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APPROXIMATION BY COMPLEX q-LORENTZ POLYNOMIALS,
q > 1

SORIN G. GAL

Abstract. In this paper, for q > 1 we obtain quantitative estimate in the
Voronovskaja’s theorem and the exact orders in simultaneous approximation
by the complex q-Lorentz polynomials of degree n ∈ N, attached to analytic
functions in compact disks of the complex plane. The geometric progression
order of approximation q−n is attained, which essentially improves the approxi-
mation order 1/n for the case q = 1, obtained in the very recent paper [2]. Also,
some approximation properties of the iterates of these complex q-polynomials
are studied.
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1. INTRODUCTION

In the recent book [1] (see also the papers cited there in References), esti-
mates for the convergence in Voronovskaja’s theorem and the exact approx-
imation orders in simultaneous approximation for several important classes
of complex Bernstein-type operators attached to an analytic function f in
compact disks of the complex plane were obtained.

The goal of the present paper is to extend these type of results to the
complex q-Lorentz polynomials, q > 1. The complex Lorentz polynomials
attached to any analytic function f in a domain containing the origin were
introduced in [3, p. 43, formula (2)], under the name of degenerate Bernstein
polynomials by the formula

(1) Ln(f)(z) =

n∑
k=0

(
n

k

)( z
n

)k
f (k)(0), n ∈ N, z ∈ C.

In the same book [3, p. 121-124], some qualitative approximation results
were studied. In the recent paper [2], exact quantitative estimates of order
1
n in approximation by Ln(f)(z) and by its iterates in compact disks of the
complex plane were obtained.

In this paper, by introducing the complex q-Lorentz polynomials, q ≥ 1,
given by

Ln,q(f)(z) =

n∑
k=0

qk(k−1)/2

(
n

k

)
q

(
z

[n]q

)k
Dk
q (f)(0), n ∈ N,
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for q > 1 we consider their approximation properties in compact disks. Here

[n]q = qn−1
q−1 if q 6= 1, [n]q = n if q = 1, [n]q! = [1]q[2]q ·...·[n]q,

(
n
k

)
q

=
[n]q !

[k]q ![n−k]q ! ,

Dk
q (f)(z) = Dq[D

k−1
q (f)](z), D0

q(f)(z) = f(z), Dq(f)(z) = f(qz)−f(z)
(q−1)z .

Note that because Dq(ek)(z) = [k]qz
k−1, where ek(z) = zk, if f is analytic in

a disk DR = {z ∈ C; |z| < R}, that is we have f(z) =
∑∞

k=0 ckz
k for all z ∈ DR,

then Dq(f)(z) =
∑∞

k=1 ck[k]qz
k−1, D2

q(f)(z) =
∑∞

k=2 ck[k]q[k− 1]qz
k−2 and so

on. This immediately implies that Dk
q (f)(0) = ck[k]q!, for all k = 0, 1, ...,.

Also, since [n]1 = n and D1(f)(z) = f ′(z), it is immediate that Ln,1(f)(z)
become the complex original Lorentz polynomials Ln(f)(z) given above by
(1) and already studied in [3] and [2].

The plan of the present paper goes as follows. Section 2 deals with upper
estimates in simultaneous approximation by these q-polynomials, in Section
3 we obtain a Voronovskaja result with a quantitative estimate and in Sec-
tion 4 one obtain exact estimates in simultaneous approximation for these
q-operators. Section 5 presents an approximation result for the iterates of the
complex polynomials Ln,q(f)(z). The quantitative estimates are obtained in
compact disks centered at origin and are of exact order 1

[n]q
, which by the

inequalities (q − 1) 1
qn ≤

1
[n]q
≤ q 1

qn , implies the exact order of approximation

q−n, with q > 1. This essentially improves the exact order 1/n obtained for
Ln,1(f)(z) := Ln(f)(z) by the very recent paper [2].

2. UPPER APPROXIMATION ESTIMATES

The main result of this section is the following.

Theorem 1. Let R > q > 1. Denoting DR = {z ∈ C; |z| < R}, suppose
that f : DR → C is analytic in DR, i.e. f(z) =

∑∞
k=0 ckz

k, for all z ∈ DR.

(i) Let 1 ≤ r < r1
q < R

q be arbitrary fixed. For all |z| ≤ r and n ∈ N,

we have the upper estimate |Ln,q(f)(z) − f(z)| ≤ Mr1,q(f)

[n]q
, where Mr1,q(f) =

q+1
(q−1)2

·
∑∞

k=0 |ck|(k + 1)rk1 <∞.

(ii) Let 1 ≤ r < r∗ < r1
q < R

q be arbitrary fixed. For the simultaneous

approximation by complex Lorentz polynomials, for all |z| ≤ r, p ∈ N and

n ∈ N, we have |L(p)
n,q(f)(z) − f (p)(z)| ≤ p!r∗Mr1,q(f)

[n]q(r∗−r)p+1 , where Mr1,q(f) is given

as at the above point (i).

Proof. (i) Denoting ej(z) = zj , firstly we easily get that Ln,q(e0)(z) = 1,
Ln,q(e1)(z) = e1(z). Then, since for all j, n ∈ N, 2 ≤ j ≤ n, we have

Ln,q(ej)(z) = qj(j−1)/2

(
n

j

)
q

[j]q! ·
zj

[n]jq
,
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taking into account the relationship (7) in [4, p. 236], we get

Ln,q(ej)(z) = zj
(

1− [1]q
[n]q

)(
1− [2]q

[n]q

)
...

(
1− [j − 1]q

[n]q

)
.

Also, note that for j ≥ n + 1 we easily get Ln,q(ej)(z) = 0. Since an easy
computation shows that Ln,q(f)(z) =

∑∞
j=0 cjLn,q(ej)(z), for all |z| ≤ r, we

immediately obtain

|Ln,q(f)(z)− f(z)|

≤
n∑
j=0

|cj | · |Ln,q(ej)(z)− ej(z)|+
∞∑

j=n+1

|cj | · |Ln,q(ej)(z)− ej(z)|

≤
n∑
j=2

|cj |rj
∣∣∣∣(1− [1]q

[n]q

)(
1− [2]q

[n]q

)
...

(
1− [j − 1]q

[n]q

)
− 1

∣∣∣∣+

∞∑
j=n+1

|cj |rj ,

for all |z| ≤ r. Taking into account the inequality proved in [4, p. 247],

1−
(

1− [1]q
[n]q

)(
1− [2]q

n

)
...

(
1− [j − 1]q

n

)
≤ (j − 1)[j − 1]q

[n]q
,

we obtain
n∑
j=2

|cj |rj
∣∣∣∣(1− [1]q

[n]q

)(
1− [2]q

[n]q

)
...

(
1− [j − 1]q

[n]q

)
− 1

∣∣∣∣
≤ 1

[n]q

∞∑
j=2

|cj |(j − 1)[j − 1]qr
j ≤ 1

[n]q

∞∑
j=2

|cj | ·
jqj

q − 1
· rj

≤ 1

[n]q
· 1

q − 1

∞∑
j=2

|cj |(j + 1)(rq)j ≤ 1

[n]q
· 1

q − 1

∞∑
j=2

|cj |(j + 1)rj1,

where by hypothesis on f we have
∑∞

j=0 |cj |(j + 1)rj1 <∞.

On the other hand, the analyticity of f implies cj = f (k)(0)
j! and by the

Cauchy’s estimates of the coefficients cj in the disk |z| ≤ r1, we have |cj | ≤
Kr1

rj1
,

for all j ≥ 0, where

Kr1 = max{|f(z)|; |z| ≤ r1} ≤
∞∑
j=0

|cj |rj1 ≤
∞∑
j=0

|cj |(j + 1)rj1 := Rr1(f) <∞.

Therefore we get
∞∑

j=n+1

|cj |rj ≤ Rr1(f)

[
r

r1

]n+1 ∞∑
j=0

(
r

r1

)j
= Rr1(f)

[
r

r1

]n+1

· r1

r1 − r

= Rr1(f) · r

r1 − r
·
[
r

r1

]n
≤ Rr1(f)

q − 1
·
[
r

r1

]n
≤ Rr1(f)

q − 1
· 1

qn
≤ 2Rr1(f)

(q − 1)2
· 1

[n]q
.
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Collecting the estimates, finally we obtain

|Ln,q(f)(z)−f(z)| ≤ 1

[n]q
·Rr1(f)

q − 1

(
1 +

2

q − 1

)
=

1

[n]q
· q + 1

(q − 1)2
·
∞∑
j=0

|cj |(j+1)rj1,

for all n ∈ N and |z| ≤ r.
(ii) Denoting by γ the circle of radius r∗ > r and center 0, since for any

|z| ≤ r and v ∈ γ, we have |v−z| ≥ r∗−r, by the Cauchy’s formulas it follows
that for all |z| ≤ r and n ∈ N, we have

|L(p)
n,q(f)(z)− f (p)(z)| = p!

2π

∣∣∣∣∫
γ

Ln,q(f)(v)− f(v)

(v − z)p+1
dv

∣∣∣∣
≤ Mr1,q(f)

[n]q

p!

2π
· 2πr∗

(r∗ − r)p+1
=
Mr1,q(f)

[n]q
· p!r∗

(r∗ − r)p+1
,

which proves (ii) and the theorem. �

3. QUANTITATIVE VORONOVSKAJA-TYPE THEOREM

The following Voronovskaja-type result hold.

Theorem 2. For R > q4 > 1 let f : DR → C be analytic in DR, that
is f(z) =

∑∞
k=0 ckz

k for all z ∈ DR, and let 1 ≤ r < r1
q3
< R

q4
be arbitrary

fixed. For all n ∈ N, |z| ≤ r we have
∣∣∣Ln,q(f)(z)− f(z) +

Pq(f)(z)
[n]q

∣∣∣ ≤ Qr1,q(f)

[n]2q
,

where Pq(f)(z) =
∑∞

k=2 ck
[k]q−k
q−1 zk =

∑∞
k=2 ck([1]q + ... + [k − 1]q)z

k, and

Qr1,q(f) = q2−2q+2
(q−1)3

·
∑∞

k=0 |ck|(k + 1)(k + 2)2(r1q)
k <∞.

Proof. We have∣∣∣∣Ln,q(f)(z)− f(z) +
Pq(f)(z)

[n]q

∣∣∣∣
=

∣∣∣∣∣
∞∑
k=0

ck

[
Ln,q(ek)(z)− ek(z) +

[k]q − k
(q − 1)[n]q

ek(z)

]∣∣∣∣∣
≤

∣∣∣∣∣
n∑
k=0

ck

[
Ln,q(ek)(z)− ek(z) +

[k]q − k
(q − 1)[n]q

ek(z)

]∣∣∣∣∣
+

∣∣∣∣∣
∞∑

k=n+1

ckz
k

(
[k]− k

(q − 1)[n]q
− 1

)∣∣∣∣∣
≤

∣∣∣∣∣
n∑
k=0

ck

[
Ln,q(ek)(z)− ek(z) +

[k]q − k
(q − 1)[n]q

ek(z)

]∣∣∣∣∣
+

∞∑
k=n+1

|ck|rk
(

[k]q − k
(q − 1)[n]q

− 1

)
,
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for all |z| ≤ r and n ∈ N.
In what follows, firstly we will prove by mathematical induction with respect

to k that

(2) 0 ≤ En,k,q(z) ≤
r2

1

[n]2q
(k − 1)(k − 2)2[k − 2]q,

for all 2 ≤ k ≤ n (here n ∈ N is arbitrary fixed) and |z| ≤ r, where

En,k,q(z) = Ln,q(ek)(z)− ek(z) +
[k]q − k

(q − 1)[n]q
ek(z)

= Ln,q(ek)(z)− ek(z) +
1

[n]q
([1]q + ...+ [k − 1]q) ek(z).

Note that the relationship
[k]q−k

(q−1)[n]q
ek(z) = 1

[n]q
([1]q + ...+ [k − 1]q) ek(z), k ≥

2, easily follows by mathematical induction.
On the other hand, by the formula for Ln,q(ek) in the proof of Theorem 1 (i),

simple calculation leads to En,2,q(z) = 0, for all n ∈ N and to the recurrence
formulas

Ln,q(ej+1)(z) = − z2

[n]q
Dq [Ln,q(ej)] (z) + zLn,q(ej)(z), j ≥ 1, n ∈ N, |z| ≤ r,

En,k,q(z) = − z2

[n]q
Dq(Ln,q(ek−1)(z)− zk−1) + zEn,k−1,q(z), n ≥ k ≥ 3, |z| ≤ r.

Passing to absolute value above with |z| ≤ r and 3 ≤ k ≤ n and applying the
mean value theorem in complex analysis, with the general notation ‖f‖r =
max{|f(z)|; |z| ≤ r}, one obtains

|En,k,q(z)| ≤
r2

[n]q
‖(Ln,q(ek−1)(z)− zk−1)′‖qr + r · |En,k−1,q(z)|

≤ r · |En,k−1,q(z)|+
r2

[n]q
· k − 1

qr
‖Ln,q(ek−1)(z)− zk−1‖qr

≤ r · |En,k−1,q(z)|+
r2

[n]q
· k − 1

qr
· (qr)k−1 · (k − 2)[k − 2]q

[n]q
,

where above we used the estimate which easily follows from the proof of The-

orem 1 (i): |Ln,q(ek)(z)− zk| ≤ rk
(k−1)[k−1]q

[n]q
, |z| ≤ r, k ≥ 2. Therefore, for all

|z| ≤ r, 3 ≤ k ≤ n, we get

|En,k,q(z)| ≤ r · |En,k−1,q(z)|+
r2

[n]q
· k − 1

qr
· (qr)k−1 · (k − 2)[k − 2]q

[n]q

≤ r1 · |En,k−1,q(z)|+
r2

1

[n]q
· (k − 1)rk−2

1 · (k − 2)[k − 2]q
[n]q

= r1 · |En,k−1,q(z)|+
(k − 1)(k − 2)[k − 2]q

[n]2q
· rk1 .
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Taking k = 3, 4, ..., step by step we easily obtain the estimate

|En,k,q(z)| ≤
rk1

[n]2q
(
k∑
j=3

(j − 1)(j − 2)[j − 2]q) ≤
rk1

[n]2q
(k − 1)(k − 2)2[k − 2]q

≤ (r1q)
k

(q − 1)[n]2q
(k − 1)(k − 2)2,

for all |z| ≤ r and 3 ≤ k, because [k − 2]q ≤ qk

q−1 . In conclusion, (2) is valid,

which implies∣∣∣∣∣
n∑
k=0

ck

[
Ln,q(ek)(z)− ek(z) +

[k]q − k
(q − 1)[n]q

ek(z)

]∣∣∣∣∣ ≤
n∑
k=0

|ck| · |En,k,q(z)|

≤ 1

(q − 1)[n]2q

n∑
k=3

|ck|(k − 1)(k − 2)2(r1q)
k

≤ 1

(q − 1)[n]2q

∞∑
k=0

|ck|(k + 1)(k + 2)2(r1q)
k.

On the other hand, since
[k]q−k

(q−1)[n]q
− 1 ≥ 0 for all k ≥ n+ 1, reasoning as in

the proof of Theorem 1 (i), and keeping the notation for Rr1(f) there, we get

∞∑
k=n+1

|ck|rk
(

[k]q − k
(q − 1)[n]q

− 1

)
≤

∞∑
k=n+1

|ck|rk ·
[k]q

(q − 1)[n]q

≤ Rr1(f)

(q − 1)[n]q

∞∑
k=n+1

1

rk1
· rk · qk

=
Rr1(f)

(q − 1)[n]q

∞∑
k=n+1

[(
r

r1

)1/3
]k
·

[(
r

r1

)1/3
]2k

qk

≤ Rr1(f)

(q − 1)[n]q
·
(
r

r1

)(n+1)/3 ∞∑
k=0

[(
r

r1

)1/3
]k

=
Rr1(f)

(q − 1)[n]q
·

[(
r

r1

)1/3
]n
· r1/3

r
1/3
1 − r1/3

≤ Rr1(f)

(q − 1)3[n]2q

≤ 1

(q − 1)3[n]2q

∞∑
k=0

|ck|(k + 1)(k + 2)2(r1q)
k,

where we used the inequalities, [k]q ≤ kqk, 1
qn ≤

1
(q−1)[n]q

, r1/3

r
1/3
1 −r1/3

≤ 1
q−1 , and

where for ρ =
(
r
r1

)1/3
≤ 1

q , we used the obvious inequality ρ2k · qk ≤ 1.
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Collecting now all the estimates and taking into account that 1
q−1 + 1

(q−1)3
=

q2−2q+2
(q−1)3

, we arrive at the desired estimate. �

4. EXACT APPROXIMATION ESTIMATES

The first main result of this section is the following.

Theorem 3. Let R > q4 > 1, f : DR → C be analytic in DR, that is
f(z) =

∑∞
k=0 ckz

k for all z ∈ DR, and 1 ≤ r < r1
q3
< R

q4
be arbitrary fixed. If

f is not a polynomial of degree ≤ 1, then for all n ∈ N and |z| ≤ r we have

‖Ln,q(f)− f‖r ≥
Cr,r1,q(f)

[n]q
, where the constant Cr,r1,q(f) depends only on f , r

and r1. Here ‖f‖r denotes max|z|≤r{|f(z)|}.

Proof. For Pq(f)(z) defined in the statement of Theorem 2, all |z| ≤ r and
n ∈ N we have

Ln,q(f)(z)− f(z)

=
1

[n]q

{
−Pq(f)(z) +

1

[n]q

[
[n]2q

(
Ln,q(f)(z)− f(z) +

Pq(f)(z)

[n]q

)]}
.

In what follows we will apply to this identity the following obvious property:

‖F +G‖r ≥ | ‖F‖r − ‖G‖r | ≥ ‖F‖r − ‖G‖r.

It follows

‖Ln,q(f)− f‖r ≥
1

[n]q

{
‖Pq(f)‖r −

1

[n]q

[
[n]2q

∥∥∥∥Ln,q(f)− f +
Pq(f)

[n]q

∥∥∥∥
r

]}
.

Since by hypothesis f is not a polynomial of degree ≤ 1 in DR, we get
‖Pq(f)‖r > 0.

Indeed, supposing the contrary it follows that Pq(f)(z) = 0 for all z ∈ Dr =
{z ∈ C; |z| ≤ r}.

Since simple calculation shows that Pq(f)(z) = z · Dq(f)(z)−f ′(z)
q−1 , Pq(f)(z) =

0 implies Dq(f)(z) = f ′(z), for all z ∈ Dr \ {0}. Taking into account the

representation of f as f(z) =
∑∞

k=0 ckz
k, the last equality immediately leads

to ck = 0, for all k ≥ 2, which means that f is linear in Dr, a contradiction
with the hypothesis.

Now, by Theorem 2 we have [n]2q

∥∥∥Ln,q(f)− f +
Pq(f)
[n]q

∥∥∥
r
≤ Qr1,q(f), where

Qr1,q(f) is a positive constant depending only on f , r1 and q.
Since 1

[n]q
→ 0 as n→∞, there exists an index n0 depending only on f , r,

r1 and q, such that for all n > n0 we have

‖Pq(f)‖r −
1

[n]q

[
[n]2q

∥∥∥∥Ln,q(f)− f +
Pq(f)

[n]q

∥∥∥∥
r

]
≥ 1

2

∥∥∥∥Pq(f)

2

∥∥∥∥
r

,
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which immediately implies that

‖Ln,q(f)− f‖r ≥
1

[n]q
· 1

2
‖Pq(f)‖r ,∀n > n0.

For n ∈ {1, ..., n0} we obviously have ‖Ln,q(f) − f‖r ≥
Mr,r1,n,q(f)

[n]q
with

Mr,r1,n,q(f) = [n]q · ‖Ln,q(f) − f‖r > 0 (if ‖Ln,q(f) − f‖r would be equal
to 0, this would imply that f is a linear function, a contradiction).

Therefore, finally we get ‖Ln,q(f)− f‖r ≥
Cr,r1,q(f)

n for all n ∈ N, where

Cr,r1,q(f) = min

{
Mr,r1,1,q(f), ...,Mr,r1,n0,q(f),

1

2
‖Pq(f)‖r

}
,

which completes the proof. �

Combining now Theorem 3 with Theorem 1 (i), we immediately get the
following.

Corollary 4. Let R > q4 > 1, f : DR → C be analytic in DR, that
is f(z) =

∑∞
k=0 ckz

k for all z ∈ DR, and 1 ≤ r < r1
q3

< R
q4

be arbitrary

fixed. If f is not a polynomial of degree ≤ 1, then for all n ∈ N we have
‖Ln,q(f)− f‖r ∼ 1

[n]q
, where the constants in the equivalence depend on f , r,

r1 and q but are independent of n.

Concerning the simultaneous approximation we present the following.

Theorem 5. Let R > q4 > 1, f : DR → C be analytic in DR, that is
f(z) =

∑∞
k=0 ckz

k for all z ∈ DR, and 1 ≤ r < r∗ < r1
q3
< R

q4
be arbitrary fixed.

Also, let p ∈ N. If f is not a polynomial of degree ≤ max{1, p−1}, then for all

n ∈ N we have ‖L(p)
n,q(f)− f (p)‖r ∼ 1

[n]q
, where the constants in the equivalence

depend on f , r, r∗, r1, p and q but are independent of n.

Proof. Since by Theorem 1 (ii), we have the upper estimate for ‖L(p)
n,q(f)−

f (p)‖r, it remains to prove the lower estimate for ‖L(p)
n,q(f)− f (p)‖r.

For this purpose, denoting by Γ the circle of radius r∗ and center 0, we have
the inequality |v − z| ≥ r∗ − r valid for all |z| ≤ r and v ∈ Γ. The Cauchy’s
formula is expressed by

L(p)
n,q(f)(z)− f (p)(z) =

p!

2πi

∫
Γ

Ln,q(f)(v)− f(v)

(v − z)p+1
dv.

Now, as in the proof of Theorem 1 (ii), for all v ∈ Γ and n ∈ N we have

Ln,q(f)(v)− f(v)

=
1

[n]q

{
−Pq(f)(v) +

1

[n]q

[
[n]2q

(
Ln,q(f)(v)− f(v) +

Pq(f)(v)

[n]q

)]}
,
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which replaced in the above Cauchy’s formula implies

L(p)
n,q(f)(z)− f (p)(z) =

1

[n]q

{
p!

2πi

∫
Γ
− Pq(f)(v)

(v − z)p+1
dv

+
1

[n]q
· p!

2πi

∫
Γ

[n]2q

(
Ln,q(f)(v)− f(v) +

Pq(f)(v)
[n]q

)
(v − z)p+1

dv


=

1

[n]q

[−Pq(f)(z)](p) +
1

[n]q
· p!

2πi

∫
Γ

[n]2q

(
Ln,q(f)(v)− f(v) +

Pq(f)(v)
[n]q

)
(v − z)p+1

dv

 .

Passing now to ‖ · ‖r, for all n ∈ N it follows

‖L(p)
n,q(f)− f (p)‖r ≥

1

[n]q

{∥∥∥[−Pq(f)](p)
∥∥∥
r

− 1

[n]q

∥∥∥∥∥∥ p!2π

∫
Γ

[n]2q

(
Ln,q(f)(v)− f(v) +

Pq(f)(v)
[n]q

)
(v − z)p+1

dv

∥∥∥∥∥∥
r

 ,

where by using Theorem 2, for all n ∈ N we get∥∥∥∥∥∥ p!2π

∫
Γ

[n]2q

(
Ln,q(f)(v)− f(v) +

Pq(f)(v)
[n]q

)
(v − z)p+1

dv

∥∥∥∥∥∥
r

≤ p!

2π
·

2πr∗[n]2q
(r∗ − r)p+1

∥∥∥∥Ln,q(f)− f +
Pq(f)

[n]q

∥∥∥∥
r∗
≤ Qr1,q(f) · p!r∗

(r∗ − r)p+1
.

But by hypothesis on f , we have
∥∥∥− [Pq(f)](p)

∥∥∥
r∗
> 0. Indeed, supposing

the contrary would follow that [Pq(f)](p) (z) = 0, for all |z| ≤ r∗, where by the
statement of Theorem 2 we have

Pq(f)(z) =
∞∑
k=2

ck([1]q + [2]q + ...+ [k − 1]q)z
k.

Firstly, supposing that p = 1, by P ′q(f)(z) =
∑∞

k=2 ckk([1]q + [2]q + ...+ [k−
1]q)z

k−1 = 0, for all |z| ≤ r∗, would follow that ck = 0, for all k ≥ 2, that is f
would be a polynomial of degree 1 = max{1, p− 1}, a contradiction with the
hypothesis.

Taking p = 2, we would get P ′′q (z) =
∑∞

k=2 ckk(k− 1)([1]q + [2]q + ...+ [k−
1]q)z

k−2 = 0, for all |z| ≤ r∗, which immediately would imply that ck = 0,
for all k ≥ 2, that is f would be a polynomial of degree 1 = max{1, p− 1}, a
contradiction with the hypothesis.
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Now, taking p > 2, for all |z| ≤ r∗ we would get

P (p)
q (f)(z) =

∞∑
k=p

ckk(k − 1)...(k − p+ 1)([1]q + [2]q + ...+ [k − 1]q)z
k−p = 0,

which would imply ck = 0 for all k ≥ p, that is f would be a polynomial of
degree p− 1 = max{1, p− 1}, a contradiction with the hypothesis.

In continuation, reasoning exactly as in the proof of Theorem 3, we imme-
diately get the desired conclusion. �

Remark 6. Taking into account that for q > 1 we have the inequalities
(q − 1) · 1

qn ≤
1

[n]q
≤ q · 1

qn , for all n ∈ N, it follows that the exact order of

approximation in Corollary 4 and Theorem 5 is q−n, which is essentially better
than the order of approximation 1/n, obtained in the case q = 1, that is for
Ln,1(f)(z) := Ln(f)(z), in [2].

5. APPROXIMATION BY ITERATES

For f analytic in DR that is of the form f(z) =
∑∞

k=0 ckz
k, for all z ∈

DR, let us define the iterates of complex Lorentz polynomial Ln,q(f)(z), by

L
(1)
n,q(f)(z) = Ln,q(f)(z) and L

(m)
n,q (f)(z) = Ln,q[L

(m−1)
n,q (f)](z), for any m ∈

N, m ≥ 2. Since we have Ln,q(f)(z) =
∑∞

k=0 ckLn,q(ek)(z), by recurrence

for all m ≥ 1, we easily get that L
(m)
n,q (f)(z) =

∑∞
k=0 ckL

(m)
n,q (ek)(z), where

L
(m)
n,q (ek)(z) = 1 if k = 0, L

(m)
n,q (ek)(z) = z if k = 1, L

(m)
n,q (ek)(z) = 0 if

k ≥ n+ 1 and

L(m)
n,q (ek)(z) =

(
1− [1]q

[n]q

)m(
1− [2]q

[n]q

)m
...

(
1− [k − 1]q

[n]q

)m
zk, 2 ≤ k ≤ n.

The main result of this section is the following.

Theorem 7. Let f be analytic in DR, that is f(z) =
∑∞

k=0 ckz
k, for all

z ∈ DR, with R > q > 1. Let 1 ≤ r < r1
q <

R
q . We have

‖L(m)
n,q (f)− f‖r ≤

m

[n]q
· q + 1

(q − 1)2

∞∑
k=0

|ck|(k + 1)rk1 ,

and therefore if limn→∞
mn
[n]q = 0, then limn→∞ ‖L(mn)

n,q (f)− f‖r = 0.

Proof. For all |z| ≤ r, we easily obtain

|f(z)− L(m)
n,q (f)(z)|

≤
n∑
k=2

|ck|rk
[
1−

(
1− [1]q

[n]q

)m(
1− [2]

[n]q

)m
...

(
1− [k − 1]q

[n]q

)m]

+
∞∑

k=n+1

|ck| · rk.
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Denoting Ak,n =
(

1− [1]q
[n]q

)(
1− [2]

[n]q

)
...
(

1− [k−1]q
[n]q

)
, we get 1− Amk,n = (1−

Ak,n)(1+Ak,n+A2
k,n+...+Am−1

k,n ) ≤ m(1−Ak,n) and therefore since 1−Ak,n ≤
(k−1)[k−1]q

[n]q
, for all |z| ≤ r we obtain

n∑
k=2

|ck|rk
[
1−

(
1− [1]q

[n]q

)m(
1− [2]q

[n]q

)m
...

(
1− [k − 1]q

[n]q

)m]

≤ m
∞∑
k=2

|ck|rk[1−Ak,n] ≤ m

[n]q

∞∑
k=2

|ck|(k − 1)[k − 1]qr
k

≤ m

[n]q

∞∑
k=2

|ck| ·
kqk

q − 1
· rk ≤ m

[n]q
· 1

q − 1

∞∑
k=2

|ck|(k + 1)(rq)k

≤ m

[n]q
· 1

q − 1

∞∑
k=2

|ck|(k + 1)rk1 .

On the other hand, following exactly the reasonings in the proof of Theorem
1, we get the estimate

∞∑
k=n+1

|ck| · rk ≤
1

[n]q
·

2
∑∞

k=0 |ck|(k + 1)rk1
(q − 1)2

≤ m

[n]q
·

2
∑∞

k=0 |ck|(k + 1)rk1
(q − 1)2

.

Collecting now all the estimates and taking into account that 1
q−1 + 2

(q−1)2
=

q+1
(q−1)2

, we arrive at the desired estimate. �

Remark 8. Taking into account the equivalence 1
[n]q
∼ 1

qn , from Theorem

7 it follows the conclusion that if limn→∞
mn
qn = 0, then

lim
n→∞

‖L(mn)
n,q (f)− f‖r = 0.
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