AN EXTENSION OPERATOR AND LOEWNER CHAINS ON THE EUCLIDEAN UNIT BALL IN \mathbb{C}^{n}

TEODORA CHIRILĂ

Abstract

We are concerned with an extension operator $\Phi_{n, \alpha}, \alpha \geq 0$, that provides a way of extending a locally biholomorphic mapping $f \in H\left(B^{n}\right)$ to a locally biholomorphic mapping $F \in H\left(B^{n+1}\right)$. In the case $\alpha=1 /(n+1)$, this operator reduces to the Pfaltzgraff-Suffridge extension operator. By using the method of Loewner chains, we prove that if $f \in S^{0}\left(B^{n}\right)$, then $\Phi_{n, \alpha}(f) \in$ $S^{0}\left(B^{n+1}\right)$, whenever $\alpha \in[0,1 /(n+1)]$. In particular, if $f \in S^{*}\left(B^{n}\right)$, then $\Phi_{n, \alpha}(f) \in S^{*}\left(B^{n+1}\right)$, and if f is spirallike of type $\beta \in(-\pi / 2, \pi / 2)$ on B^{n}, then $\Phi_{n, \alpha}(f)$ is also spirallike of type β on B^{n+1}. We also prove that if f is almost starlike of order $\beta \in[0,1)$ on B^{n}, then $\Phi_{n, \alpha}(f)$ is almost starlike of order β on B^{n+1}. Finally we prove that if $f \in K\left(B^{n}\right)$ and $1 /(n+1) \leq \alpha \leq 1 / n$, then the image of $F=\Phi_{n, \alpha}(f)$ contains the convex hull of the image of some egg domain contained in B^{n+1}. An extension of this result to the case of ε-starlike mappings will be also considered.

MSC 2000. 32H02, 30C45.
Key words. Biholomorphic mapping, convex mapping, Loewner chain, parametric representation, Pfaltzgraff-Suffridge extension operator, Roper-Suffridge extension operator, starlike mapping, ε-starlike mapping.

1. INTRODUCTION AND PRELIMINARIES

Let \mathbb{C}^{n} denote the space of n complex variables $z=\left(z_{1}, \ldots, z_{n}\right)$ with the Euclidean inner product $\langle z, w\rangle=\sum_{j=1}^{n} z_{j} \bar{w}_{j}$ and the Euclidean norm $\|z\|=$ $\langle z, z\rangle^{1 / 2}$. For $n \geq 2$, let $\tilde{z}=\left(z_{2}, \ldots, z_{n}\right) \in \mathbb{C}^{n-1}$ so that $z=\left(z_{1}, \tilde{z}\right) \in \mathbb{C}^{n}$. The open ball $\left\{z \in \mathbb{C}^{n}:\|z\|<r\right\}$ is denoted by B_{r}^{n} and the unit ball B_{1}^{n} is denoted by B^{n}. In the case of one complex variable, B^{1} is denoted by U.

Let $L\left(\mathbb{C}^{n}, \mathbb{C}^{m}\right)$ denote the space of linear continuous operators from \mathbb{C}^{n} into \mathbb{C}^{m} with the standard operator norm, and let I_{n} be the identity of $L\left(\mathbb{C}^{n}, \mathbb{C}^{n}\right)$. If Ω is a domain in \mathbb{C}^{n}, we denote by $H(\Omega)$ the set of holomorphic mappings from Ω into \mathbb{C}^{n}. If $0 \in \Omega$, such a mapping f is said to be normalized if $f(0)=0$ and $D f(0)=I_{n}$. A holomorphic mapping $f: B^{n} \rightarrow \mathbb{C}^{n}$ is said to be biholomorphic if the inverse f^{-1} exists and is holomorphic on the open set $f\left(B^{n}\right)$. We say that $f \in H\left(B^{n}\right)$ is locally biholomorphic on B^{n} if the complex Jacobian matrix $D f(z)$ is nonsingular at each $z \in B^{n}$. Let $J_{f}(z)=\operatorname{det} D f(z)$.

[^0]Let $\mathcal{L} S_{n}$ be the set of normalized locally biholomorphic mappings on B^{n} and let $S\left(B^{n}\right)$ be the set of normalized biholomorphic mappings on B^{n}.

A map $f \in S\left(B^{n}\right)$ is said to be convex if its image is a convex domain in \mathbb{C}^{n}, and starlike if the image is a starlike domain with respect to 0 . We denote the classes of normalized convex and starlike mappings on B^{n} respectively by $K\left(B^{n}\right)$ and $S^{*}\left(B^{n}\right)$. In one variable we write $\mathcal{L} S_{1}=\mathcal{L} S, S\left(B^{1}\right)=S$, $K\left(B^{1}\right)=K$ and $S^{*}\left(B^{1}\right)=S^{*}$.

Starlikeness has an analytic characterization due to Matsuno and Suffridge (see [21]): a locally biholomorphic map $f: B^{n} \rightarrow \mathbb{C}^{n}$ such that $f(0)=0$ is starlike if and only if $\operatorname{Re}\left\langle[D f(z)]^{-1} f(z), z\right\rangle>0, z \in B^{n} \backslash\{0\}$.

We recall that a mapping $f \in \mathcal{L} S_{n}$ is spirallike of type $\beta \in(-\pi / 2, \pi / 2)$ if $\operatorname{Re}\left[\mathrm{e}^{-\mathrm{i} \beta}\left\langle[D f(z)]^{-1} f(z), z\right\rangle\right]>0, z \in B^{n} \backslash\{0\}$. We denote by $\hat{S}_{\beta}\left(B^{n}\right)$ the class of normalized spirallike mappings of type β on B^{n}. In the case of one variable this class is denoted by \hat{S}_{β}. If $\beta=0$, we obtain that f is spirallike of type 0 if and only if f is starlike. A mapping $f \in \mathcal{L} S_{n}$ is almost starlike of order $\beta \in[0,1)$ if $\operatorname{Re}\left\langle[D f(z)]^{-1} f(z), z\right\rangle>\beta\|z\|^{2}, z \in B^{n} \backslash\{0\}$. If $\beta=0$, we obtain that f is almost starlike of order 0 if and only if f is starlike. We remark that the notion of almost starlikeness of order β was introduced by Xu and Liu in 2007 (see [22]).

We next present the notion of ε-starlikeness due to Gong and Liu (see [3]). This notion interpolates between starlikeness and convexity as ε ranges from 0 to 1 .

Definition 1.1. Let $0 \in \Omega \subseteq \mathbb{C}^{n}$ be a domain and $f: \Omega \rightarrow \mathbb{C}^{n}$ be a biholomorphic mapping such that $f(0)=0$. We say that f is ε-starlike, $0 \leq \varepsilon \leq 1$, if $f(\Omega)$ is starlike with respect to each point in $\varepsilon f(\Omega)$, i.e.

$$
(1-\lambda) f(z)+\lambda \varepsilon f(w) \in f(\Omega), \lambda \in[0,1], z, w \in \Omega
$$

When $\varepsilon=0$ we obtain the family of starlike mappings on Ω, and when $\varepsilon=1$ we obtain the family of convex mappings on Ω. The analytical characterization of ε-starlikeness was given in [4].

We next refer to the notions of subordination and Loewner chains. Let $f, g \in H\left(B^{n}\right)$. We say that f is subordinate to g (and write $f \prec g$) if there is a Schwarz mapping v (i.e. $v \in H\left(B^{n}\right)$ and $\|v(z)\| \leq\|z\|, z \in B^{n}$) such that $f(z)=g(v(z)), z \in B^{n}$. If g is biholomorphic on B^{n}, this is equivalent to requiring that $f(0)=g(0)$ and $f\left(B^{n}\right) \subseteq g\left(B^{n}\right)$.

Definition 1.2. A mapping $f: B^{n} \times[0, \infty) \rightarrow \mathbb{C}^{n}$ is called a Loewner chain if $f(\cdot, t)$ is biholomorphic on $B^{n}, f(0, t)=0, D f(0, t)=\mathrm{e}^{t} I_{n}$ for $t \geq 0$, and $f(z, s) \prec f(z, t)$ whenever $0 \leq s \leq t<\infty$ and $z \in B^{n}$. The requirement $f(z, s) \prec f(z, t)$ is equivalent to the condition that there is a unique biholomorphic Schwarz mapping $v=v(z, s, t)$ called the transition mapping associated to $f(z, t)$ such that $f(z, s)=f(v(z, s, t), t), z \in B^{n}, t \geq s \geq 0$.

We also note that the normalization of $f(z, t)$ implies the normalization $D v(0, s, t)=\mathrm{e}^{s-t} I_{n}$ for $0 \leq s \leq t<\infty$.

Various results concerning Loewner chains can be found in [1], [9] and [16].
Remark 1.1. Certain subclasses of $S\left(B^{n}\right)$ can be characterized in terms of Loewner chains. In particular, f is starlike if and only if $f(z, t)=\mathrm{e}^{t} f(z)$ is a Loewner chain. Also, f is spirallike of type β if and only if $f(z, t)=$ $\mathrm{e}^{(1-\mathrm{i} a) t} f\left(\mathrm{e}^{\mathrm{i} a t} z\right)$ is a Loewner chain, where $a=\tan \beta$ and f is almost starlike of order β if and only if $f(z, t)=\mathrm{e}^{\frac{t}{1-\beta}} f\left(\mathrm{e}^{\frac{\beta t}{\beta-1}} z\right)$ is a Loewner chain.

The notion of parametric representation is related to that of a Loewner chain (see [6] and [12]; cf. [18]).

Definition 1.3. A normalized mapping $f \in H\left(B^{n}\right)$ has parametric representation if there exists a Loewner chain $f(z, t)$ such that $\left\{\mathrm{e}^{-t} f(\cdot, t)\right\}_{t \geq 0}$ is a normal family on B^{n} and $f(z)=f(z, 0), z \in B^{n}$.

Let $S^{0}\left(B^{n}\right)$ be the set of mappings which have parametric representation.
A key role in our discussion is played by the following Schwarz-type lemma for the Jacobian determinant of a holomorphic mapping from B^{n} into $B^{n}[20]$:

Lemma 1.1. Let $\psi \in H\left(B^{n}\right)$ be such that $\psi\left(B^{n}\right) \subseteq B^{n}$. Then

$$
\begin{equation*}
\left|J_{\psi}(z)\right| \leq\left[\frac{1-\|\psi(z)\|^{2}}{1-\|z\|^{2}}\right]^{\frac{n+1}{2}}, z \in B^{n} . \tag{1}
\end{equation*}
$$

This inequality is sharp and equality at a given point $z \in B^{n}$ holds if and only if $\psi \in \operatorname{Aut}\left(B^{n}\right)$, where $\operatorname{Aut}\left(B^{n}\right)$ denotes the set of holomorphic automorphisms of B^{n}.

For $n \geq 1$, set $z^{\prime}=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}$ and $z=\left(z^{\prime}, z_{n+1}\right) \in \mathbb{C}^{n+1}$.
Definition 1.4. Let $\alpha \geq 0$. The extension operator $\Phi_{n, \alpha}: \mathcal{L} S_{n} \rightarrow \mathcal{L} S_{n+1}$ is defined by $\Phi_{n, \alpha}(f)(z)=F(z)=\left(f\left(z^{\prime}\right), z_{n+1}\left[J_{f}\left(z^{\prime}\right)\right]^{\alpha}\right)$, $z=\left(z^{\prime}, z_{n+1}\right) \in B^{n+1}$.

We choose the branch of the power function such that $\left.\left[J_{f}\left(z^{\prime}\right)\right]^{\alpha}\right|_{z^{\prime}=0}=1$. Then $F=\Phi_{n, \alpha}(f) \in \mathcal{L} S_{n+1}$ whenever $f \in \mathcal{L} S_{n}$. Also, if $f \in S\left(B^{n}\right)$ then $F \in S\left(B^{n+1}\right)$. Indeed, if $F(z)=F(w)$, then $f\left(z^{\prime}\right)=f\left(w^{\prime}\right)$, which implies that $z^{\prime}=w^{\prime}$. Now from $z_{n+1}\left[J_{f}\left(z^{\prime}\right)\right]^{\alpha}=w_{n+1}\left[J_{f}\left(w^{\prime}\right)\right]^{\alpha}$ we obtain that $z_{n+1}=$ w_{n+1}, therefore $z=w$.

If $\alpha=1 /(n+1)$, the operator $\Phi_{n, 1 /(n+1)}$ is denoted by Φ_{n}. This operator was introduced by Pfaltzgraff and Suffridge [17]. Thus the extension operator $\Phi_{n}: \mathcal{L} S_{n} \rightarrow \mathcal{L} S_{n+1}$ is given by $\Phi_{n}(f)(z)=F(z)=\left(f\left(z^{\prime}\right), z_{n+1}\left[J_{f}\left(z^{\prime}\right)\right]^{\frac{1}{n+1}}\right)$, $z=\left(z^{\prime}, z_{n+1}\right) \in B^{n+1}$. This operator was also investigated by Graham, Kohr and Pfaltzgraff [13]. They proved that if $f \in S^{0}\left(B^{n}\right)$, then $\Phi_{n}(f) \in S^{0}\left(B^{n+1}\right)$. In particular, if $f \in S^{*}\left(B^{n}\right)$, then $\Phi_{n}(f) \in S^{*}\left(B^{n+1}\right)$. If $n=1$ and $\alpha=1 / 2$, then $\Phi_{1,1 / 2}$ reduces to the well-known Roper-Suffridge extension operator. For $n \geq 2$, the Roper-Suffridge extension operator $\Psi_{n}: \mathcal{L} S \rightarrow \mathcal{L} S_{n}$ is defined by
$($ see $[19]) \Psi_{n}(f)(z)=\left(f\left(z_{1}\right), \tilde{z} \sqrt{f^{\prime}\left(z_{1}\right)}\right), z=\left(z_{1}, \tilde{z}\right) \in B^{n}$. We choose the branch of the power function such that $\left.\sqrt{f^{\prime}\left(z_{1}\right)}\right|_{z_{1}=0}=1$.

Roper and Suffridge proved that if f is convex on U then $\Psi_{n}(f)$ is also convex on B^{n}. Graham and Kohr proved that if f is starlike on U then so is $\Psi_{n}(f)$ on B^{n}. Graham, Kohr and Kohr [11] proved that if f has parametric representation on the unit disc, then $\Psi_{n}(f)$ has the same property on B^{n}.

Note that the operator $\Phi_{1, \alpha}, \alpha \in\left[0, \frac{1}{2}\right]$, was considered by Graham, Kohr and Kohr in [11]. On the other hand, Gong and Liu [3] proved that if f is an ε-starlike function on $U, \varepsilon \in[0,1]$, and if $p \geq 1$, then $F_{1 / p}$ is an ε-starlike mapping on the domain $\Omega_{n, p}=\left\{z \in \mathbb{C}^{n}:\left|z_{1}\right|^{2}+\sum_{j=2}^{n}\left|z_{j}\right|^{p}<1\right\}$, where $F_{1 / p}=\Phi_{n, 1 / p}(f)$ and $\Phi_{n, 1 / p}(f)(z)=\left(f\left(z_{1}\right),\left(f^{\prime}\left(z_{1}\right)\right)^{\frac{1}{p}} \tilde{z}\right), z=\left(z_{1}, \tilde{z}\right) \in \Omega_{n, p}$.

Other extension operators that preserve various geometric properties have been recently considered in [2], [5], [7], [8], [10], [14], [15], [22], [23].

In this paper we prove that if $f \in S\left(B^{n}\right)$ can be imbedded as the first element of a Loewner chain $f\left(z^{\prime}, t\right)$, then $F=\Phi_{n, \alpha}(f)$ can also be imbedded as the first element of a Loewner chain $F(z, t)$, for $\alpha \in\left[0, \frac{1}{n+1}\right]$. In particular, we obtain various consequences related to the preservation of the notions of parametric representation, starlikeness, spirallikeness of type β, and almost starlikeness of order β under $\Phi_{n, \alpha}$. Finally, we consider the preservation of ε-starlikeness under the operator $\Phi_{n, \alpha}$. In the case $\varepsilon=1$, we obtain a partial answer to the question of whether $\Phi_{n, \alpha}$ preserves convexity.

2. LOEWNER CHAINS AND THE OPERATOR $\Phi_{N, \alpha}$

We begin this section with the following main result. In the case $\alpha=\frac{1}{n+1}$, see [13].

ThEOREM 2.1. Assume $f \in S\left(B^{n}\right)$ can be imbedded as the first element of a Loewner chain $f\left(z^{\prime}, t\right)$. Then $F=\Phi_{n, \alpha}(f)$ can also be imbedded as the first element of a Loewner chain $F(z, t)$, for $\alpha \in\left[0, \frac{1}{n+1}\right]$.

Proof. Since $f \in S\left(B^{n}\right)$, we have $F \in S\left(B^{n+1}\right)$. Let $v=v\left(z^{\prime}, s, t\right)$ be the transition mapping associated to $f\left(z^{\prime}, t\right)$. Then

$$
\begin{equation*}
f\left(z^{\prime}, s\right)=f\left(v\left(z^{\prime}, s, t\right), t\right), z^{\prime} \in B^{n}, 0 \leq s \leq t<\infty \tag{2}
\end{equation*}
$$

Let $f_{t}\left(z^{\prime}\right)=f\left(z^{\prime}, t\right)$ for $z^{\prime} \in B^{n}$ and $t \geq 0$ and let $v_{s, t}\left(z^{\prime}\right)=v\left(z^{\prime}, s, t\right), z^{\prime} \in B^{n}$, $t \geq s \geq 0$. Also, let $F: B^{n+1} \times[0, \infty) \rightarrow \mathbb{C}^{n+1}$ be given by

$$
\begin{equation*}
F(z, t)=\left(f\left(z^{\prime}, t\right), z_{n+1} \mathrm{e}^{t(1-n \alpha)}\left[J_{f_{t}}\left(z^{\prime}\right)\right]^{\alpha}\right) \tag{3}
\end{equation*}
$$

for $z=\left(z^{\prime}, z_{n+1}\right) \in B^{n+1}$ and $t \geq 0$. We choose the branch of the power function such that $\left.\left[J_{f_{t}}\left(z^{\prime}\right)\right]^{\alpha}\right|_{z^{\prime}=0}=\mathrm{e}^{n t \alpha}$. Let us prove that $F(z, t)$ is a Loewner chain. Indeed, since $f(\cdot, t)$ is biholomorphic on $B^{n}, f(0, t)=0$ and $D f(0, t)=$
$\mathrm{e}^{t} I_{n}$, it is not difficult to see that $F(\cdot, t)$ is biholomorphic on $B^{n+1}, F(0, t)=0$ and $D F(0, t)=\mathrm{e}^{t} I_{n+1}$.

Let $V_{s, t}: B^{n+1} \rightarrow \mathbb{C}^{n+1}$ be given by $V_{s, t}(z)=V(z, s, t)$, where

$$
\begin{equation*}
V(z, s, t)=\left(v\left(z^{\prime}, s, t\right), z_{n+1} \mathrm{e}^{(s-t)(1-n \alpha)}\left[J_{v_{s, t}}\left(z^{\prime}\right)\right]^{\alpha}\right) \tag{4}
\end{equation*}
$$

for $z=\left(z^{\prime}, z_{n+1}\right) \in B^{n+1}$ and $t \geq s \geq 0$. We choose the branch of the power function such that $\left.\left[J_{v_{s, t}}\left(z^{\prime}\right)\right]^{\alpha}\right|_{z^{\prime}=0}=\mathrm{e}^{n \alpha(s-t)}$. Then $V_{s, t}$ is biholomorphic on $B^{n+1}, V_{s, t}(0)=0, D V_{s, t}(0)=\mathrm{e}^{s-t} I_{n+1}$ and $\left\|V_{s, t}(z)\right\|<1, z \in$ B^{n+1}. Indeed, by Lemma 1.1 and the fact that $\alpha \in[0,1 /(n+1)]$, we obtain that $\left\|V_{s, t}(z)\right\|^{2}=\left\|v_{s, t}\left(z^{\prime}\right)\right\|^{2}+\left|z_{n+1}\right|^{2} \mathrm{e}^{2(s-t)(1-n \alpha)}\left|J_{v_{s, t}}\left(z^{\prime}\right)\right|^{2 \alpha} \leq\left\|v_{s, t}\left(z^{\prime}\right)\right\|^{2}+$ $\left|z_{n+1}\right|^{2}\left[\frac{1-\left\|v_{s, t}\left(z^{\prime}\right)\right\|^{2}}{1-\left\|z^{\prime}\right\|^{2}}\right]^{(n+1) \alpha} \leq\left\|v_{s, t}\left(z^{\prime}\right)\right\|^{2}+\frac{\left|z_{n+1}\right|^{2}}{1-\left\|z^{\prime}\right\|^{2}}\left(1-\left\|v_{s, t}\left(z^{\prime}\right)\right\|^{2}\right)<\left\|v_{s, t}\left(z^{\prime}\right)\right\|^{2}+$ $1-\left\|v_{s, t}\left(z^{\prime}\right)\right\|^{2}=1, z=\left(z^{\prime}, z_{n+1}\right) \in B^{n+1}$. Hence $\left\|V_{s, t}(z)\right\|<1$ for $z \in B^{n+1}$, as claimed.

Further, taking into account (2), we can easily deduce that $F(z, s)=$ $F(V(z, s, t), t)$ for $z \in B^{n+1}, t \geq s \geq 0$. Indeed,

$$
\begin{aligned}
F\left(V_{s, t}(z), t\right) & =\left(f\left(v_{s, t}\left(z^{\prime}\right), t\right), z_{n+1} \mathrm{e}^{(s-t)(1-n \alpha)} \mathrm{e}^{t(1-n \alpha)}\left[J_{f_{t}}\left(v_{s, t}\left(z^{\prime}\right)\right)\right]^{\alpha}\left[J_{v_{s, t}}\left(z^{\prime}\right)\right]^{\alpha}\right) \\
& =\left(f\left(z^{\prime}, s\right), z_{n+1} \mathrm{e}^{s(1-n \alpha)}\left[J_{f_{s}}\left(z^{\prime}\right)\right]^{\alpha}\right)=F(z, s),
\end{aligned}
$$

for all $z \in B^{n+1}$ and $t \geq s \geq 0$. We have used (2) and the fact that $J_{f_{s}}\left(z^{\prime}\right)=$ $J_{f_{t}}\left(v_{s, t}\left(z^{\prime}\right)\right) J_{v_{s, t}}\left(z^{\prime}\right), z^{\prime} \in B^{n}, t \geq s \geq 0$. This completes the proof.

Taking into account Theorem 2.1, we next prove that the operator $\Phi_{n, \alpha}$ preserves the notions of parametric representation, starlikeness, spirallikeness of type β, and almost starlikeness of order β. Note that Corollaries 2.1 and 2.2 have been obtained in [13] in the case $\alpha=\frac{1}{n+1}$.

Corollary 2.1. Assume $f \in S^{0}\left(B^{n}\right)$. Then $F=\Phi_{n, \alpha}(f) \in S^{0}\left(B^{n+1}\right)$, for $\alpha \in\left[0, \frac{1}{n+1}\right]$.

Proof. Since $f \in S^{0}\left(B^{n}\right)$, there exists a Loewner chain $f\left(z^{\prime}, t\right)$ such that $f\left(z^{\prime}, 0\right)=f\left(z^{\prime}\right), z^{\prime} \in B^{n}$ and $\left\{\mathrm{e}^{-t} f(\cdot, t)\right\}_{t \geq 0}$ is a normal family. Then

$$
\begin{equation*}
\frac{r}{(1+r)^{2}} \leq\left\|\mathrm{e}^{-t} f\left(z^{\prime}, t\right)\right\| \leq \frac{r}{(1-r)^{2}},\left\|z^{\prime}\right\|=r<1, t \geq 0 \tag{5}
\end{equation*}
$$

Applying the Cauchy integral formula for vector valued holomorphic functions, it is easy to see that for each $r \in(0,1)$ there is $K=K(r) \geq 0$ such that $\mathrm{e}^{-t}\left\|D f\left(z^{\prime}, t\right)\right\| \leq K(r),\left\|z^{\prime}\right\| \leq r, t \geq 0$. Moreover, since $\left|J_{f_{t}}\left(z^{\prime}\right)\right| \leq$ $\left\|D f_{t}\left(z^{\prime}\right)\right\|^{n}, z^{\prime} \in B^{n}$, we deduce that there is some $K^{*}=K^{*}(r) \geq 0$ such that

$$
\begin{equation*}
\left|J_{f_{t}}\left(z^{\prime}\right)\right|^{\alpha} \leq \mathrm{e}^{n t \alpha} K^{*}(r),\left\|z^{\prime}\right\| \leq r, t \geq 0 \tag{6}
\end{equation*}
$$

Let $F: B^{n+1} \times[0, \infty) \rightarrow \mathbb{C}^{n+1}$ be the Loewner chain given by (3). Taking into account (5) and (6) we now easily deduce that for each $r \in(0,1)$ there is some $L=L(r) \geq 0$ such that $\mathrm{e}^{-t}\|F(z, t)\| \leq L(r),\|z\| \leq r, t \geq 0$. Consequently,
$\left\{\mathrm{e}^{-t} F(\cdot, t)\right\}_{t \geq 0}$ is a locally uniformly bounded family on B^{n+1}, and thus is normal. Hence $F=F(\cdot, 0) \in S^{0}\left(B^{n+1}\right)$. This completes the proof.

Corollary 2.2. Assume $f \in S^{*}\left(B^{n}\right)$. Then $F=\Phi_{n, \alpha}(f) \in S^{*}\left(B^{n+1}\right)$, for $\alpha \in\left[0, \frac{1}{n+1}\right]$.

Proof. The fact that f is starlike on B^{n} is equivalent to the statement that $f\left(z^{\prime}, t\right)=\mathrm{e}^{t} f\left(z^{\prime}\right)$ is a Loewner chain. With this choice of $f\left(z^{\prime}, t\right)$, we deduce that $F(z, t)$ given by (3) is a Loewner chain. On the other hand, we have $F(z, t)=\left(\mathrm{e}^{t} f\left(z^{\prime}\right), z_{n+1} \mathrm{e}^{t(1-n \alpha)} \mathrm{e}^{n t \alpha}\left[J_{f}\left(z^{\prime}\right)\right]^{\alpha}\right)=\mathrm{e}^{t}\left(f\left(z^{\prime}\right), z_{n+1}\left[J_{f}\left(z^{\prime}\right)\right]^{\alpha}\right)=$ $\mathrm{e}^{t} F(z), z \in B^{n+1}, t \geq 0$. Thus $F=F(\cdot, 0) \in S^{*}\left(B^{n+1}\right)$, as claimed.

Corollary 2.3. Assume $f \in \hat{S}_{\beta}\left(B^{n}\right)$, where $\beta \in(-\pi / 2, \pi / 2)$. Then $F=$ $\Phi_{n, \alpha}(f) \in \hat{S}_{\beta}\left(B^{n+1}\right)$, for $\alpha \in\left[0, \frac{1}{n+1}\right]$.

Proof. The fact that f is spirallike of type β on B^{n} is equivalent to the statement that $f\left(z^{\prime}, t\right)=\mathrm{e}^{(1-\mathrm{i} a) t} f\left(\mathrm{e}^{\mathrm{i} a t} z^{\prime}\right)$ is a Loewner chain, where $a=\tan \beta$. With this choice of $f\left(z^{\prime}, t\right)$, we deduce that $F(z, t)$ given by (3) is a Loewner chain. On the other hand, we have

$$
\begin{aligned}
F(z, t) & =\left(\mathrm{e}^{(1-\mathrm{i} a) t} f\left(\mathrm{e}^{\mathrm{i} a t} z^{\prime}\right), z_{n+1} \mathrm{e}^{t(1-n \alpha)} \mathrm{e}^{n t \alpha}\left[J_{f}\left(\mathrm{e}^{\mathrm{i} a t} z^{\prime}\right)\right]^{\alpha}\right) \\
& =\left(\mathrm{e}^{(1-\mathrm{i} a) t} f\left(\mathrm{e}^{\mathrm{i} a t} z^{\prime}\right), z_{n+1} \mathrm{e}^{t}\left[J_{f}\left(\mathrm{e}^{\mathrm{i} a t} z^{\prime}\right)\right]^{\alpha}\right) \\
& =\mathrm{e}^{(1-\mathrm{i} a) t}\left(f\left(\mathrm{e}^{\mathrm{i} a t} z^{\prime}\right), z_{n+1} \mathrm{e}^{\mathrm{i} a t}\left[J_{f}\left(\mathrm{e}^{\mathrm{i} a t} z^{\prime}\right)\right]^{\alpha}\right)=\mathrm{e}^{(1-\mathrm{i} a) t} F\left(\mathrm{e}^{\mathrm{i} a t} z\right),
\end{aligned}
$$

for $z \in B^{n+1}$ and $t \geq 0$. Thus $F=F(\cdot, 0) \in \hat{S}_{\beta}\left(B^{n+1}\right)$, as claimed. This completes the proof.

The following result yields that the operator $\Phi_{n, \alpha}$ preserves the notion of almost starlikeness of order $\beta \in[0,1)$. In the case $n=1$, see [22].

Corollary 2.4. Assume f is an almost starlike mapping of order β on B^{n}, where $\beta \in[0,1)$. Then $F=\Phi_{n, \alpha}(f)$ is almost starlike mapping of order β on B^{n+1}, where $\alpha \in\left[0, \frac{1}{n+1}\right]$.

Proof. The fact that f is almost starlike mapping of order β on B^{n} is equivalent to the statement that $f\left(z^{\prime}, t\right)=\mathrm{e}^{\frac{t}{1-\beta}} f\left(\mathrm{e}^{\frac{\beta t}{\beta-1}} z^{\prime}\right)$ is a Loewner chain. With this choice of $f\left(z^{\prime}, t\right)$, we deduce that $F(z, t)$ given by (3) is a Loewner chain. On the other hand, we have

$$
\begin{aligned}
F(z, t) & =\left(\mathrm{e}^{\frac{t}{1-\beta}} f\left(\mathrm{e}^{-\frac{\beta t}{1-\beta}} z^{\prime}\right), z_{n+1} \mathrm{e}^{t(1-n \alpha)} \mathrm{e}^{t n \alpha}\left[J_{f}\left(\mathrm{e}^{-\frac{\beta t}{1-\beta}} z^{\prime}\right)\right]^{\alpha}\right) \\
& =\left(\mathrm{e}^{\frac{t}{1-\beta}} f\left(\mathrm{e}^{-\frac{\beta t}{1-\beta}} z^{\prime}\right), z_{n+1} \mathrm{e}^{t}\left[J_{f}\left(\mathrm{e}^{-\frac{\beta t}{1-\beta}} z^{\prime}\right)\right]^{\alpha}\right) \\
& =\mathrm{e}^{\frac{t}{1-\beta}}\left(f\left(\mathrm{e}^{-\frac{\beta t}{1-\beta}} z^{\prime}\right), z_{n+1} \mathrm{e}^{-\frac{\beta t}{1-\beta}}\left[J_{f}\left(\mathrm{e}^{-\frac{\beta t}{1-\beta}} z^{\prime}\right)\right]^{\alpha}\right)=\mathrm{e}^{\frac{t}{1-\beta}} F\left(\mathrm{e}^{-\frac{\beta t}{1-\beta}} z\right)
\end{aligned}
$$

for $z \in B^{n+1}$ and $t \geq 0$. Thus $F=F(\cdot, 0)$ is almost starlike mapping of order β on B^{n+1}. This completes the proof.

3. ε-STARLIKENESS AND THE OPERATOR $\Phi_{N, \alpha}$

We next discuss the case of ε-starlike mappings associated with the operator $\Phi_{n, \alpha}$, for $\alpha \in\left[\frac{1}{n+1}, \frac{1}{n}\right]$. For $a \in(0,1]$, let $\Omega_{a, n, \alpha}=\left\{z=\left(z^{\prime}, z_{n+1}\right) \in \mathbb{C}^{n+1}\right.$: $\left.\left|z_{n+1}\right|^{2}<a^{2 n \alpha}\left(1-\left\|z^{\prime}\right\|^{2}\right)^{(n+1) \alpha}\right\}$. Then $\Omega_{a, n, \alpha} \subseteq B^{n+1}$. Indeed, from $a \in(0,1]$ and $\alpha \in\left[\frac{1}{n+1}, \frac{1}{n}\right]$, we obtain that $\left|z_{n+1}\right|^{2}<1-\left\|z^{\prime}\right\|^{2}$, i.e. $\Omega_{a, n, \alpha} \subseteq B^{n+1}$. For $a=1$ and $\alpha=\frac{1}{n+1}$, we obtain $\Omega_{1, n, \frac{1}{n+1}}=B^{n+1}$. We are now able to prove the main result of this section, which when $\varepsilon=1$ gives a partial answer to the question of whether $\Phi_{n, \alpha}$ preserves convexity.

Theorem 3.1. Let $\varepsilon \in[0,1]$ and $f: B^{n} \rightarrow \mathbb{C}^{n}$ be a normalized ε-starlike mapping. Also let $F=\Phi_{n, \alpha}(f)$, for $\alpha \in\left[\frac{1}{n+1}, \frac{1}{n}\right]$, and let $a_{1}, a_{2}>0$ be such that $a_{1}+a_{2} \leq 1$. Then $(1-\lambda) F(z)+\lambda \varepsilon F(w) \in F\left(\Omega_{a_{1}+a_{2}, n, \alpha}\right), z \in \Omega_{a_{1}, n, \alpha}$, $w \in \Omega_{a_{2}, n, \alpha}, \lambda \in[0,1]$.

Proof. Since f is biholomorphic on B^{n}, it follows that $F=\Phi_{n, \alpha}(f)$ is also biholomorphic on B^{n+1}. Fix $\lambda \in[0,1]$ and let $z \in \Omega_{a_{1}, n, \alpha}, w \in \Omega_{a_{2}, n, \alpha}$. We want to find a point $u=\left(u^{\prime}, u_{n+1}\right) \in \Omega_{a_{1}+a_{2}, n, \alpha}$ such that $(1-\lambda) F(z)+$ $\lambda \varepsilon F(w)=F(u)$, i.e. $\quad f\left(u^{\prime}\right)=(1-\lambda) f\left(z^{\prime}\right)+\lambda \varepsilon f\left(w^{\prime}\right)$ and $u_{n+1}\left[J_{f}\left(u^{\prime}\right)\right]^{\alpha}=$ $(1-\lambda) z_{n+1}\left[J_{f}\left(z^{\prime}\right)\right]^{\alpha}+\lambda \varepsilon w_{n+1}\left[J_{f}\left(w^{\prime}\right)\right]^{\alpha}$. If $\lambda=0$, let $u=z$. If $\lambda=1$, then using the fact that f is ε-starlike and the equality $\varepsilon F(w)=F(u)$, we easily deduce that $u=\left(u^{\prime}, u_{n+1}\right) \in \Omega_{a_{2}, n, \alpha} \subseteq \Omega_{a_{1}+a_{2}, n, \alpha}$. Hence, it suffices to assume that $\lambda \in(0,1)$. Since f is ε-starlike, we obtain that $u^{\prime}=f^{-1}\left((1-\lambda) f\left(z^{\prime}\right)+\lambda \varepsilon f\left(w^{\prime}\right)\right)$. Then $u^{\prime}=u^{\prime}\left(z^{\prime}, w^{\prime}\right)$ can be viewed as a mapping from $B^{n} \times B^{n}$ into B^{n}. Let $u_{n+1}=(1-\lambda) z_{n+1}\left[\frac{J_{f}\left(z^{\prime}\right)}{J_{f}\left(u^{\prime}\right)}\right]^{\alpha}+$ $\lambda \varepsilon w_{n+1}\left[\frac{J_{f}\left(w^{\prime}\right)}{J_{f}\left(u^{\prime}\right)}\right]^{\alpha}$. We prove that $u=\left(u^{\prime}, u_{n+1}\right) \in \Omega_{a_{1}+a_{2}, n, \alpha}$. It is obvious that $\frac{\partial u^{\prime}}{\partial z^{\prime}}=(1-\lambda)\left[D f\left(u^{\prime}\right)\right]^{-1} D f\left(z^{\prime}\right)$ and $\frac{\partial u^{\prime}}{\partial w^{\prime}}=\lambda \varepsilon\left[D f\left(u^{\prime}\right)\right]^{-1} D f\left(w^{\prime}\right)$. Hence $u_{n+1}=(1-\lambda)^{1-n \alpha} z_{n+1}\left[J_{u_{z^{\prime}}}\right]^{\alpha}+(\lambda \varepsilon)^{1-n \alpha} w_{n+1}\left[J_{u_{w^{\prime}}^{\prime}}\right]^{\alpha}$. Using Lemma 1.1 in the previous equation, we obtain

$$
\begin{aligned}
\left|u_{n+1}\right| \leq & (1-\lambda)^{1-n \alpha}\left|z_{n+1}\right|\left[\frac{1-\left\|u^{\prime}\left(z^{\prime}, w^{\prime}\right)\right\|^{2}}{1-\left\|z^{\prime}\right\|^{2}}\right]^{\frac{(n+1) \alpha}{2}} \\
& +(\lambda \varepsilon)^{1-n \alpha}\left|w_{n+1}\right|\left[\frac{1-\left\|u^{\prime}\left(z^{\prime}, w^{\prime}\right)\right\|^{2}}{1-\left\|w^{\prime}\right\|^{2}}\right]^{\frac{(n+1) \alpha}{2}} \\
= & \left(1-\left\|u^{\prime}\right\|^{2}\right)^{\frac{(n+1) \alpha}{2}}\left\{(1-\lambda)^{1-n \alpha}\left[\frac{\left|z_{n+1}\right|^{\frac{2}{(n+1) \alpha}}}{1-\left\|z^{\prime}\right\|^{2}}\right]^{\frac{(n+1) \alpha}{2}}\right. \\
& \left.+(\lambda \varepsilon)^{1-n \alpha}\left[\frac{\left|w_{n+1}\right|^{\frac{2}{(n+1) \alpha}}}{1-\left\|w^{\prime}\right\|^{2}}\right]^{\frac{(n+1) \alpha}{2}}\right\} .
\end{aligned}
$$

We have two cases:

First case. If $\varepsilon=0$ (i.e. f is starlike), then we obtain that $\left|u_{n+1}\right| \leq\left(1-\left\|u^{\prime}\right\|^{2}\right)^{\frac{(n+1) \alpha}{2}}(1-\lambda)^{1-n \alpha} \frac{\left|z_{n+1}\right|}{\left(1-\left\|z^{\prime}\right\|^{2}\right)^{\frac{(n+1) \alpha}{2}}}<a_{1}^{n \alpha}\left(1-\left\|u^{\prime}\right\|^{2}\right)^{\frac{(n+1) \alpha}{2}}$.
Here we have used the fact that $z=\left(z^{\prime}, z_{n+1}\right) \in \Omega_{a_{1}, n, \alpha}$. Hence $\left|u_{n+1}\right|^{2}<$ $a_{1}^{2 n \alpha}\left(1-\left\|u^{\prime}\right\|^{2}\right)^{(n+1) \alpha}$, i.e. $u=\left(u^{\prime}, u_{n+1}\right) \in \Omega_{a_{1}, n, \alpha}$. On the other hand, since $\Omega_{a_{1}, n, \alpha} \subseteq \Omega_{a_{1}+a_{2}, n, \alpha}$, we deduce that $u=\left(u^{\prime}, u_{n+1}\right) \in \Omega_{a_{1}+a_{2}, n, \alpha}$, as desired.

Second case. For $\varepsilon \in(0,1]$, using Hölder's inequality we obtain

$$
\begin{aligned}
\left|u_{n+1}\right| \leq & \left(1-\left\|u^{\prime}\right\|^{2}\right)^{\frac{(n+1) \alpha}{2}}(1-\lambda+\lambda \varepsilon)^{1-n \alpha}\left\{\left[\frac{\left|z_{n+1}\right|^{\frac{2}{(n+1) \alpha}}}{1-\left\|z^{\prime}\right\|^{2}}\right]^{\frac{n+1}{2 n}}\right. \\
& \left.+\left[\frac{\left|w_{n+1}\right|^{\frac{2}{(n+1) \alpha}}}{1-\left\|w^{\prime}\right\|^{2}}\right]^{\frac{n+1}{2 n}}\right\}^{n \alpha}<\left(1-\left\|u^{\prime}\right\|^{2}\right)^{\frac{(n+1) \alpha}{2}}\left(a_{1}+a_{2}\right)^{n \alpha} .
\end{aligned}
$$

Therefore, we have proved that $\left|u_{n+1}\right|^{2}<\left(a_{1}+a_{2}\right)^{2 n \alpha}\left(1-\left\|u^{\prime}\right\|^{2}\right)^{(n+1) \alpha}$, i.e. $u=\left(u^{\prime}, u_{n+1}\right) \in \Omega_{a_{1}+a_{2}, n, \alpha}$. This completes the proof.

Taking $\varepsilon=1$ in Theorem 3.1, we obtain the following convexity result for the operator $\Phi_{n, \alpha}$. In the case $\alpha=\frac{1}{n+1}$, see [13].

Corollary 3.1. If $f \in K\left(B^{n}\right)$ and $F=\Phi_{n, \alpha}(f)$, then $(1-\lambda) F(z)+$ $\lambda F(w) \in F\left(\Omega_{a_{1}+a_{2}, n, \alpha}\right), z \in \Omega_{a_{1}, n, \alpha}, w \in \Omega_{a_{2}, n, \alpha}, \lambda \in[0,1]$, where $a_{1}, a_{2}>0$, $a_{1}+a_{2} \leq 1$.

Taking $\alpha=\frac{1}{n+1}$ in Theorem 3.1, we obtain the following result regarding ε-starlikeness for the Pfaltzgraff-Suffridge extension operator Φ_{n} :

Corollary 3.2. Let $\varepsilon \in[0,1]$ and $f: B^{n} \rightarrow \mathbb{C}^{n}$ be a normalized ε-starlike mapping. Also let $F=\Phi_{n}(f)$ and $a_{1}, a_{2}>0$ such that $a_{1}+a_{2} \leq 1$. Then $(1-\lambda) F(z)+\lambda \varepsilon F(w) \in F\left(\Omega_{a_{1}+a_{2}, n, 1 /(n+1)}\right)$, for all $z \in \Omega_{a_{1}, n, 1 /(n+1)}, w \in$ $\Omega_{a_{2}, n, 1 /(n+1)}$ and $\lambda \in[0,1]$.

Taking $a_{1}=a_{2}=\frac{1}{2}$ in Corollary 3.2 and using the fact that $\Omega_{1, n, 1 /(n+1)}=$ B^{n+1}, we obtain the following corollary. In the case $\varepsilon=1$, see [13].

Corollary 3.3. If f is a normalized ε-starlike mapping on $B^{n}, \varepsilon \in[0,1]$, and $F=\Phi_{n}(f)$, then $(1-\lambda) F(z)+\lambda \varepsilon F(w) \in F\left(B^{n+1}\right), z, w \in \Omega_{1 / 2, n, 1 /(n+1)}$, $\lambda \in[0,1]$.

REFERENCES

[1] Curt, P., Special Chapters of Geometric Function Theory of Several Complex Variables (in Romanian), Editura Albastră, Cluj-Napoca, 2001.
[2] Elin, M., Extension operators via semigroups, J. Math. Anal. Appl., 377 (2011), 239250.
[3] Gong, S. and Liu, T., On the Roper-Suffridge extension operator, J. Anal. Math., 88 (2002), 397-404.
[4] Gong, S. and Liv, T., Criterion for the family of ε starlike mappings, J. Math. Anal. Appl., 274 (2002), no. 2, 696-704.
[5] Gong, S. and Liu, T., The generalized Roper-Suffridge extension operator, J. Math. Anal. Appl., 284 (2003), 425-434.
[6] Graham, I., Hamada, H. and Kohr, G., Parametric representation of univalent mappings in several complex variables, Canad. J. Math., 54 (2002), 324-351.
[7] Graham, I. and Kohr, G., Univalent mappings associated with the Roper-Suffridge extension operator, J. Anal. Math., 81 (2000), 331-342.
[8] Graham, I. and Kohr, G., An Extension Theorem and Subclasses of Univalent Mappings in Several Complex Variables, Complex Var. Eliptic Equ., 47 (2002), 59-72.
[9] Graham, I. and Kohr, G., Geometric Function Theory in One and Higher Dimensions, Marcel Dekker Inc., New York, 2003.
[10] Graham, I. and Kohr, G., The Roper-Suffridge extension operator and classes of biholomorphic mappings, Sci. China Math., 49 (2006), 1539-1552.
[11] Graham, I., Kohr, G. and Kohr, M., Loewner chains and the Roper-Suffridge Extension Operator, J. Math. Anal. Appl., 247 (2000), 448-465.
[12] Graham, I., Kohr, G. and Kohr, M., Loewner chains and parametric representation in several complex variables, J. Math. Anal. Appl., 281 (2003), 425-438.
[13] Graham, I., Kohr, G. and Pfaltzgraff, J., Parametric representation and linear functionals associated with extension operators for biholomorphic mappings, Rev. Roumaine Math. Pures Appl., 52 (2007), 47-68.
[14] Liu, T.S. and Xu, Q.H., Loewner chains associated with the generalized Roper-Suffridge extension operator, J. Math. Anal. Appl., 322 (2006), 107-120.
[15] Muir, J.R. Jr., A class of Loewner chain preserving extension operators, J. Math. Anal. Appl., 337 (2008), 862-879.
[16] Pfaltzgraff, J.A., Subordination chains and univalence of holomorphic mappings in \mathbb{C}^{n}, Math. Ann., 210 (1974), 55-68.
[17] Pfaltzgraff, J.A. and Suffridge, T.J., An extension theorem and linear invariant families generated by starlike maps, Ann. Univ. Mariae Curie-Sklodowska, Sect. A, 53 (1999), 193-207.
[18] Poreda, T., On the univalent holomorphic maps of the unit polydisc of \mathbb{C}^{n} which have the parametric representation, I-the geometrical properties, Ann. Univ. Mariae CurieSklodowska Sect A 41 (1987), 105-113.
[19] Roper, K. and Suffridge, T.J., Convex mappings on the unit ball of \mathbb{C}^{n}, J. Anal. Math., 65 (1995), 333-347.
[20] Rudin, W., Function Theory in the Unit Ball of \mathbb{C}^{n}, Springer-Verlag, New York, 1980.
[21] Suffridge, T.J., Starlikeness, convexity and other geometric properties of holomorphic maps in higher dimensions, Lecture Notes in Math., 599, 146-159.
[22] Xu, Q.H. and Liu, T.S., Löwner chains and a subclass of biholomorphic mappings, J. Math. Appl., 334 (2007), 1096-1105.
[23] Zhu, Y. and Liu, M.S., Loewner chains associated with the generalized Roper-Suffridge extension operator on some domains, J. Math. Anal. Appl., 337 (2008), 949-961.

Received May 2, 2011
Accepted November 22, 2011
"Babeş-Bolyai" University
Faculty of Mathematics and Computer Science
Str. M. Kogălniceanu nr. 1
400084 Cluj-Napoca, Romania
E-mail: teodora.andrica@ubbcluj.ro

[^0]: This work was possible with the financial support of the Sectoral Operational Programme for Human Resources Development 2007-2013, co-financed by the European Social Fund, under the project number POSDRU/107/1.5/S/76841 with the title "Modern Doctoral Studies: Internationalization and Interdisciplinarity".

