AN EXTENSION OPERATOR AND LOEWNER CHAINS ON THE EUCLIDEAN UNIT BALL IN \mathbb{C}^n

TEODORA CHIRILĂ

Abstract. We are concerned with an extension operator $\Phi_{n,\alpha}$, $\alpha \geq 0$, that provides a way of extending a locally biholomorphic mapping $f \in H(B^n)$ to a locally biholomorphic mapping $F \in H(B^{n+1})$. In the case $\alpha = 1/(n+1)$, this operator reduces to the Pfaltzgraff-Suffridge extension operator. By using the method of Loewner chains, we prove that if $f \in S^0(B^n)$, then $\Phi_{n,\alpha}(f) \in$ $S^0(B^{n+1})$, whenever $\alpha \in [0, 1/(n+1)]$. In particular, if $f \in S^*(B^n)$, then $\Phi_{n,\alpha}(f) \in S^*(B^{n+1})$, and if f is spirallike of type $\beta \in (-\pi/2, \pi/2)$ on B^n , then $\Phi_{n,\alpha}(f)$ is also spirallike of type β on B^{n+1} . We also prove that if f is almost starlike of order $\beta \in [0, 1)$ on B^n , then $\Phi_{n,\alpha}(f)$ is almost starlike of order β on B^{n+1} . Finally we prove that if $f \in K(B^n)$ and $1/(n+1) \leq \alpha \leq 1/n$, then the image of $F = \Phi_{n,\alpha}(f)$ contains the convex hull of the image of some egg domain contained in B^{n+1} . An extension of this result to the case of ε -starlike mappings will be also considered.

MSC 2000. 32H02, 30C45.

Key words. Biholomorphic mapping, convex mapping, Loewner chain, parametric representation, Pfaltzgraff-Suffridge extension operator, Roper-Suffridge extension operator, starlike mapping, ε -starlike mapping.

1. INTRODUCTION AND PRELIMINARIES

Let \mathbb{C}^n denote the space of n complex variables $z = (z_1, \ldots, z_n)$ with the Euclidean inner product $\langle z, w \rangle = \sum_{j=1}^n z_j \overline{w}_j$ and the Euclidean norm $||z|| = \langle z, z \rangle^{1/2}$. For $n \geq 2$, let $\tilde{z} = (z_2, \ldots, z_n) \in \mathbb{C}^{n-1}$ so that $z = (z_1, \tilde{z}) \in \mathbb{C}^n$. The open ball $\{z \in \mathbb{C}^n : ||z|| < r\}$ is denoted by B_r^n and the unit ball B_1^n is denoted by B^n . In the case of one complex variable, B^1 is denoted by U.

Let $L(\mathbb{C}^n, \mathbb{C}^m)$ denote the space of linear continuous operators from \mathbb{C}^n into \mathbb{C}^m with the standard operator norm, and let I_n be the identity of $L(\mathbb{C}^n, \mathbb{C}^n)$. If Ω is a domain in \mathbb{C}^n , we denote by $H(\Omega)$ the set of holomorphic mappings from Ω into \mathbb{C}^n . If $0 \in \Omega$, such a mapping f is said to be normalized if f(0) = 0 and $Df(0) = I_n$. A holomorphic mapping $f : B^n \to \mathbb{C}^n$ is said to be biholomorphic if the inverse f^{-1} exists and is holomorphic on the open set $f(B^n)$. We say that $f \in H(B^n)$ is locally biholomorphic on B^n if the complex Jacobian matrix Df(z) is nonsingular at each $z \in B^n$. Let $J_f(z) = \det Df(z)$.

This work was possible with the financial support of the Sectoral Operational Programme for Human Resources Development 2007-2013, co-financed by the European Social Fund, under the project number POSDRU/107/1.5/S/76841 with the title "Modern Doctoral Studies: Internationalization and Interdisciplinarity".

Let $\mathcal{L}S_n$ be the set of normalized locally biholomorphic mappings on B^n and let $S(B^n)$ be the set of normalized biholomorphic mappings on B^n .

A map $f \in S(B^n)$ is said to be convex if its image is a convex domain in \mathbb{C}^n , and starlike if the image is a starlike domain with respect to 0. We denote the classes of normalized convex and starlike mappings on B^n respectively by $K(B^n)$ and $S^*(B^n)$. In one variable we write $\mathcal{L}S_1 = \mathcal{L}S$, $S(B^1) = S$, $K(B^1) = K$ and $S^*(B^1) = S^*$.

Starlikeness has an analytic characterization due to Matsuno and Suffridge (see [21]): a locally biholomorphic map $f: B^n \to \mathbb{C}^n$ such that f(0) = 0 is starlike if and only if Re $\langle [Df(z)]^{-1}f(z), z \rangle > 0, z \in B^n \setminus \{0\}.$

We recall that a mapping $f \in \mathcal{LS}_n$ is spirallike of type $\beta \in (-\pi/2, \pi/2)$ if Re $[e^{-i\beta}\langle [Df(z)]^{-1}f(z), z\rangle] > 0$, $z \in B^n \setminus \{0\}$. We denote by $\hat{S}_{\beta}(B^n)$ the class of normalized spirallike mappings of type β on B^n . In the case of one variable this class is denoted by \hat{S}_{β} . If $\beta = 0$, we obtain that f is spirallike of type 0 if and only if f is starlike. A mapping $f \in \mathcal{LS}_n$ is almost starlike of order $\beta \in [0,1)$ if Re $\langle [Df(z)]^{-1}f(z), z\rangle > \beta ||z||^2$, $z \in B^n \setminus \{0\}$. If $\beta = 0$, we obtain that f is almost starlike of order 0 if and only if f is starlike. We remark that the notion of almost starlikeness of order β was introduced by Xu and Liu in 2007 (see [22]).

We next present the notion of ε -starlikeness due to Gong and Liu (see [3]). This notion interpolates between starlikeness and convexity as ε ranges from 0 to 1.

DEFINITION 1.1. Let $0 \in \Omega \subseteq \mathbb{C}^n$ be a domain and $f : \Omega \to \mathbb{C}^n$ be a biholomorphic mapping such that f(0) = 0. We say that f is ε -starlike, $0 \leq \varepsilon \leq 1$, if $f(\Omega)$ is starlike with respect to each point in $\varepsilon f(\Omega)$, i.e.

$$(1-\lambda)f(z) + \lambda \varepsilon f(w) \in f(\Omega), \ \lambda \in [0,1], \ z, w \in \Omega.$$

When $\varepsilon = 0$ we obtain the family of starlike mappings on Ω , and when $\varepsilon = 1$ we obtain the family of convex mappings on Ω . The analytical characterization of ε -starlikeness was given in [4].

We next refer to the notions of subordination and Loewner chains. Let $f, g \in H(B^n)$. We say that f is subordinate to g (and write $f \prec g$) if there is a Schwarz mapping v (i.e. $v \in H(B^n)$ and $||v(z)|| \leq ||z||, z \in B^n$) such that $f(z) = g(v(z)), z \in B^n$. If g is biholomorphic on B^n , this is equivalent to requiring that f(0) = g(0) and $f(B^n) \subseteq g(B^n)$.

DEFINITION 1.2. A mapping $f : B^n \times [0, \infty) \to \mathbb{C}^n$ is called a Loewner chain if $f(\cdot, t)$ is biholomorphic on B^n , f(0,t) = 0, $Df(0,t) = e^t I_n$ for $t \ge 0$, and $f(z,s) \prec f(z,t)$ whenever $0 \le s \le t < \infty$ and $z \in B^n$. The requirement $f(z,s) \prec f(z,t)$ is equivalent to the condition that there is a unique biholomorphic Schwarz mapping v = v(z,s,t) called the transition mapping associated to f(z,t) such that $f(z,s) = f(v(z,s,t),t), z \in B^n, t \ge s \ge 0$.

We also note that the normalization of f(z,t) implies the normalization $Dv(0,s,t) = e^{s-t}I_n$ for $0 \le s \le t < \infty$.

119

Various results concerning Loewner chains can be found in [1], [9] and [16].

REMARK 1.1. Certain subclasses of $S(B^n)$ can be characterized in terms of Loewner chains. In particular, f is starlike if and only if $f(z,t) = e^t f(z)$ is a Loewner chain. Also, f is spirallike of type β if and only if $f(z,t) = e^{(1-ia)t}f(e^{iat}z)$ is a Loewner chain, where $a = \tan \beta$ and f is almost starlike of order β if and only if $f(z,t) = e^{\frac{t}{1-\beta}}f(e^{\frac{\beta t}{\beta-1}}z)$ is a Loewner chain.

The notion of parametric representation is related to that of a Loewner chain (see [6] and [12]; cf. [18]).

DEFINITION 1.3. A normalized mapping $f \in H(B^n)$ has parametric representation if there exists a Loewner chain f(z,t) such that $\{e^{-t}f(\cdot,t)\}_{t\geq 0}$ is a normal family on B^n and $f(z) = f(z,0), z \in B^n$.

Let $S^0(B^n)$ be the set of mappings which have parametric representation.

A key role in our discussion is played by the following Schwarz-type lemma for the Jacobian determinant of a holomorphic mapping from B^n into $B^n[20]$:

LEMMA 1.1. Let $\psi \in H(B^n)$ be such that $\psi(B^n) \subseteq B^n$. Then

(1)
$$|J_{\psi}(z)| \leq \left[\frac{1 - \|\psi(z)\|^2}{1 - \|z\|^2}\right]^{\frac{n+1}{2}}, \ z \in B^n.$$

This inequality is sharp and equality at a given point $z \in B^n$ holds if and only if $\psi \in Aut(B^n)$, where $Aut(B^n)$ denotes the set of holomorphic automorphisms of B^n .

For $n \ge 1$, set $z' = (z_1, \ldots, z_n) \in \mathbb{C}^n$ and $z = (z', z_{n+1}) \in \mathbb{C}^{n+1}$.

DEFINITION 1.4. Let $\alpha \geq 0$. The extension operator $\Phi_{n,\alpha} : \mathcal{L}S_n \to \mathcal{L}S_{n+1}$ is defined by $\Phi_{n,\alpha}(f)(z) = F(z) = \left(f(z'), z_{n+1}[J_f(z')]^{\alpha}\right), \ z = (z', z_{n+1}) \in B^{n+1}.$

We choose the branch of the power function such that $[J_f(z')]^{\alpha}|_{z'=0} = 1$. Then $F = \Phi_{n,\alpha}(f) \in \mathcal{L}S_{n+1}$ whenever $f \in \mathcal{L}S_n$. Also, if $f \in S(B^n)$ then $F \in S(B^{n+1})$. Indeed, if F(z) = F(w), then f(z') = f(w'), which implies that z' = w'. Now from $z_{n+1}[J_f(z')]^{\alpha} = w_{n+1}[J_f(w')]^{\alpha}$ we obtain that $z_{n+1} = w_{n+1}$, therefore z = w.

If $\alpha = 1/(n+1)$, the operator $\Phi_{n,1/(n+1)}$ is denoted by Φ_n . This operator was introduced by Pfaltzgraff and Suffridge [17]. Thus the extension operator $\Phi_n : \mathcal{L}S_n \to \mathcal{L}S_{n+1}$ is given by $\Phi_n(f)(z) = F(z) = \left(f(z'), z_{n+1}[J_f(z')]^{\frac{1}{n+1}}\right)$, $z = (z', z_{n+1}) \in B^{n+1}$. This operator was also investigated by Graham, Kohr and Pfaltzgraff [13]. They proved that if $f \in S^0(B^n)$, then $\Phi_n(f) \in S^0(B^{n+1})$. In particular, if $f \in S^*(B^n)$, then $\Phi_n(f) \in S^*(B^{n+1})$. If n = 1 and $\alpha = 1/2$, then $\Phi_{1,1/2}$ reduces to the well-known Roper-Suffridge extension operator. For $n \geq 2$, the Roper-Suffridge extension operator $\Psi_n : \mathcal{L}S \to \mathcal{L}S_n$ is defined by T. Chirilă

(see [19]) $\Psi_n(f)(z) = (f(z_1), \tilde{z}\sqrt{f'(z_1)}), \ z = (z_1, \tilde{z}) \in B^n$. We choose the branch of the power function such that $\sqrt{f'(z_1)}|_{z_1=0} = 1$.

Roper and Suffridge proved that if f is convex on U then $\Psi_n(f)$ is also convex on B^n . Graham and Kohr proved that if f is starlike on U then so is $\Psi_n(f)$ on B^n . Graham, Kohr and Kohr [11] proved that if f has parametric representation on the unit disc, then $\Psi_n(f)$ has the same property on B^n .

Note that the operator $\Phi_{1,\alpha}$, $\alpha \in [0, \frac{1}{2}]$, was considered by Graham, Kohr and Kohr in [11]. On the other hand, Gong and Liu [3] proved that if f is an ε -starlike function on U, $\varepsilon \in [0, 1]$, and if $p \ge 1$, then $F_{1/p}$ is an ε -starlike mapping on the domain $\Omega_{n,p} = \left\{ z \in \mathbb{C}^n : |z_1|^2 + \sum_{j=2}^n |z_j|^p < 1 \right\}$, where $F_{1/p} = \Phi_{n,1/p}(f)$ and $\Phi_{n,1/p}(f)(z) = \left(f(z_1), (f'(z_1))^{\frac{1}{p}} \tilde{z} \right), \ z = (z_1, \tilde{z}) \in \Omega_{n,p}.$

Other extension operators that preserve various geometric properties have been recently considered in [2], [5], [7], [8], [10], [14], [15], [22], [23].

In this paper we prove that if $f \in S(B^n)$ can be imbedded as the first element of a Loewner chain f(z',t), then $F = \Phi_{n,\alpha}(f)$ can also be imbedded as the first element of a Loewner chain F(z,t), for $\alpha \in \left[0, \frac{1}{n+1}\right]$. In particular, we obtain various consequences related to the preservation of the notions of parametric representation, starlikeness, spirallikeness of type β , and almost starlikeness of order β under $\Phi_{n,\alpha}$. Finally, we consider the preservation of ε -starlikeness under the operator $\Phi_{n,\alpha}$. In the case $\varepsilon = 1$, we obtain a partial answer to the question of whether $\Phi_{n,\alpha}$ preserves convexity.

2. LOEWNER CHAINS AND THE OPERATOR $\Phi_{N,lpha}$

We begin this section with the following main result. In the case $\alpha = \frac{1}{n+1}$, see [13].

THEOREM 2.1. Assume $f \in S(B^n)$ can be imbedded as the first element of a Loewner chain f(z',t). Then $F = \Phi_{n,\alpha}(f)$ can also be imbedded as the first element of a Loewner chain F(z,t), for $\alpha \in \left[0, \frac{1}{n+1}\right]$.

Proof. Since $f \in S(B^n)$, we have $F \in S(B^{n+1})$. Let v = v(z', s, t) be the transition mapping associated to f(z', t). Then

(2)
$$f(z',s) = f(v(z',s,t),t), \ z' \in B^n, \ 0 \le s \le t < \infty.$$

Let $f_t(z') = f(z', t)$ for $z' \in B^n$ and $t \ge 0$ and let $v_{s,t}(z') = v(z', s, t), z' \in B^n$, $t \ge s \ge 0$. Also, let $F : B^{n+1} \times [0, \infty) \to \mathbb{C}^{n+1}$ be given by

(3)
$$F(z,t) = (f(z',t), z_{n+1}e^{t(1-n\alpha)}[J_{f_t}(z')]^{\alpha}),$$

for $z = (z', z_{n+1}) \in B^{n+1}$ and $t \ge 0$. We choose the branch of the power function such that $[J_{f_t}(z')]^{\alpha}|_{z'=0} = e^{nt\alpha}$. Let us prove that F(z, t) is a Loewner chain. Indeed, since $f(\cdot, t)$ is biholomorphic on B^n , f(0, t) = 0 and Df(0, t) =

 $e^t I_n$, it is not difficult to see that $F(\cdot, t)$ is biholomorphic on B^{n+1} , F(0, t) = 0and $DF(0,t) = e^t I_{n+1}$. Let $V_{s,t}: B^{n+1} \to \mathbb{C}^{n+1}$ be given by $V_{s,t}(z) = V(z,s,t)$, where

(4)
$$V(z,s,t) = (v(z',s,t), z_{n+1}e^{(s-t)(1-n\alpha)}[J_{v_{s,t}}(z')]^{\alpha}),$$

for $z = (z', z_{n+1}) \in B^{n+1}$ and $t \ge s \ge 0$. We choose the branch of the power function such that $[J_{v_{s,t}}(z')]^{\alpha}|_{z'=0} = e^{n\alpha(s-t)}$. Then $V_{s,t}$ is biholomorphic on B^{n+1} , $V_{s,t}(0) = 0$, $DV_{s,t}(0) = e^{s-t}I_{n+1}$ and $||V_{s,t}(z)|| < 1$, $z \in C^{n+1}$. B^{n+1} . Indeed, by Lemma 1.1 and the fact that $\alpha \in [0, 1/(n+1)]$, we obtain that $\|V_{s,t}(z)\|^2 = \|v_{s,t}(z')\|^2 + |z_{n+1}|^2 e^{2(s-t)(1-n\alpha)} |J_{v_{s,t}}(z')|^{2\alpha} \le \|v_{s,t}(z')\|^2 + |z_{n+1}|^2 \left[\frac{1-\|v_{s,t}(z')\|^2}{1-\|z'\|^2}\right]^{(n+1)\alpha} \le \|v_{s,t}(z')\|^2 + \frac{|z_{n+1}|^2}{1-\|z'\|^2} (1-\|v_{s,t}(z')\|^2) < \|v_{s,t}(z')\|^2 + 1 - \|v_{s,t}(z')\|^2 = 1, \ z = (z', z_{n+1}) \in B^{n+1}.$ Hence $\|V_{s,t}(z)\| < 1$ for $z \in B^{n+1}$, as claimed.

Further, taking into account (2), we can easily deduce that F(z,s) =F(V(z,s,t),t) for $z \in B^{n+1}, t \ge s \ge 0$. Indeed,

$$F(V_{s,t}(z),t) = (f(v_{s,t}(z'),t), z_{n+1}e^{(s-t)(1-n\alpha)}e^{t(1-n\alpha)}[J_{f_t}(v_{s,t}(z'))]^{\alpha}[J_{v_{s,t}}(z')]^{\alpha})$$

= $(f(z',s), z_{n+1}e^{s(1-n\alpha)}[J_{f_s}(z')]^{\alpha}) = F(z,s),$

for all $z \in B^{n+1}$ and $t \ge s \ge 0$. We have used (2) and the fact that $J_{f_s}(z') = J_{f_t}(v_{s,t}(z'))J_{v_{s,t}}(z'), \ z' \in B^n, \ t \ge s \ge 0$. This completes the proof. \Box

Taking into account Theorem 2.1, we next prove that the operator $\Phi_{n,\alpha}$ preserves the notions of parametric representation, starlikeness, spirallikeness of type β , and almost starlikeness of order β . Note that Corollaries 2.1 and 2.2 have been obtained in [13] in the case $\alpha = \frac{1}{n+1}$.

COROLLARY 2.1. Assume $f \in S^0(B^n)$. Then $F = \Phi_{n,\alpha}(f) \in S^0(B^{n+1})$, for $\alpha \in \left[0, \frac{1}{n+1}\right].$

Proof. Since $f \in S^0(B^n)$, there exists a Loewner chain f(z',t) such that $f(z',0) = f(z'), z' \in B^n$ and $\{e^{-t}f(\cdot,t)\}_{t>0}$ is a normal family. Then

(5)
$$\frac{r}{(1+r)^2} \le \|\mathbf{e}^{-t}f(z',t)\| \le \frac{r}{(1-r)^2}, \ \|z'\| = r < 1, \ t \ge 0.$$

Applying the Cauchy integral formula for vector valued holomorphic functions, it is easy to see that for each $r \in (0,1)$ there is $K = K(r) \ge 0$ such that $e^{-t} \|Df(z',t)\| \leq K(r), \|z'\| \leq r, t \geq 0$. Moreover, since $|J_{f_t}(z')| \leq C$ $||Df_t(z')||^n$, $z' \in B^n$, we deduce that there is some $K^* = K^*(r) \ge 0$ such that

(6)
$$|J_{f_t}(z')|^{\alpha} \le e^{nt\alpha} K^*(r), \ ||z'|| \le r, \ t \ge 0.$$

Let $F: B^{n+1} \times [0,\infty) \to \mathbb{C}^{n+1}$ be the Loewner chain given by (3). Taking into account (5) and (6) we now easily deduce that for each $r \in (0, 1)$ there is some $L = L(r) \ge 0$ such that $e^{-t} ||F(z,t)|| \le L(r), ||z|| \le r, t \ge 0$. Consequently, $\{e^{-t}F(\cdot,t)\}_{t\geq 0}$ is a locally uniformly bounded family on B^{n+1} , and thus is normal. Hence $F = F(\cdot,0) \in S^0(B^{n+1})$. This completes the proof. \Box

COROLLARY 2.2. Assume $f \in S^*(B^n)$. Then $F = \Phi_{n,\alpha}(f) \in S^*(B^{n+1})$, for $\alpha \in \left[0, \frac{1}{n+1}\right]$.

Proof. The fact that f is starlike on B^n is equivalent to the statement that $f(z',t) = e^t f(z')$ is a Loewner chain. With this choice of f(z',t), we deduce that F(z,t) given by (3) is a Loewner chain. On the other hand, we have $F(z,t) = (e^t f(z'), z_{n+1}e^{t(1-n\alpha)}e^{nt\alpha}[J_f(z')]^{\alpha}) = e^t(f(z'), z_{n+1}[J_f(z')]^{\alpha}) =$ $e^t F(z), z \in B^{n+1}, t \ge 0$. Thus $F = F(\cdot, 0) \in S^*(B^{n+1})$, as claimed. \Box

COROLLARY 2.3. Assume $f \in \hat{S}_{\beta}(B^n)$, where $\beta \in (-\pi/2, \pi/2)$. Then $F = \Phi_{n,\alpha}(f) \in \hat{S}_{\beta}(B^{n+1})$, for $\alpha \in \left[0, \frac{1}{n+1}\right]$.

Proof. The fact that f is spirallike of type β on B^n is equivalent to the statement that $f(z',t) = e^{(1-ia)t} f(e^{iat}z')$ is a Loewner chain, where $a = \tan \beta$. With this choice of f(z',t), we deduce that F(z,t) given by (3) is a Loewner chain. On the other hand, we have

$$F(z,t) = (e^{(1-ia)t} f(e^{iat}z'), z_{n+1}e^{t(1-n\alpha)}e^{nt\alpha} [J_f(e^{iat}z')]^{\alpha})$$

= $(e^{(1-ia)t} f(e^{iat}z'), z_{n+1}e^t [J_f(e^{iat}z')]^{\alpha})$
= $e^{(1-ia)t} (f(e^{iat}z'), z_{n+1}e^{iat} [J_f(e^{iat}z')]^{\alpha}) = e^{(1-ia)t} F(e^{iat}z),$

for $z \in B^{n+1}$ and $t \ge 0$. Thus $F = F(\cdot, 0) \in \hat{S}_{\beta}(B^{n+1})$, as claimed. This completes the proof.

The following result yields that the operator $\Phi_{n,\alpha}$ preserves the notion of almost starlikeness of order $\beta \in [0, 1)$. In the case n = 1, see [22].

COROLLARY 2.4. Assume f is an almost starlike mapping of order β on B^n , where $\beta \in [0, 1)$. Then $F = \Phi_{n,\alpha}(f)$ is almost starlike mapping of order β on B^{n+1} , where $\alpha \in \left[0, \frac{1}{n+1}\right]$.

Proof. The fact that f is almost starlike mapping of order β on B^n is equivalent to the statement that $f(z',t) = e^{\frac{t}{1-\beta}} f(e^{\frac{\beta t}{\beta-1}}z')$ is a Loewner chain. With this choice of f(z',t), we deduce that F(z,t) given by (3) is a Loewner chain. On the other hand, we have

$$F(z,t) = \left(e^{\frac{t}{1-\beta}}f(e^{-\frac{\beta t}{1-\beta}}z'), z_{n+1}e^{t(1-n\alpha)}e^{tn\alpha}[J_f(e^{-\frac{\beta t}{1-\beta}}z')]^{\alpha}\right)$$

= $\left(e^{\frac{t}{1-\beta}}f(e^{-\frac{\beta t}{1-\beta}}z'), z_{n+1}e^{t}[J_f(e^{-\frac{\beta t}{1-\beta}}z')]^{\alpha}\right)$
= $e^{\frac{t}{1-\beta}}(f(e^{-\frac{\beta t}{1-\beta}}z'), z_{n+1}e^{-\frac{\beta t}{1-\beta}}[J_f(e^{-\frac{\beta t}{1-\beta}}z')]^{\alpha}) = e^{\frac{t}{1-\beta}}F(e^{-\frac{\beta t}{1-\beta}}z)$

for $z \in B^{n+1}$ and $t \ge 0$. Thus $F = F(\cdot, 0)$ is almost starlike mapping of order β on B^{n+1} . This completes the proof.

3. ε -STARLIKENESS AND THE OPERATOR $\Phi_{N,\alpha}$

We next discuss the case of ε -starlike mappings associated with the operator $\Phi_{n,\alpha}$, for $\alpha \in \left[\frac{1}{n+1}, \frac{1}{n}\right]$. For $a \in (0,1]$, let $\Omega_{a,n,\alpha} = \{z = (z', z_{n+1}) \in \mathbb{C}^{n+1} : |z_{n+1}|^2 < a^{2n\alpha}(1 - ||z'||^2)^{(n+1)\alpha}\}$. Then $\Omega_{a,n,\alpha} \subseteq B^{n+1}$. Indeed, from $a \in (0,1]$ and $\alpha \in \left[\frac{1}{n+1}, \frac{1}{n}\right]$, we obtain that $|z_{n+1}|^2 < 1 - ||z'||^2$, i.e. $\Omega_{a,n,\alpha} \subseteq B^{n+1}$. For a = 1 and $\alpha = \frac{1}{n+1}$, we obtain $\Omega_{1,n,\frac{1}{n+1}} = B^{n+1}$. We are now able to prove the main result of this section, which when $\varepsilon = 1$ gives a partial answer to the question of whether $\Phi_{n,\alpha}$ preserves convexity.

THEOREM 3.1. Let $\varepsilon \in [0,1]$ and $f: B^n \to \mathbb{C}^n$ be a normalized ε -starlike mapping. Also let $F = \Phi_{n,\alpha}(f)$, for $\alpha \in \left[\frac{1}{n+1}, \frac{1}{n}\right]$, and let $a_1, a_2 > 0$ be such that $a_1 + a_2 \leq 1$. Then $(1 - \lambda)F(z) + \lambda \varepsilon F(w) \in F(\Omega_{a_1 + a_2, n, \alpha})$, $z \in \Omega_{a_1, n, \alpha}$, $w \in \Omega_{a_2, n, \alpha}$, $\lambda \in [0, 1]$.

Proof. Since f is biholomorphic on B^n , it follows that $F = \Phi_{n,\alpha}(f)$ is also biholomorphic on B^{n+1} . Fix $\lambda \in [0,1]$ and let $z \in \Omega_{a_1,n,\alpha}$, $w \in \Omega_{a_2,n,\alpha}$. We want to find a point $u = (u', u_{n+1}) \in \Omega_{a_1+a_2,n,\alpha}$ such that $(1-\lambda)F(z) + \lambda \varepsilon F(w) = F(u)$, i.e. $f(u') = (1-\lambda)f(z') + \lambda \varepsilon f(w')$ and $u_{n+1}[J_f(u')]^{\alpha} = (1-\lambda)z_{n+1}[J_f(z')]^{\alpha} + \lambda \varepsilon w_{n+1}[J_f(w')]^{\alpha}$. If $\lambda = 0$, let u = z. If $\lambda = 1$, then using the fact that f is ε -starlike and the equality $\varepsilon F(w) = F(u)$, we easily deduce that $u = (u', u_{n+1}) \in \Omega_{a_2,n,\alpha} \subseteq \Omega_{a_1+a_2,n,\alpha}$. Hence, it suffices to assume that $\lambda \in (0, 1)$. Since f is ε -starlike, we obtain that $u' = f^{-1}((1-\lambda)f(z') + \lambda \varepsilon f(w'))$. Then u' = u'(z', w') can be viewed as a mapping from $B^n \times B^n$ into B^n . Let $u_{n+1} = (1-\lambda)z_{n+1}\left[\frac{J_f(z')}{J_f(w')}\right]^{\alpha} + \lambda \varepsilon w_{n+1}\left[\frac{J_f(w')}{J_f(w')}\right]^{\alpha}$. We prove that $u = (u', u_{n+1}) \in \Omega_{a_1+a_2,n,\alpha}$. It is obvious that $\frac{\partial u'}{\partial z'} = (1-\lambda)[Df(u')]^{-1}Df(z')$ and $\frac{\partial u'}{\partial w'} = \lambda \varepsilon [Df(u')]^{-1}Df(w')$. Hence $u_{n+1} = (1-\lambda)^{1-n\alpha}z_{n+1}[J_{u'_{z'}}]^{\alpha} + (\lambda \varepsilon)^{1-n\alpha}w_{n+1}[J_{u'_{w'}}]^{\alpha}$. Using Lemma 1.1 in the previous equation, we obtain

$$\begin{aligned} |u_{n+1}| &\leq (1-\lambda)^{1-n\alpha} |z_{n+1}| \left[\frac{1 - ||u'(z', w')||^2}{1 - ||z'||^2} \right]^{\frac{(n+1)\alpha}{2}} \\ &+ (\lambda \varepsilon)^{1-n\alpha} |w_{n+1}| \left[\frac{1 - ||u'(z', w')||^2}{1 - ||w'||^2} \right]^{\frac{(n+1)\alpha}{2}} \\ &= (1 - ||u'||^2)^{\frac{(n+1)\alpha}{2}} \left\{ (1-\lambda)^{1-n\alpha} \left[\frac{|z_{n+1}|^{\frac{2}{(n+1)\alpha}}}{1 - ||z'||^2} \right]^{\frac{(n+1)\alpha}{2}} \\ &+ (\lambda \varepsilon)^{1-n\alpha} \left[\frac{|w_{n+1}|^{\frac{2}{(n+1)\alpha}}}{1 - ||w'||^2} \right]^{\frac{(n+1)\alpha}{2}} \right\}. \end{aligned}$$

We have two cases:

First case. If $\varepsilon = 0$ (i.e. f is starlike), then we obtain that

$$|u_{n+1}| \le (1 - ||u'||^2)^{\frac{(n+1)\alpha}{2}} (1 - \lambda)^{1 - n\alpha} \frac{|z_{n+1}|}{(1 - ||z'||^2)^{\frac{(n+1)\alpha}{2}}} < a_1^{n\alpha} (1 - ||u'||^2)^{\frac{(n+1)\alpha}{2}}.$$

Here we have used the fact that $z = (z', z_{n+1}) \in \Omega_{a_1,n,\alpha}$. Hence $|u_{n+1}|^2 < a_1^{2n\alpha}(1 - ||u'||^2)^{(n+1)\alpha}$, i.e. $u = (u', u_{n+1}) \in \Omega_{a_1,n,\alpha}$. On the other hand, since $\Omega_{a_1,n,\alpha} \subseteq \Omega_{a_1+a_2,n,\alpha}$, we deduce that $u = (u', u_{n+1}) \in \Omega_{a_1+a_2,n,\alpha}$, as desired.

Second case. For $\varepsilon \in (0, 1]$, using Hölder's inequality we obtain

$$\begin{aligned} |u_{n+1}| &\leq (1 - \|u'\|^2)^{\frac{(n+1)\alpha}{2}} (1 - \lambda + \lambda\varepsilon)^{1 - n\alpha} \left\{ \left[\frac{|z_{n+1}|^{\frac{2}{(n+1)\alpha}}}{1 - \|z'\|^2} \right]^{\frac{n+1}{2n}} \\ &+ \left[\frac{|w_{n+1}|^{\frac{2}{(n+1)\alpha}}}{1 - \|w'\|^2} \right]^{\frac{n+1}{2n}} \right\}^{n\alpha} < (1 - \|u'\|^2)^{\frac{(n+1)\alpha}{2}} (a_1 + a_2)^{n\alpha} \end{aligned}$$

Therefore, we have proved that $|u_{n+1}|^2 < (a_1 + a_2)^{2n\alpha} (1 - ||u'||^2)^{(n+1)\alpha}$, i.e. $u = (u', u_{n+1}) \in \Omega_{a_1+a_2,n,\alpha}$. This completes the proof. \Box

Taking $\varepsilon = 1$ in Theorem 3.1, we obtain the following convexity result for the operator $\Phi_{n,\alpha}$. In the case $\alpha = \frac{1}{n+1}$, see [13].

COROLLARY 3.1. If $f \in K(B^n)$ and $F = \Phi_{n,\alpha}(f)$, then $(1 - \lambda)F(z) + \lambda F(w) \in F(\Omega_{a_1+a_2,n,\alpha})$, $z \in \Omega_{a_1,n,\alpha}$, $w \in \Omega_{a_2,n,\alpha}$, $\lambda \in [0,1]$, where $a_1, a_2 > 0$, $a_1 + a_2 \leq 1$.

Taking $\alpha = \frac{1}{n+1}$ in Theorem 3.1, we obtain the following result regarding ε -starlikeness for the Pfaltzgraff-Suffridge extension operator Φ_n :

COROLLARY 3.2. Let $\varepsilon \in [0,1]$ and $f: B^n \to \mathbb{C}^n$ be a normalized ε -starlike mapping. Also let $F = \Phi_n(f)$ and $a_1, a_2 > 0$ such that $a_1 + a_2 \leq 1$. Then $(1 - \lambda)F(z) + \lambda \varepsilon F(w) \in F(\Omega_{a_1+a_2,n,1/(n+1)})$, for all $z \in \Omega_{a_1,n,1/(n+1)}$, $w \in \Omega_{a_2,n,1/(n+1)}$ and $\lambda \in [0,1]$.

Taking $a_1 = a_2 = \frac{1}{2}$ in Corollary 3.2 and using the fact that $\Omega_{1,n,1/(n+1)} = B^{n+1}$, we obtain the following corollary. In the case $\varepsilon = 1$, see [13].

COROLLARY 3.3. If f is a normalized ε -starlike mapping on B^n , $\varepsilon \in [0, 1]$, and $F = \Phi_n(f)$, then $(1 - \lambda)F(z) + \lambda \varepsilon F(w) \in F(B^{n+1})$, $z, w \in \Omega_{1/2,n,1/(n+1)}$, $\lambda \in [0, 1]$.

REFERENCES

- CURT, P., Special Chapters of Geometric Function Theory of Several Complex Variables (in Romanian), Editura Albastră, Cluj-Napoca, 2001.
- [2] ELIN, M., Extension operators via semigroups, J. Math. Anal. Appl., 377 (2011), 239– 250.
- [3] GONG, S. and LIU, T., On the Roper-Suffridge extension operator, J. Anal. Math., 88 (2002), 397–404.

- [4] GONG, S. and LIU, T., Criterion for the family of ε starlike mappings, J. Math. Anal. Appl., 274 (2002), no. 2, 696–704.
- [5] GONG, S. and LIU, T., The generalized Roper-Suffridge extension operator, J. Math. Anal. Appl., 284 (2003), 425–434.
- [6] GRAHAM, I., HAMADA, H. and KOHR, G., Parametric representation of univalent mappings in several complex variables, Canad. J. Math., 54 (2002), 324–351.
- [7] GRAHAM, I. and KOHR, G., Univalent mappings associated with the Roper-Suffridge extension operator, J. Anal. Math., 81 (2000), 331–342.
- [8] GRAHAM, I. and KOHR, G., An Extension Theorem and Subclasses of Univalent Mappings in Several Complex Variables, Complex Var. Eliptic Equ., 47 (2002), 59–72.
- [9] GRAHAM, I. and KOHR, G., Geometric Function Theory in One and Higher Dimensions, Marcel Dekker Inc., New York, 2003.
- [10] GRAHAM, I. and KOHR, G., The Roper-Suffridge extension operator and classes of biholomorphic mappings, Sci. China Math., 49 (2006), 1539–1552.
- [11] GRAHAM, I., KOHR, G. and KOHR, M., Loewner chains and the Roper-Suffridge Extension Operator, J. Math. Anal. Appl., 247 (2000), 448–465.
- [12] GRAHAM, I., KOHR, G. and KOHR, M., Loewner chains and parametric representation in several complex variables, J. Math. Anal. Appl., 281 (2003), 425–438.
- [13] GRAHAM, I., KOHR, G. and PFALTZGRAFF, J., Parametric representation and linear functionals associated with extension operators for biholomorphic mappings, Rev. Roumaine Math. Pures Appl., 52 (2007), 47–68.
- [14] LIU, T.S. and XU, Q.H., Loewner chains associated with the generalized Roper-Suffridge extension operator, J. Math. Anal. Appl., 322 (2006), 107–120.
- [15] MUIR, J.R. JR., A class of Loewner chain preserving extension operators, J. Math. Anal. Appl., 337 (2008), 862–879.
- [16] PFALTZGRAFF, J.A., Subordination chains and univalence of holomorphic mappings in Cⁿ, Math. Ann., **210** (1974), 55–68.
- [17] PFALTZGRAFF, J.A. and SUFFRIDGE, T.J., An extension theorem and linear invariant families generated by starlike maps, Ann. Univ. Mariae Curie-Sklodowska, Sect. A, 53 (1999), 193–207.
- [18] POREDA, T., On the univalent holomorphic maps of the unit polydisc of Cⁿ which have the parametric representation, *I*-the geometrical properties, Ann. Univ. Mariae Curie-Sklodowska Sect A **41** (1987), 105–113.
- [19] ROPER, K. and SUFFRIDGE, T.J., Convex mappings on the unit ball of Cⁿ, J. Anal. Math., 65 (1995), 333–347.
- [20] RUDIN, W., Function Theory in the Unit Ball of \mathbb{C}^n , Springer-Verlag, New York, 1980.
- [21] SUFFRIDGE, T.J., Starlikeness, convexity and other geometric properties of holomorphic maps in higher dimensions, Lecture Notes in Math., 599, 146–159.
- [22] XU, Q.H. and LIU, T.S., Löwner chains and a subclass of biholomorphic mappings, J. Math. Appl., 334 (2007), 1096-1105.
- [23] ZHU, Y. and LIU, M.S., Loewner chains associated with the generalized Roper-Suffridge extension operator on some domains, J. Math. Anal. Appl., 337 (2008), 949–961.

Received May 2, 2011 Accepted November 22, 2011 "Babeş-Bolyai" University Faculty of Mathematics and Computer Science Str. M. Kogălniceanu nr. 1 400084 Cluj-Napoca, Romania

E-mail: teodora.andrica@ubbcluj.ro

9