
MATHEMATICA, Tome 54 (77), No 2, 2012, pp. 103–116

AN INTERMEDIATE NEWTON ITERATIVE SCHEME AND
GENERALIZED ZABREJKO-NGUEN AND KANTOROVICH
EXISTENCE THEOREMS FOR NONLINEAR EQUATIONS

IOANNIS K. ARGYROS and LIVINUS U. UKO

Abstract. We revisit a one-step intermediate Newton iterative scheme that
was used by Uko and Velásquez in [17] for the constructive solution of nonlinear
equations of the type f(u) + g(u) = 0 . By utilizing weaker hypotheses of the
Zabrejko-Nguen kind and a modified majorizing sequence we perform a semilocal
convergence analysis which yields finer error bounds and more precise informa-
tion on the location of the solution that the ones obtained in [17]. We also give
two generalizations of the well-known Kantorovich theorem on the solvability
of nonlinear equations and the convergence of Newton’s method. Illustrative
examples are provided in the paper.
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1. INTRODUCTION

Let X and Y be Banach spaces, let u0 ∈ X, let D be a non-empty closed
ball B [u0, T ] in X and let F : D 7−→ Y be a continuous function – assumed
Fréchet differentiable on the open ball D0 = B(u0, T ) – fixed all through this
paper. We are interested in the solvability of the equation

(1) F (u) = 0.

In the sequel, we will assume that the function F has a splitting F = f + g,
where f, g : D 7−→ Y are continuous functions that are Fréchet differentiable
on D0 and that therefore we can reformulate equation (1) in the form

(2) f(u) + g(u) = 0.

In [17] it was shown that if f and g satisfy Zabrejko-Nguen type conditions
then the iterates obtained from the equation

(3) um+1 = um −
[
f ′(um) + g′(u0)

]−1
[f(um) + g(um)] , m = 0, 1, . . .

converge to a solution of problem (2).
When g = 0, the scheme (3) becomes the classical Newton scheme for the

equation f(u) = 0, and when f = 0, it becomes the modified Newton scheme
for the equation g(u) = 0. Therefore this scheme provides an interesting uni-
fied setting for the study of both Newton’s method and the modified Newton’s
method.
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The iterative scheme (3) can also be viewed as an intermediate scheme
between the method of Newton, defined by the iterations

(4) um+1 = um − F ′(um)−1F (um), m = 0, 1, . . .

and the modified Newton scheme, defined by the iterations

um+1 = um − F ′(u0)−1F (um), m = 0, 1, . . . .

It is well-known that although Newton’s method usually requires fewer itera-
tions than the modified Newton method to achieve a specified level of accuracy,
the later is less expensive to implement than Newton’s method. This led sev-
eral authors (cf. [1, 6, 17]) to propose intermediate Newton methods which
converge faster than the modified method and are cheaper to implement than
Newton’s method. The iterative scheme(3) is an interesting intermediate New-
ton scheme of this kind and is particularly useful in situations in which the
Jacobian derivative of f is relatively easy to compute.

Convergence results on some intermediate Newton schemes have been given
by Argyros [6, 7, 8], Uko & Velázquez [17] and Appel, De Pacale, Evkuta &
Zabrejko [1].

The fundamental result on the solvability of problem (2) and the conver-
gence of the Newton iterates in (4) was obtained by Kantorovich [12] and some
improvements of this result were later obtained by several authors, including
Ortega & Rheinboldt [14], Ostrowski [15] and Zabrejko & Nguen[19]. A fun-
damental improvement of the Kantorovich Theorem was obtained recently by
Argyros [7] who used a combination of Lipschitz and center-Lipschitz condi-
tions in place of the Lipschitz conditions used by Kantorovich.

In the sequel we will use the majorant method to obtain some results on
the solvability of problem (2) and the convergence of the intermediate New-
ton scheme (3) under Zabrejko-Nguen type conditions and Kantorovich-type
conditions. In Section 2 we will define the majorizing sequences that will be
used and study their properties. Section 3 contains results on the solvability of
problem (2) and the convergence of the intermediate scheme (3). Of particular
interest are Theorem 1 which generalizes the Nguen-Zabrejko theorem in [19]
and Theorems 2 and 3 which generalize the basic Kantorovich theorem in [12].
The later Theorems also generalize the improved Kantorovich-type result that
was proved by Argyros in [7]. Two illustrative results are given in Section 3
of problems whose solvability can be deduced from Theorems 2 and 3 but not
from the results in [12] or [7].

The Kantorovich Theorem is a fundamental tool in nonlinear analysis for
proving the existence and uniqueness of solutions of nonlinear equations aris-
ing in various fields (cf. [2, 3, 4, 5, 12]). The generalized Kantorovich Theorems
that we present in Section 3 are extensions of the Kantorovich and Argyros
results and should ultimately lead to an enlargement of the class of nonlinear
problems that can be solved with the Kantorovich technique and/or a weak-
ening of the solvability conditions for some of the previously solved problems.
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2. MAJORANT SEQUENCES

In this section we define the majorant sequences that we will use and give
their main properties.

Proposition 1. Let a ≥ 0, let α(t), α0(t) and β0(t) be non-negative non-
decreasing functions defined on an interval [0, T ]. For any 0 ≤ t ≤ T , let

κ(t) =

∫ t

0
α(s) ds, κ0(t) =

∫ t

0
α0(s) ds, σ(t) =a+

∫ t

0
κ(s) ds− t,

σ0(t) = a+

∫ t

0
κ0(s) ds− t, π0(t) =

∫ t

0
β0(s) ds, τ0(t) =

∫ t

0
π0(s) ds.

Let µ(t) ≡ σ(t) + τ0(t), t0 = 0, t1 = a and for m = 1, 2, . . . , let

(5) tm+1 = tm −
µ(tm)− µ(tm−1)− (tm − tm−1)σ′(tm−1))

σ′0(tm)
.

Suppose that κ0(T ) < 1 and tm ≤ T for all m. Then the sequence {tm} is well
defined and convergent and, for m = 1, 2, . . . , we have

(6) tm−1 ≤ tm ≤ t∗ ≡ lim
n→∞

tm ≤ T.

Proof. Since σ′0(tm) = κ0(tm) − 1 ≤ κ0(T ) − 1 < 0 for all m and σ(t) is
convex, we see that if tm−1 ≤ tm, then µ(tm)−µ(tm−1)−(tm−tm−1)σ′(tm−1) =
τ0(tm)− τ0(tm−1) + σ(tm)− σ(tm−1)− (tm − tm−1)σ′(tm−1) ≥ 0. Therefore, it
follows from an easy induction argument that the sequence {tm} is well defined,
monotone increasing and bounded above by T and as such it converges to its
unique least upper bound t∗. �

Remark 1. According to Proposition 1 in [17] the condition κ0(T ) < 1 can
be replaced by the requirement that the function µ(t) = σ(t) + τ0(t) have a
unique zero t∗ in [0, T ].

In the next series of results we will consider specific choices of α(t), α0(t)
and β(t) for which the hypotheses of Proposition 1 hold.

Proposition 2. Let a ≥ 0, L0 ≥ 0, 0 ≤ M0 ≤ M , 0 ≤ θ < 2, and
T = 2a/(2− θ). Suppose that

Mθ

2
+ (2L0 + θM0)

(
θ

2

)
≤M,(7)

(M + 2L0 +M0θ)a ≤ θ.(8)

Then the sequence t0 = 0, t1 = a,

(9) tm+1 = tm +
M(tm − tm−1)2 + L0(t

2
m − t2m−1)

2(1−M0tm)
, m = 1, 2, . . .

is well defined and converges to a real number t∗ that satisfies condition (6)
and the inequality

(10) (M0 + L0)t∗ ≤ 1.
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Proof. If we set α(t) ≡Mt, α0(t) ≡M0t and β0(t) ≡ L0t then the sequence
in (5) reduces to the form (9). Therefore it suffices to verify the hypotheses of
Proposition 1.

If a = 0 or θ = 0 or M2 + L2
0 = 0 then tm = t1 for all m ≥ 1 and the

conclusions of the Proposition hold trivially. So we assume that a > 0 and
M2 + L2

0 > 0 and θ > 0. We show by induction that the inequalities

tm−1 ≤ tm ≤ T,(11)

M(tm − tm−1) + 2L0tm +M0θtm ≤ θ,(12)

M0tm < 1(13)

hold for all m ≥ 1. It follows from (8) that they hold when m = 1. Suppose, by
induction, that k ≥ 1 and that these inequalities hold for all m ≤ k. Then it
follows from (12), (9) and (13) that the inequalities M(tm − tm−1) + L0(tm +
tm−1) + M0θtm ≤ M(tm − tm−1) + 2L0tm + M0θtm ≤ θ, and tm+1 − tm =

(tm− tm−1)M(tm−tm−1)+L0(tm+tm−1)
2(1−M0tm) ≤ θ

2(tm− tm−1) hold for all m ≤ k. Hence

0 ≤ tk+1 − tk ≤
θ

2
(tk − tk−1) ≤ · · · ≤

(
θ

2

)k
a,(14)

tk+1 = t1 + (t2 − t1) + · · ·+ (tk+1 − tk)

≤

[
1 + · · ·+

(
θ

2

)k]
a =

a
[
1−

(
θ
2

)k−1]
1− θ

2

<
a

1− θ
2

= T.
(15)

Therefore (11) holds when we replace m with k + 1. It follows from (15), (8)
and (7) that

M(tk+1 − tk) + 2L0tk+1 +M0θtk+1

≤Ma

(
θ

2

)k
+

(2L0 +M0θ)a
[
1−

(
θ
2

)k+1
]

1− θ
2

=T

[
(2L0 + θM0) +

(
θ

2

)k
(M −M

(
θ

2

)
− (2L0 + θM0)

(
θ

2

)
)

]

≤T
[
(2L0 + θM0) +M −M

(
θ

2

)
− (2L0 + θM0)

(
θ

2

)
)

]
=T (M + 2L0 +M0θ)

(
1−

(
θ

2

))
= (M + 2L0 +M0θ)a ≤ θ.

This shows that the inequality (12) holds when m = k + 1 and implies that

(16) tk+1 ≤
Mtk + θ

M + 2L0 +M0θ
.

If M0 = 0 then (13) holds trivially when we replace m with k + 1. If
M0 > 0 then it follows from (16) and the induction hypotheses that tk+1 <
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(M/M0)+θ
M+2L0+M0θ

≤ (M/M0)+θ
M+M0θ

= 1
M0

. Therefore (13) also holds when we replace m

with k + 1. We conclude, by induction, that (11)–(13) hold for all m.
It follows from (9) and a straightforward induction argument that the se-

quence {tm} is monotone increasing and bounded above by T and as such it
converges to its unique least upper bound t∗. To conclude the proof we rewrite
(12) in the form M(tm − tm−1) + 2L0tm ≤ θ(1 −M0tm) and let m tend to
infinity. We obtain the inequality 2L0t∗ ≤ θ(1 −M0t∗) ≤ 2(1 −M0t∗) which
implies (10). �

A setback of this result is the fact that θ has to be found by trial and error
and there is no guarantee that the choice we make leads to minimal conditions
on M , M0, L0 and a that ensure the convergence of the sequence {tm}. The
next result resolves this problem by identifying the best possible value of θ
provided that M0 and M are not allowed to vanish at the same time.

Proposition 3. Let 0 ≤ L0, 0 ≤ γ, 0 ≤M0 ≤M ≤ γM0 and set

(17) θ∗(M,M0, L0) ≡

{
4M

M+2L0+
√

[2L0+M ]2+8MM0

, if M + L0 > 0

0, if M + L0 = 0.

Then

(18) 0 ≤ θ∗(M,M0, L0) < 2.

Moreover, there exists θ ∈ [0, 2) satisfying conditions (7)–(8) if and only if

(19) [2L0 +M +M0θ∗(M,M0, L0)] a ≤ θ∗(M,M0, L0).

Proof. If M + L0 = 0 then condition (18) holds trivially. If M + L0 > 0
then θ∗(M,M0, L0) ≤ 4M

2M+4L0
≤ 2. Since M and L0 cannot both vanish at

the same time, one of these inequalities is strict, which shows (18) also holds
in this case.

If M + L0 = 0 then M = L0 = M0 = 0. Therefore conditions (7)–(8) and
(19) are redundant and so the equivalence of these conditions holds trivially.
Therefore, without loss of generality we may assume that M +L0 > 0. In this
case it is easy to verify – by solving a quadratic inequality – that θ∗(M,M0, L0)
is by definition the largest value of θ for which the inequality (7) holds.

Suppose that (19) holds. Then, if we set θ = θ∗(M,M0, L0) we see that
condition (7) holds as an equality and that (8) reduces to condition (19).

Suppose now that conditions (7) and (8) hold for some θ ∈ [0, 2). Then

condition (8) implies that M0a ≤ M0θ
M+M0θ+2L0

< 1. It follows that condition

(8) can be expressed in the equivalent form 0 ≤ (M + 2L0)a/(1 −M0a) ≤ θ.
Since θ∗(M,M0, L0) is the largest value of θ for which the inequality (7) holds
we conclude that 0 ≤ (M+2L0)a/(1−M0a) ≤ θ ≤ θ∗(M,M0, L0). This shows
that (19) holds, and that completes the proof of the Proposition. �

The next result gives an alternative set of hypotheses that guarantee the
convergence of the scalar majorant sequence (9).
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Proposition 4. Suppose a ≥ 0, 0 ≤ M0 ≤ M , 0 ≤ L0 ≤ M , 0 ≤ θ < 2,
and T = 2a/(2− θ). If

Mθ

2
+ (L0 + θM0)

(
θ

2

)
≤M,(20)

(M + L0 +M0θ)a ≤ θ,(21)

then the sequence {tm} defined in (9) is well defined and converges to a real
number t∗ that satisfies conditions (6) and (10).

Proof. As in the proof of Proposition 2 we may assume without loss of
generality that a > 0 and and M2 +L2

0 > 0 and θ > 0. We show by induction
that the inequalities

tm−1 ≤ tm ≤ T,(22)

M(tm − tm−1) + L0(tm + tm−1) +M0θtm ≤ θ,(23)

M0tm < 1(24)

hold for all m ≥ 1. It follows from (21) that they hold when m = 1. Suppose,
by induction, that k ≥ 1 and that these inequalities hold for all m ≤ k. Then
it follows from (9) and (24) that the inequalities tm+1 − tm ≤ θ

2(tm − tm−1)
hold for all m ≤ k. By reasoning as in the proof of Proposition 2 we see that
(14)–(15) hold and hence that (22) holds when we replace k with k + 1.

On using (15), (8) and (7) we see that

M(tk+1 − tk) + L0(tk+1 + tk) +M0θtk+1

≤Ma

(
θ

2

)k
+
a
[
2L0 +M0θ − (L0 +M0θ)

(
θ
2

)k+1 − L0

(
θ
2

)k]
1− θ

2

=T

[
(2L0 + θM0) +

(
θ

2

)k (
M −M

(
θ

2

)
− L0 − (L0 + θM0)

(
θ

2

))]

≤T
[
(2L0 + θM0) +

(
M −M

(
θ

2

)
− L0 − (L0 + θM0)

(
θ

2

))]
=T (M + L0 +M0θ)

(
1−

(
θ

2

))
= (M + L0 +M0θ)a ≤ θ.

This shows that the inequality (23) holds when m = k + 1 and implies that

(25) tk+1 ≤
(M − L0)tk + θ

M + L0 +M0θ
.

If M0 = 0 then (24) holds trivially when we replace m with k + 1. If
M0 > 0 then it follows from (25) and the induction hypotheses that tk+1 ≤
(M+L0)tk+θ
M+L0+M0θ

< (M+L0)/M0+θ
M+L0+M0θ

= 1
M0

. Therefore (24) also holds when we replace
m with k + 1.

We conclude, by induction, that (22)–(24) hold for all m.
The conclusion now follows as in the proof of Proposition 2. �
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The next result identifies the best possible value of θ that can be used in
Proposition 4 whenever M and M0 are not allowed to vanish at the same time.

Proposition 5. Let 0 ≤ γ, 0 ≤M0 ≤M ≤ γM0, 0 ≤ L0 ≤M and let

(26) Θ∗(M,M0, L0) ≡

{ 4(M−L0)

M+L0+
√

[L0+M ]2+8M0(M−L0)
, if M + L0 > 0

0, if M + L0 = 0.

Then

(27) 0 ≤ Θ∗(M,M0, L0) < 2.

Moreover, there exists θ ∈ [0, 2) satisfying conditions (20)–(21) if and only if

(28) [L0 +M +M0Θ∗(M,M0, L0)] a ≤ Θ∗(M,M0, L0).

Proof. The proof is similar to the demonstration of the analogous result in
Proposition 3. �

3. EXISTENCE AND CONVERGENCE RESULTS

In this section we will use the scalar majorant sequences described in the
previous section to derive Zabrejko-Nguen and Kantorovich type existence
results for problem (2) and convergence results for the intermediate Newton
scheme (3).

The following result will be used in the sequel. The proof can be found in
[19, Proposition 1].

Lemma 1. Let v be a function defined on the closed ball B [u0, T ] in X with
values in Y . Suppose that there exists a non-decreasing function θ(t) defined
on the closed interval [0, T ] such that, for all 0 ≤ t ≤ T , we have

‖v(x)− v(y)‖ ≤ θ(t)‖x− y‖ ∀x, y ∈ B(u0, t).

Then, whenever 0 ≤ t ≤ s ≤ T , x ∈ B [u0, t] and y ∈ B [x, s− t] we have

‖v(x)− v(y)‖ ≤
∫ s

t
θ(s) ds.

We next prove the convergence of the intermediate Newton-type scheme (3)
under weaker Zabrejko-Nguen-type hypotheses than the ones used in [17].

Theorem 1. Suppose that J0 = f ′(u0) + g′(u0) is invertible and that there
exists a ≥ 0 such that

(29) ‖J−10 [f(u0) + g(u0)] ‖ ≤ a.

Suppose further that there exist functions α(t), α0(t) and β0(t) satisfying the
hypotheses of Proposition 1 and that whenever 0 ≤ t ≤ T and x, y ∈ B(u0, t)
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we have

‖J−10

[
f ′(x)− f ′(y)

]
‖ ≤ α(t)‖x− y‖,(30)

‖J−10

[
f ′(x)− f ′(u0)

]
‖ ≤ κ0(t)(31)

‖J−10

[
g′(x)− g′(u0)

]
‖ ≤ π0(t).(32)

Let t∗ and {tm} be defined as in Proposition 1. Suppose that t∗ ≤ T and that

(33) κ0(T ) + π0(T ) < 1.

Then the intermediate Newton iterates in (3) are well defined and converge to
a unique solution u of equation (2) in B [u0, T ], with error estimates

‖um − um−1‖ ≤ tm − tm−1,(34)

‖um − u0‖ ≤ tm,(35)

‖u− um‖ ≤ t∗ − tm.(36)

Proof. Let σ(t), τ0(t) and µ(t) be defined as in Proposition 1.
If a = 0, then u = u0 solves equation (2) and, since um = u0 and tm = t0

for all m, the estimates (34) – (36) hold trivially. In the rest of the proof we
assume a > 0. Since ‖u1− u0‖ = a ≤ t1− t0, we see that (34)–(35) hold when
m = 1.

Suppose now, by induction, that m ≥ 1 and that the um are well defined
and satisfy (34)–(35). Then, on letting Jm ≡ f ′(um) + g′(u0) = J0(I + A)
or, equivalently, A = J−10 [f ′(um)− f ′(u0)], and applying Lemma 1, we see
that ‖A‖ ≤ κ0(tm) ≤ κ0(T ) < 1. Therefore it follows from the Banach
Lemma on invertible operators [12] that (I +A)−1 exists, and ‖(I +A)−1‖ ≤
1/ [1− κ0(tm)] = −1/σ′0(tm). Therefore Jm is invertible and ‖J−1m J0‖ = ‖(I +
A)−1‖ ≤ −1/σ′0(tm). Now

‖J−10 [f(um) + g(um)] ‖
≤‖J−10

[
f(um)− f(um−1)− f ′(um−1)(um − um−1)

]
‖

+‖J−10

[
g(um)− g(um−1)− g′(u0)(um − um−1)

]
‖

≤‖
∫ 1

0
J−10

[
f ′(um + s(um − um−1))− f ′(um−1)

]
(um − um−1) ds‖

+‖
∫ 1

0
J−10

[
g′(um + s(um − um−1))− g′(u0)

]
(um − um−1) ds‖.

Therefore an application of (30)–(32), Lemma 1 and the induction hypotheses
shows that
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‖J−10 [f(um) + g(um)] ‖ ≤
∫ 1

0

[∫ tm+s(tm−tm−1)

tm−1

α(w) dw

]
(tm − tm−1) ds

+

∫ 1

0
π0(tm + s(tm − tm−1))(tm − tm−1) ds

=

∫ 1

0
[κ(tm + s(tm − tm−1))− κ(tm−1)] (tm − tm−1) ds+

∫ tm

tm−1

π0(s) ds

=

∫ tm

tm−1

κ(s) ds− κ(tm−1)(tm − tm−1) + τ0(tm)− τ0(tm−1)

= (tm − tm−1)(1− κ(tm−1)) + σ(tm)− σ(tm−1) + τ0(tm)− τ0(tm−1)
= µ(tm)− µ(tm−1)− (tm − tm−1)σ′(tm−1)).

Hence

‖um+1 − um‖ = ‖J−1m [f(um) + g(um)] ‖ ≤ ‖J−1m J0‖‖J−10 [f(um) + g(um)] ‖

≤ −µ(tm)− µ(tm−1)− (tm − tm−1)σ′(tm−1)
σ′0(tm)

= tm+1 − tm,
‖um+1 − u0‖ ≤ ‖um+1 − um‖+ ‖um − u0‖ ≤ tm+1 − tm + tm = tm+1.

It follows that (34) and (35) also hold when m is replaced with m+1 and hence,
by induction, that they hold for all positive integral values of m. This implies
that ‖um+q−um‖ ≤

∑m+q
k=m+1 ‖uk−uk−1‖ ≤

∑m+q
k=m+1(tk− tk−1) = tm+q− tm.

Since {tm} is a Cauchy sequence, it follows that {um} is also a Cauchy sequence
converging to some u ∈ B [u0, T ]. On letting q tend to infinity we see that (36)
holds. It follows from (3) that [f ′(um) + g′(u0)] (um+1−um)+f(um)+g(um) =
0 and on letting m tend to infinity we see that u solves equation (2).

To prove uniqueness, we suppose that v is another solution of equation (2)
in B [u0, T ]. Then, on setting F = f + g and making use of (31) and (32), we
see that ‖u− v‖ = ‖J−10 [F (u)− F (v)− F ′(u0)(u− v)] ‖, hence

‖u− v‖ ≤ ‖
∫ 1

0
J−10

[
F ′(su+ (1− s)v)− F ′(u0)

]
(u− v) ds‖

≤
∫ 1

0
κ0(s‖u− u0‖+ (1− s)‖v − u0‖)‖u− v‖ ds

+

∫ 1

0
π0(s‖u− u0‖+ (1− s)‖v − u0‖)‖u− v‖ ds

≤
∫ 1

0
(κ0(T ) + π0(T ))‖u− v‖ ds = (κ0(T ) + π0(T ))‖u− v‖.

Therefore it follows immediately from condition (33) that u = v. �
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Remark 2. If we introduce the following stronger condition that was used
in [17], ‖J−10 [g′(x)− g′(y)] ‖ ≤ β(t)‖x − y‖, for all x, y ∈ B [u0, t], then in
order to compare the iterates {tm} with the analogous ones used in [17], we

set π(t) =
∫ t
0 β(s) ds, τ(t) =

∫ t
0 π(s) ds and λ(t) ≡ σ(t) + τ(t). It is evident

that

(37) α0(t) ≤ α(t) and β0(t) ≤ β(t), ∀t ∈ [0, T ] .

Consider the iterations defined by s0 = 0, s1 = a and for m = 1, 2, . . . , let

(38) sm+1 = sm −
λ(sm)− λ(sm−1)− (tm − tm−1)σ′(tm−1)

σ′(tm)
.

Suppose that s∗ = limm→∞ sm exists.
If α0(t) = α(t) and β0(t) = β(t) for all t ∈ [0, T ] then sm = tm for all m

and s∗ = t∗ and in this case our results coincide with those of [17]. Examples
have been given in [6, 7] with α(t) � α0(t) and β(t) � β0(t). Therefore one
or more of the inequalities in (37) can be strict and whenever this happens, a
straightforward induction argument shows that whenever m ≥ 2 we have tm <
sm, tm+1− tm < sm+1−sm, t∗− tm ≤ s∗−sm, t∗ ≤ s∗. In this case Theorem 1
constitutes an improvement over the results of [17] because the error estimates
are more precise, and more precise information is given on the solution of
equation (2). It is also interesting to observe that these improvements are
obtained under weaker hypotheses and at the same computational cost as the
results of [17] because the evaluation of α and β requires the evaluation of α0

and β0.

We now present two generalizations of Argyros’ extension [7] of the Kan-
torovich theorem on the solvability of nonlinear equations and the convergence
of Newton’s method. In the sequel, t∗ and majorant sequence {tm} will be
defined as in Proposition 2.

Theorem 2. Suppose that J0 = f ′(u0) + g′(u0) is invertible and there exist
a ≥ 0, L0 ≥ 0, 0 ≤ θ < 2 and 0 ≤ M0 ≤ M such that (7), (8) and (29) hold
and

‖J−10

[
f ′(x)− f ′(y)

]
‖ ≤M‖x− y‖, ∀x, y ∈ D0,(39)

‖J−10

[
f ′(x)− f ′(u0)

]
‖ ≤M0‖x− u0‖, ∀x ∈ D0,(40)

‖J−10

[
g′(x)− g′(u0)

]
‖ ≤ L0‖x− u0‖, ∀x ∈ D0.(41)

Then the intermediate Newton iterates in (3) are well defined and converge
to a solution u of equation (2) in B [u0, t∗] and the error estimates (34)–(36)
hold. If (M0 + L0)(t∗ + T ) < 2 then this solution is unique in B [u0, T ].

Proof. The existence result follows from Theorem 1 and Proposition 2. To
prove uniqueness, we suppose that v is another solution of equation (2) in
B [u0, t∗]. Then, on setting F = f + g and using the Lipschitz conditions (40)
and (41), we see that
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‖u− v‖ = ‖J−10

[
F (u)− F (v)− F ′(u0)(u− v)

]
‖

≤ ‖
∫ 1

0
J−10

[
F ′(su+ (1− s)v)− F ′(u0)

]
(u− v) ds‖

≤
∫ 1

0
(M0 + L0) [s‖u− u0‖+ (1− s)‖v − u0‖] ‖u− v‖ds

=
1

2
(M0 + L0) [‖u− u0‖+ ‖v − u0‖] ‖u− v‖

≤ 1

2
(M0 + L0)(T + t∗)‖u− v‖.

Then it follows immediately from the hypotheses that u = v. �

Theorem 3. Suppose that J0 = f ′(u0) + g′(u0) is invertible and there exist
a ≥ 0, 0 ≤ θ < 2, 0 ≤ M0 ≤ M and 0 ≤ L0 ≤ M such that (20), (21), (29),
(39), (40) and (41) hold. Then the intermediate Newton iterates in (3) are
well defined and converge to solution u of equation (2) in B [u0, t∗] and the
error estimates (34)–(36) hold. If (M0 + L0)(t∗ + T ) < 2 then this solution is
unique in B [u0, T ].

Proof. This result follows immediately from Theorem 1 and Proposition
4. �

Remark 3. If we set L0 = 0 and g = 0 in Theorem 2 or 3 we recover
Argyros’ generalization [7] of the Kantorovich Theorem, and if further set
θ = 1 and M = M0, we recover the Kantorovich theorem [12].

Remark 4. If we set M0 = 0 in condition (40) then f ′(x) = f ′(u0) for
all x ∈ D0, which implies that f ′(x) = f ′(y) for all x, y ∈ D0. Evidently
it makes sense to set M = 0 also, in this case. Therefore, in the study of
the solvability of equation (2), there is no loss of generality in assuming that
whenever M0 = 0 then M = 0. The simplest way of making sure that this
happens is by imposing a condition of the form 0 ≤ M0 ≤ M ≤ γM0 – as
was done in Propositions 3 and 5 – where γ is any positive constant. This
condition will also be employed in the next two results.

Remark 5. A setback of Theorems 2 and 3 is the fact that θ has to be
found by trial and error and there is no guarantee that the choice we make
leads to minimal conditions on M , M0, L0 and a that ensure the solvability
of problem (2). The two next results resolve this problem by identifying the
best possible values of θ.

Theorem 4. Suppose that J0 = f ′(u0) + g′(u0) is invertible and there exist
a ≥ 0, γ ≥ 0, L0 ≥ 0 and 0 ≤ M0 ≤ M ≤ γM0 such that (29) and (39)–(41)
hold. Suppose further that

(42) [2L0 +M +M0θ∗(M,M0, L0)] a ≤ θ∗(M,M0, L0)
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where θ∗(M,M0, L0) is defined in (17). Then the intermediate Newton iterates
in (3) are well defined and converge to a solution u of equation (2) in B [u0, t∗]
and the error estimates (34)–(36) hold. If (M0 + L0)(t∗ + T ) < 2 then this
solution is unique in B [u0, T ].

Proof. This result follows immediately from Theorem 2 and Proposition
3. �

Theorem 5. Suppose that J0 = f ′(u0) + g′(u0) is invertible and there exist
a ≥ 0, γ ≥ 0, 0 ≤ L0 ≤ M0 and 0 ≤ M0 ≤ M such that (29), (39), (40) and
(41) hold. Suppose further that

(43) [L0 +M +M0Θ∗(M,M0, L0)] a ≤ Θ∗(M,M0, L0),

where Θ∗(M,M0, L0) is defined in (26). Then the intermediate Newton iterates
in (3) are well defined and converge to a solution u of equation (2) in B [u0, t∗]
and the error estimates (34)–(36) hold. If (M0 + L0)(t∗ + T ) < 2 then this
solution is unique in B [u0, T ].

Proof. This result follows immediately from Theorem 3 and Proposition
5. �

Remark 6. Theorems 4 and 5 are generalizations of the well-known Kan-
torovich theorem [12] on the solvability of nonlinear equations and the con-
vergence of Newton’s method. If the conditions (29) and (39)–(41) hold with
g = 0, f = F and L0 = 0 then it follows from the Kantorovich theorem that if

(44) 2Ma ≤ 1,

then the Newton iterates in (4) converge to a solution of equation (2). In
this case it was shown in [7] that the same conclusion holds under the weaker
condition

(45) (M +M0)a ≤ 1.

In fact, this condition is precisely condition (8) of Theorem 2 with L0 = 0
and θ = 1. However, in this case the Newton scheme (4) coincides with
the intermediate Newton scheme (3) and it follows from Theorem 5 that the
convergence of the Newton iterates to a solution of equation (2) holds under
the condition

(46) [M +M0Θ∗(M,M0, 0)] a ≤ Θ∗(M,M0, 0),

which is weaker than (45).

Example 1. Let X = Y = R, D = [8/9, 10/9], g = 0, f(x) = x3 + x/3 −
0.47118 and u0 = 1. Then it is easy to verify that M = 2, M0 = 1.9, L0 = 0,
θ∗(M,M0, L0) = 1.0171451 and a = 0.258646. In this case condition (46)
holds, but the Kantorovich condition (44) and the Argyros condition (45) do
not hold.
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Example 2. Let X = Y = R, u0 = 1, T = 1 − c, D = [c, 2− c] for
some c ∈ [0, 1/2), g = 0, and f(x) = x3 − c. We see that a = (1 − c)/3,
M0 = 3 − c, L0 = 0 and M = 2(2 − c). The Kantorovich condition (44)
does not hold since 2Ma = 4(1 − c)(2 − c)/3 > 1 whenever c ∈ [0, 1/2). In
[7] it was shown that Newton’s method converges for this problem whenever
c ∈ [0.4505, 1/2). We can get a slight improvement of this result by using our
generalized Kantorovich Theorems. For instance, it follows from (46) and a
brief calculation that the slightly weaker condition c ∈ [0.450339002, 1/2) is
sufficient for the convergence of Newton’s method for this problem.

Example 3. Let X = Y = C [0, 1] be the space of real-valued continuous
functions defined on the interval [0, 1] with norm ‖x‖ = max0≤s≤1 |x(s)|. Let
c ∈ [0, 1] be a given parameter. Consider the cubic integral equation

(47) u(s) = u3(s) + λu(s)

∫ 1

0
q(s, t)u(t) dt+ y(s)− c.

Here the kernel q(s, t) is a continuous function of two variables defined on
[0, 1] × [0, 1]; the parameter λ is a real number called the “albedo” for scat-
tering; y(s) is a given continuous function defined on [0, 1] and x(s) is the
unknown function sought in C [0, 1]. Equations of the form (47) arise in the
theory of radiactive transfer, neutron transport, and the kinetic theory of
gasses [2, 3, 4, 5, 9].

For simplicity, we choose u0(s) = y(s) = 1 and q(s, t) = s/(s + t), for all
s ∈ [0, 1] and t ∈ [0, t] with s + t 6= 0. If we let D = B [u0, 1− c], g = 0 and
define the operator f on D by

(48) f(x)(s) = x3(s) + λx(s)

∫ 1

0
q(s, t)x(t) dt+ y(s)− c,

for all s ∈ [0, 1], then every zero of f satisfies equation (47). We have the
estimate

(49) max
0≤s≤1

∣∣∣∣∫ 1

0
s/(s+ t) dt

∣∣∣∣ = ln 2.

Therefore if we set b = ‖f ′(u0)−1‖, then it follows from (48) and (49) that
conditions (39), (40) and (41) hold with L0 = 0, a = b(|λ| ln 2 + 1 − c),
M = 2b [|λ| ln 2 + 3(2− c)] and M0 = b [2|λ| ln 2 + 3(3− c)]. It follows from
Theorem 2 that if condition (46) holds, then problem (47) has a unique solution
near u0. This condition is weaker than the conditions employed in [2, 3, 4] for
equations of this type.
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