓ 1

2I + K∗P;∂Ω

)
f , H+

P;∂Ωh−H−P;∂Ωh ∈ Rν,

where H±P;∂Ωh := ∂±ν (WP;∂Ωh,QdP;∂Ωh).

3.2. Compactness of the complementary layer potential operators as-
sociated to B0

D,P,P0
on the sphere Sm. One of the main results of the layer

potential theory is the compactness of the complementary layer potential op-
erators. We show this result in the case of the m-dimensional unit sphere
Sm.

Theorem 3.2. Let Ω ⊂ Sm be a Lipschitz domain. Then for any s ∈ (0, 1)
the following complementary layer potential operators are compact:

VD,P,0,P0;∂Ω := VD,P,P0;∂Ω − VD,0,P0;∂Ω : L2
s−1(∂Ω,Λ1TSm)→ L2

s(∂Ω, 1TSm),
KD,P,0,P0;∂Ω := KD,P,P0;∂Ω −KD,0,P0;∂Ω : L2

s(∂Ω,Λ1TSm)→ L2
s(∂Ω,Λ1TSm),

K∗D,P,0,P0;∂Ω : L2
−s(∂Ω,Λ1TSm)→ L2

−s(∂Ω,Λ1TSm),

HD,P,0,P0;∂Ω :=HD,P,P0;∂Ω −HD,0,P0;∂Ω :L2
s(∂Ω,Λ1TSm)→L2

s−1(∂Ω,Λ1TSm).

Proof. First, one shows that for any r ∈
(

1
2 , 1
]
, the complementary single-

layer potential operator VD,P,0,P0;∂Ω : L2
1
2
−r(∂Ω,Λ1TSm)→ L2

3
2
−s(∂Ω,Λ1TSm)

is compact. To this aim, note that this operator can be written as

(3.13) VD,P,0,P0;∂Ω = iL2
1(∂Ω,Λ1TSm),L2

3
2−s

(∂Ω,Λ1TSm) ◦
(
Tr ◦ ṼD,P,0,P0 ◦Tr∗

)
,

where Tr : L2
r(M,Λ1TSm) → L2

r− 1
2

(∂Ω,Λ1TSm) is the non-tangential trace

operator acting on one forms and Tr∗ : L2
1
2
−r(∂Ω,Λ1TSm)→ L2

−r(M,Λ1TSm)

is its adjoint. These operators are bounded for any r ∈ (1
2 , 1] (see [13]). In

addition, ṼD,P,0,P0 is the complementary Newtonian potential operator, i.e.,
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(ṼD,P,0,P0u)(x) := 〈(GD,P,0,P0(x, ·)) ,u〉L2(M,TSm), and GD,P,0,P0 := GD,P,P0 −
GD,0,P0 . Note that ṼD,P,0,P0 ∈ OPS−4

cl (M,Λ1TSm), as follows from (2.22).
Also, iL2

1(∂Ω,Λ1TSm),L2
3
2−r

(∂Ω,Λ1TSm) is the compact imbedding operator of the

space L2
1(∂Ω,Λ1TSm) into L2

3
2
−r(∂Ω,Λ1TSm). Consequently, the operator

(3.13) is compact for any r ∈ (1
2 , 1]. Moreover, by using an extrapolation result

of Cwikel [2] about compactness on complex interpolation scales of Banach
spaces, we conclude that the complementary single-layer potential operator
VD,P,0,P0;∂Ω : L2

1
2
−r(∂Ω,Λ1TSm) → L2

3
2
−s(∂Ω,Λ1TSm) is compact as well, for

any r ∈
[

1
2 ,

3
2

]
. The compactness of the other complementary layer potential

operators can be similarly obtained. For brevity, we omit the details, but they
will be given in a forthcoming paper. �

3.3. Compactness of complementary layer potential operators asso-
ciated to the pseudodifferential Brinkman operator BP . Next, we
show the compactness of the complementary layer potential operators asso-
ciated to the Brinkman and Stokes operators BP and B0, when P = λI and
λ > 0 is a constant. The more general case corresponding to an operator
P ∈ OPS0

cl(M,Λ1TM) of the form V I, where V ∈ C∞(M) is an arbitrary
non-negative function, will be treated in a forthcoming paper. For brevity, we
replace the subscript P by λ, and obtain (see also the compactness results in
[9, 10] obtained for m = 2, 3):

Theorem 3.3. If M is a boundaryless compact Riemannian manifold of
dimension m ≥ 2, Ω ⊂M is a Lipschitz domain and λ > 0 is a given constant,
then for any s ∈ [0, 1] the following layer potential operators are compact:

(a) The complementary single- and double-layer potential operators

(3.14)
Vλ,0;∂Ω := Vλ;∂Ω − V0;∂Ω : L2

s−1(∂Ω,Λ1TM)→ L2
s(∂Ω,Λ1TM),

Kλ,0;∂Ω := Kλ;∂Ω −K0;∂Ω : L2
s(∂Ω,Λ1TM)→ L2

s(∂Ω,Λ1TM),
Kλ,0;∂Ω : L2

s;ν(∂Ω,Λ1TM)→ L2
s;ν(∂Ω,Λ1TM),

where L2
s;ν(∂Ω,Λ1TM) := {h ∈ L2

s(∂Ω,Λ1TM) : 〈ν,h〉L2(∂Ω) = 0}.
(b) The adjoint of the complementary layer potential operator

(3.15) K∗λ,0;∂Ω := K∗λ;∂Ω −K∗0;∂Ω : L2
s−1(∂Ω,Λ1TM)→ L2

s−1(∂Ω,Λ1TM)

(c) The complementary hypersingular layer potential operator

(3.16) Hλ,0;∂Ω := Hλ;∂Ω −H0;∂Ω : L2
s(∂Ω,Λ1TM)→ L2

s−1(∂Ω,Λ1TM).

Proof. We use a localization technique due to Mitrea et al. in [15, Chapter
10]. To this aim, let {Uj : j = 1, . . . , N} be an open, finite covering of ∂Ω with
domains of coordinate charts in M , each of them being homeomorphic with
the unit ball in Rm. Let us embed isometrically Uj in a compact boundaryless
Riemannian manifold Mj of dimension m, j = 1, . . . , N . Each Mj can be
obtained by taking two copies of Uj with opposite orientation and gluing them
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together along their boundaries. The result is an m-dimensional (possibly
exotic) sphere. In addition, for each j = 1, . . . , N , select a Lipschitz domain
Ωj in Mj such that {∂Ωj ∩ ∂Ω : j = 1, . . . , N} is an open covering of ∂Ω.

Next, for each j, we may define a pseudodifferential Brinkman-type oper-

ator B
(j)
λ : C∞(Mj ,Λ

1TMj) × C∞(Mj) → C∞(Mj ,Λ
1TMj) × C∞(Mj), as

in (2.25). Indeed, we may choose a suitable Riemannian structure on Mj to
avoid the non-trivial Killing vector fields. Thus, we may construct the corre-
sponding complementary layer potential operators, and, by Theorem 3.2, they
are compact. For example, the complementary single-layer potential operator

(3.17) V(j)
λ,0;∂Ωj

:= V(j)
λ;∂Ωj

− V(j)
0;∂Ωj

: L2
s−1(∂Ωj ,Λ

1TMj)→ L2
s(∂Ωj ,Λ

1TMj)

is compact, for any s ∈ [0, 1]. Let {ξj : j = 1, . . . , N} be a partition of unity, by
Lipschitz functions, which is subordinated to the covering {Uj : j = 1, . . . , N}
of ∂Ω and satisfies the relations ∂Ω ∩ supp ξj ⊆ ∂Ωj for each j. Using these
data, one obtains the following decomposition of the complementary single-
layer potential operator Vλ,0;∂Ω:

(3.18) Vλ,0;∂Ωf =

N∑
j=1

N∑
k=1

ξk|∂Ω∩∂ΩkV
(j)
λ,0;∂Ωj

(ξjf)|∂Ω∩∂Ωj .

Since the compactness of a linear and bounded operator on a Banach space is
equivalent to its sequential compactness, consider a bounded sequence {Φn} in
L2
s−1(∂Ω,Λ1TM), which determines the bounded sequences {(ξjΦn)|∂Ω∩∂Ωj}

in L2
s−1(∂Ωj ,Λ

1TMj), for each j. In view of the compactness of the operator

V(j)
λ,0;∂Ωj

on L2
s−1(∂Ωj ,Λ

1TMj), we get a subsequence {Φnk} of {Φn} such that

{V(j)
λ,0;∂Ωj

(ξjΦnk)|∂Ω∩∂Ωj} converges to an element Φ(j) ∈ L2
s(∂Ωj ,Λ

1TMj), for

each j. Finally, in view of (3.18), one finds that the sequence {Vλ,0;∂ΩΦnk}
converges to Φ :=

∑N
j=1

∑N
k=1 ξk|∂Ω∩∂ΩkΦ

(j) ∈ L2
s(∂Ω,Λ1TM). This shows

the compactness of Vλ,0;∂Ω : L2
s−1(∂Ω,Λ1TM) → L2

s(∂Ω,Λ1TM). The com-
pactness of the other complementary layer potential operators in (3.14)-(3.16)
can be similarly obtained. �

3.4. Invertible layer potential operators for the Brinkman system.
Let us mention the following useful invertibility property (see also [6, 18]):

Theorem 3.4. Under the hypothesis of Theorem 3.3, the operators

(3.19) K̃±λ;∂Ω;µ := ∓1

2

1 + µ

1− µ
I + Kλ;∂Ω : L2

s;ν(∂Ω,Λ1TM)→ L2
s;ν(∂Ω,Λ1TM)

are invertible for any µ ∈ (0, 1) and s ∈ {0, 1}.

Proof. First, we show the Fredholm and zero index properties of (3.19)

on L2(∂Ω,Λ1TM). For this aim, note that K̃±λ;∂Ω;µ = K̃±0;∂Ω;µ + Kλ,0;∂Ω.

By Theorem 3.3, the operators Kλ,0;∂Ω : L2(∂Ω,Λ1TM) → L2(∂Ω,Λ1TM)
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and Kλ,0;∂Ω : L2
1(∂Ω,Λ1TM) → L2

1(∂Ω,Λ1TM) are compact. Note that the
operators

(3.20) K̃±0;∂Ω;µ := ∓1

2

1 + µ

1− µ
I + K0;∂Ω : L2(∂Ω,Λ1TM)→ L2(∂Ω,Λ1TM),

corresponding to the Stokes system (λ = 0), are bounded from below modulo
compact operators, as we will show in a forthcoming paper by using the local-
ization technique developed in [15, Chapter 10]. This means that there exists
a constant C > 0 such that

‖f‖L2(∂Ω,Λ1TM) ≤ C‖K̃±0;∂Ω;µf‖L2(∂Ω,Λ1TM) + ‖Comp±(f)‖,

i.e., K̃±0;∂Ω;µ : L2(∂Ω,Λ1TM) → L2(∂Ω,Λ1TM) are semi-Fredholm. For µ

sufficiently close to 1, they are invertible, by means of a Neumann series.
Then, combining this semi-Fredholm property with the homotopic invariance
of the index, we conclude that these operators are Fredholm with index zero
for any µ ∈ (0, 1) (see [18, Corollary 11.38]). By using [18, Corollary 11.38],
we conclude that the operators

(3.21) K̃±0;∂Ω;µ := ∓1

2

1 + µ

1− µ
I + K0;∂Ω : L2

ν(∂Ω,Λ1TM)→ L2
ν(∂Ω,Λ1TM)

are Fredholm with index zero as well.
Next, we show the Fredholm and zero index properties of the operators

(3.22) K̃±0;∂Ω;µ := ∓1

2

1 + µ

1− µ
I + K0;∂Ω : L2

1;ν(∂Ω,Λ1TM)→ L2
1;ν(∂Ω,Λ1TM).

This property follows from the relation (see e.g. [16, (7.41)])

±1

2

1 + µ

1− µ
I + K0;∂Ω = V0;∂Ω

(
±1

2

1 + µ

1− µ
I + K∗0;∂Ω

)
V−1

0;∂Ω on L2
1,ν(∂Ω,Λ1TM),

the invertibility of V0;∂Ω : L2
ν(∂Ω,Λ1TM) → L2

1,ν(∂Ω,Λ1TM) (see [17, Theo-

rem 6.1]) and and the fact that the operators

V0;∂Ω : L2(∂Ω,Λ1TM)→ L2
1,ν(∂Ω,Λ1TM),

±1

2

1 + µ

1− µ
I + K∗0;∂Ω : L2

ν(∂Ω,Λ1TM)→ L2(∂Ω,Λ1TM)

are Fredholm of opposite index. It remains to show that the operators (3.19)

are injective. Let h ∈ Ker
(
K̃+
λ;∂Ω;µ : L2

1;ν(∂Ω,Λ1TM) → L2
1;ν(∂Ω,Λ1TM)

)
.

By repeated applications of the Green formulas (2.37) to the double-layer po-
tential Wλ;∂Ωh and its associated pressure potential Qdλ;∂Ωh, one obtains that

h = 0, i.e., the operator K̃+
λ;∂Ω;µ : L2

1;ν(∂Ω,Λ1TM) → L2
1;ν(∂Ω,Λ1TM) is in-

deed injective. The injectivity of K̃+
λ;∂Ω;µ : L2

ν(∂Ω,Λ1TM) → L2
ν(∂Ω,Λ1TM)

follows from [18, Lemma 11.40] and the density of the continuous imbedding
L2

1;ν(∂Ω,Λ1TM) ↪→ L2
ν(∂Ω,Λ1TM). For brevity we omit the details, but they

will be given in a forthcoming paper. This completes the proof. �
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4. APPLICATIONS OF THE LAYER POTENTIAL THEORY

In this section we apply the layer potential theory developed in Section
3 to show the well-posedness of some transmission problems for the Stokes
Brinkman operator B0 and Bλ, λ > 0, on Lipschitz domains on a compact
Riemannian manifold of dimension ≥ 2, with boundary data in L2 spaces.
Recall that L = 2Def∗Def and N is the non-tangential maximal operator (see
(2.23) and (2.28)). First, we show the following well-posedness result:

Theorem 4.1. Let M be a compact boundaryless Riemannian manifold,
dim(M) ≥ 2, Ω+ := Ω ⊂M be a Lipschitz domain and Ω− := M \Ω. Also let
λ > 0 be a given constant. Then for any µ ∈ (0, 1) the transmission problem2

(4.1)


δu+ = 0, Lu+ + λu+ + dπ+ = 0 in Ω+,
δu− = 0, Lu− + λu− + dπ− = 0 in Ω−,
N (∇u±) ∈ L2(∂Ω), N (π±) ∈ L2(∂Ω),
µTr+u+ − Tr−u− = U ∈ L2

1;ν(∂Ω,Λ1TM) on ∂Ω,
∂+
ν (u+, π+)− ∂−ν (u−, π−) = F ∈ L2(∂Ω,Λ1TM) on ∂Ω,

is well-posed, i.e., it has a unique solution

((u+, π+), (u−, π−))∈(C2(Ω+,Λ
1TM)×C1(Ω+))×(C2(Ω−,Λ

1TM)×C1(Ω−))

(up to a constant pressure), and there exists a constant c > 0 such that
(4.2)
‖N (∇u±)‖L2(∂Ω) + ‖N (π±)‖L2(∂Ω) ≤ c

(
‖U‖L2

1(∂Ω,Λ1TM)+‖F‖L2(∂Ω,Λ1TM)

)
.

Proof. Let us consider the layer potentials

(4.3) u± = Wλ;∂Ωh + VP ;∂Ωf , π± = Qλ;∂Ωh +QP ;∂Ωf in Ω±,

with the unknown densities h ∈ L2
1;ν(∂Ω,Λ1TM) and f ∈ L2(∂Ω,Λ1TM). In

view of (3.10), these layer potentials satisfy the Brinkman equations of (4.1).
In addition, the general theory developed in [15, Chapters 1,2] show that
(4.3) satisfy the necessary conditions in (4.1), required to have a meaningful
formulated problem, i.e., the conditions N (∇u±), N (π±) ∈ L2(∂Ω).

Now, by imposing the transmission conditions of (4.1) to the layer potentials
(4.3) and using the formulas (3.12), one obtains the equations

(4.4)

(
−1

2

1 + µ

1− µ
I + Kλ;∂Ω

)
h + Vλ;∂Ωf = − 1

1− µ
U(

H+
λ;∂Ω −H

−
λ;∂Ω

)
h− f = F

a.e. on ∂Ω,

where H±λ;∂Ωh := ∂±ν
∂Ω

(Wλ;∂Ωh,Qλ;∂Ωh). Since
(
H+
λ;∂Ω −H

−
λ;∂Ω

)
h ∈ Rν (see

also (3.12)), the first equation in (4.4) takes the form

(4.5)

(
−1

2

1 + µ

1− µ
I + Kλ;∂Ω

)
h = − 1

1− µ
U + Vλ;∂ΩF a.e. on ∂Ω,

2In the context of L2 boundary spaces, one has ∂+
ν (u, π) = (−πI + 2Defu) ν.
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where the right-hand side belongs to L2
1;ν(∂Ω; Λ1TM), due to the property

Vλ;∂ΩF ∈ L2
1;ν(∂Ω; Λ1TM) (for any F ∈ L2(∂Ω; Λ1TM)). In addition, by

Theorem 3.4, the operator

−1

2

1 + µ

1− µ
I + Kλ;∂Ω : L2

1;ν(∂Ω; Λ1TM)→ L2
1;ν(∂Ω; Λ1TM)

is invertible. Thus, there exists a unique solution h ∈ L2
1;ν(∂Ω,Λ1TM) of the

equation (4.5). Moreover, the density f is also unique, as it is given by the
second equation in (4.4), i.e.,

f =
(
H+
λ;∂Ω −H

−
λ;∂Ω

)
h−F ∈ L2(∂Ω,Λ1TM).

Consequently, the layer potentials (4.3) determine a solution to the transmis-
sion problem (4.1), which satisfies an estimate of type (4.2). Indeed, in view
of [18, Proposition 4.5, Proposition 4.10] and the boundedness properties of
the operators

−1

2

1 + µ

1− µ
I + Kλ;∂Ω : L2

1;ν(∂Ω,Λ1TM)→ L2
1;ν(∂Ω,Λ1TM),

H+
λ;∂Ω −H

−
λ;∂Ω : L2

1;ν(∂Ω,Λ1TM)→ L2(∂Ω,Λ1TM),

one has successively

‖N (∇u±)‖L2(∂Ω) + ‖N (π±)‖L2(∂Ω) ≤ c
(
‖h‖L2

1(∂Ω,Λ1TM) + ‖f‖L2(∂Ω,Λ1TM)

)
≤ c

(
‖U‖L2

1(∂Ω,Λ1TM) + ‖F‖L2(∂Ω,Λ1TM)

)
,(4.6)

with some constant c > 0. Now, we show that the solution of the transmission
problem (4.1) is unique (up to a constant pressure). To this aim, suppose
that the pairs (ũ±, π̃±) satisfies the homogeneous version of (4.1). Taking
into account the representations (see e.g., [3, (3.7)] in the case of the Stokes
system)

(4.7)
ũ+ = Wλ;∂Ω(Tr+ũ+)−Vλ;∂Ω (∂+

ν (ũ+, π̃+))

0 = −Wλ;∂Ω(Tr−ũ−) + Vλ;∂Ω (∂−ν (ũ−, π̃−))
in Ω+,

and the transmission conditions in (4.1), one finds ũ+ = (1−µ)Wλ;∂Ω(Tr+ũ+)
in Ω+. If we apply the non-tangential boundary trace Tr+ to both sides of
this formula and use Theorem 3.4, one obtains the uniquely solvable equation(

−1

2

1 + µ

1− µ
I + Kλ;∂Ω

)
Tr+ũ+ = 0

in the space L2
1;ν(∂Ω,Λ1TM). Consequently, Tr+ũ+ = 0. Therefore, the pair

(ũ+, π̃+) is a solution of the homogeneous Dirichlet problem for the Brinkman
system in Ω+. Finally, taking into account by [10, Theorem 5.4], we conclude
that ũ+ = 0 and π̃+ = 0 (up to a constant) in Ω+. Similar arguments as
before imply that ũ− = 0 and π̃− = 0 (up to a constant) in Ω−. �
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Next, we show the well-posedness of a transmission problem associated to
the Stokes and Brinkman operators B0 and Bλ, λ > 0:

Theorem 4.2. Let M be a compact boundaryless Riemannian manifold,
dim(M) ≥ 2, Ω+ := Ω ⊂M be a Lipschitz domain and Ω− := M \Ω. Also let
λ > 0 be a given constant. Then for any µ ∈ (0, 1) the transmission problem

(4.8)


δu+ = 0, Lu+ + λu+ + dπ+ = 0 in Ω+,
δu− = 0, Lu− + dπ− = 0 in Ω−,
N (∇u±), N (π±) ∈ L2(∂Ω),
µTr+u+ − Tr−u− = U ∈ L2

1;ν(∂Ω,Λ1TM) on ∂Ω,
∂+
ν (u+, π+)− ∂−ν (u−, π−) = F ∈ L2(∂Ω,Λ1TM) on ∂Ω,

has a unique solution

((u+, π+), (u−, π−))∈(C2(Ω+,Λ
1TM)×C1(Ω+))×(C2(Ω−,Λ

1TM)×C1(Ω−))

(up to a constant pressure), and, for some C > 0,
(4.9)
‖N (∇u±)‖L2(∂Ω) + ‖N (π±)‖L2(∂Ω) ≤ C

(
‖U‖L2

1(∂Ω,Λ1TM)+‖F‖L2(∂Ω,Λ1TM)

)
.

Proof. First, note that, in view of Theorem 3.4, the operator

Tλ : L2
1;ν(∂Ω,Λ1TM)×L2(∂Ω,Λ1TM)→ L2

1;ν(∂Ω,Λ1TM)×L2(∂Ω,Λ1TM),

Tλ :=

(
(µ− 1)

(
−1

2
1+µ
1−µI + Kλ;∂Ω

)
(µ− 1)Vλ;∂Ω

0 −I

)
,(4.10)

is Fredholm with index zero. In addition, by Theorem 3.3, the operator

Cλ;0 : L2
1;ν(∂Ω,Λ1TM)×L2(∂Ω,Λ1TM)→ L2

1;ν(∂Ω,Λ1TM)×L2(∂Ω,Λ1TM),

(4.11) Cλ;0 :=

(
Kλ;0;∂Ω Vλ;0;∂Ω

Hλ,0;∂Ω K∗λ,0;∂Ω − α〈µ∂Ω
, ·〉

∂Ω
ν

)
is compact, for any constant α ∈ R, where µ

∂Ω
∈ L2(∂Ω,Λ1TM) is chosen

such that 〈ν, µ
∂Ω
〉
∂Ω

= 1. Therefore, the operator

Tλ;0 : L2
1;ν(∂Ω,Λ1TM)×L2(∂Ω,Λ1TM)→ L2

1;ν(∂Ω,Λ1TM)×L2(∂Ω,Λ1TM),

(4.12) Tλ;0 := Tλ + Cλ;0

is Fredholm with index zero too.
Now, choosing α 6= ζ − 1, where (see e.g., [3, 10])

K∗λ,0;∂Ων = ζν on ∂Ω,

and using similar arguments to those for Theorem 4.1, one obtains that the
operator (4.12) is injective, and hence invertible. Consequently the equation

(4.13) Tλ;0

(
h
f

)
=

(
U
F

)
∈ L2

1;ν(∂Ω,Λ1TM)× L2(∂Ω,Λ1TM)
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has a unique solution (h, f)> ∈ L2
1;ν(∂Ω,Λ1TM)× L2(∂Ω,Λ1TM). Then the

layer potentials

u+ = Wλ;∂Ωh + Vλ;∂Ωf , π+ = Qdλ;∂Ωh +Qsλ;∂Ωf in Ω+,(4.14)

(4.15) u− = W0;∂Ωh + V0;∂Ωf , π− = Qd0;∂Ωh +Qs0;∂Ωf + α〈µ
∂Ω
, f〉

∂Ω
in Ω−,

determine a solution ((u+, π+), (u−, π−)) of the transmission problem (4.8).
Note that the system of equations that follow by applying the transmission
conditions in (4.8) to the layer potentials (4.14) and (4.15) is equivalent to
the matrix type equation (4.13), as can be observed by means of the formulas
(3.12). In addition, the solution ((u+, π+), (u−, π−)) is unique (up to a con-
stant pressure) and satisfy the estimate (4.9). For brevity, we omit the details,
but they will be given in a forthcoming paper. �
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