APPROXIMATION BY COMPLEX q-LORENTZ POLYNOMIALS, $q>1$

SORIN G. GAL

Abstract

In this paper, for $q>1$ we obtain quantitative estimate in the Voronovskaja's theorem and the exact orders in simultaneous approximation by the complex q-Lorentz polynomials of degree $n \in \mathbb{N}$, attached to analytic functions in compact disks of the complex plane. The geometric progression order of approximation q^{-n} is attained, which essentially improves the approximation order $1 / n$ for the case $q=1$, obtained in the very recent paper [2]. Also, some approximation properties of the iterates of these complex q-polynomials are studied.

MSC 2010. 30E10, 41A35, 41A25, 41A28.
Key words. Complex q-Lorentz polynomials, $q>1$, quantitative exact estimates, Voronovskaja's theorem, iterates, compact disks of the complex plane.

1. INTRODUCTION

In the recent book [1] (see also the papers cited there in References), estimates for the convergence in Voronovskaja's theorem and the exact approximation orders in simultaneous approximation for several important classes of complex Bernstein-type operators attached to an analytic function f in compact disks of the complex plane were obtained.

The goal of the present paper is to extend these type of results to the complex q-Lorentz polynomials, $q>1$. The complex Lorentz polynomials attached to any analytic function f in a domain containing the origin were introduced in [3, p. 43, formula (2)], under the name of degenerate Bernstein polynomials by the formula

$$
\begin{equation*}
L_{n}(f)(z)=\sum_{k=0}^{n}\binom{n}{k}\left(\frac{z}{n}\right)^{k} f^{(k)}(0), n \in \mathbb{N}, z \in \mathbb{C} \tag{1}
\end{equation*}
$$

In the same book [3, p. 121-124], some qualitative approximation results were studied. In the recent paper [2], exact quantitative estimates of order $\frac{1}{n}$ in approximation by $L_{n}(f)(z)$ and by its iterates in compact disks of the complex plane were obtained.

In this paper, by introducing the complex q-Lorentz polynomials, $q \geq 1$, given by

$$
L_{n, q}(f)(z)=\sum_{k=0}^{n} q^{k(k-1) / 2}\binom{n}{k}_{q}\left(\frac{z}{[n]_{q}}\right)^{k} D_{q}^{k}(f)(0), n \in \mathbb{N}
$$

for $q>1$ we consider their approximation properties in compact disks. Here $[n]_{q}=\frac{q^{n}-1}{q-1}$ if $q \neq 1,[n]_{q}=n$ if $q=1,[n]_{q}!=[1]_{q}[2]_{q} \cdot \ldots \cdot[n]_{q},\binom{n}{k}_{q}=\frac{[n]_{q}!}{\left[k k_{q}!n-k\right]_{q}!}$, $D_{q}^{k}(f)(z)=D_{q}\left[D_{q}^{k-1}(f)\right](z), D_{q}^{0}(f)(z)=f(z), D_{q}(f)(z)=\frac{f(q z)-f(z)}{(q-1) z}$.

Note that because $D_{q}\left(e_{k}\right)(z)=[k]_{q} z^{k-1}$, where $e_{k}(z)=z^{k}$, if f is analytic in a disk $\mathbb{D}_{R}=\{z \in \mathbb{C} ;|z|<R\}$, that is we have $f(z)=\sum_{k=0}^{\infty} c_{k} z^{k}$ for all $z \in \mathbb{D}_{R}$, then $D_{q}(f)(z)=\sum_{k=1}^{\infty} c_{k}[k]_{q} z^{k-1}, D_{q}^{2}(f)(z)=\sum_{k=2}^{\infty} c_{k}[k]_{q}[k-1]_{q} z^{k-2}$ and so on. This immediately implies that $D_{q}^{k}(f)(0)=c_{k}[k]_{q}$!, for all $k=0,1, \ldots$, , Also, since $[n]_{1}=n$ and $D_{1}(f)(z)=f^{\prime}(z)$, it is immediate that $L_{n, 1}(f)(z)$ become the complex original Lorentz polynomials $L_{n}(f)(z)$ given above by (1) and already studied in [3] and [2].

The plan of the present paper goes as follows. Section 2 deals with upper estimates in simultaneous approximation by these q-polynomials, in Section 3 we obtain a Voronovskaja result with a quantitative estimate and in Section 4 one obtain exact estimates in simultaneous approximation for these q-operators. Section 5 presents an approximation result for the iterates of the complex polynomials $L_{n, q}(f)(z)$. The quantitative estimates are obtained in compact disks centered at origin and are of exact order $\frac{1}{[n]_{q}}$, which by the inequalities $(q-1) \frac{1}{q^{n}} \leq \frac{1}{[n]_{q}} \leq q \frac{1}{q^{n}}$, implies the exact order of approximation q^{-n}, with $q>1$. This essentially improves the exact order $1 / n$ obtained for $L_{n, 1}(f)(z):=L_{n}(f)(z)$ by the very recent paper [2].

2. UPPER APPROXIMATION ESTIMATES

The main result of this section is the following.
Theorem 1. Let $R>q>1$. Denoting $\mathbb{D}_{R}=\{z \in \mathbb{C} ;|z|<R\}$, suppose that $f: \mathbb{D}_{R} \rightarrow \mathbb{C}$ is analytic in \mathbb{D}_{R}, i.e. $f(z)=\sum_{k=0}^{\infty} c_{k} z^{k}$, for all $z \in \mathbb{D}_{R}$.
(i) Let $1 \leq r<\frac{r_{1}}{q}<\frac{R}{q}$ be arbitrary fixed. For all $|z| \leq r$ and $n \in \mathbb{N}$, we have the upper estimate $\left|L_{n, q}(f)(z)-f(z)\right| \leq \frac{M_{r_{1}, q}(f)}{[n]_{q}}$, where $M_{r_{1}, q}(f)=$ $\frac{q+1}{(q-1)^{2}} \cdot \sum_{k=0}^{\infty}\left|c_{k}\right|(k+1) r_{1}^{k}<\infty$.
(ii) Let $1 \leq r<r^{*}<\frac{r_{1}}{q}<\frac{R}{q}$ be arbitrary fixed. For the simultaneous approximation by complex Lorentz polynomials, for all $|z| \leq r, p \in \mathbb{N}$ and $n \in \mathbb{N}$, we have $\left|L_{n, q}^{(p)}(f)(z)-f^{(p)}(z)\right| \leq \frac{p!r^{*} M_{r_{1}, q}(f)}{[n]_{q}\left(r^{*}-r\right)^{p+1}}$, where $M_{r_{1}, q}(f)$ is given as at the above point (i).

Proof. (i) Denoting $e_{j}(z)=z^{j}$, firstly we easily get that $L_{n, q}\left(e_{0}\right)(z)=1$, $L_{n, q}\left(e_{1}\right)(z)=e_{1}(z)$. Then, since for all $j, n \in \mathbb{N}, 2 \leq j \leq n$, we have

$$
L_{n, q}\left(e_{j}\right)(z)=q^{j(j-1) / 2}\binom{n}{j}_{q}[j]_{q}!\cdot \frac{z^{j}}{[n]_{q}^{j}},
$$

taking into account the relationship (7) in [4, p. 236], we get

$$
L_{n, q}\left(e_{j}\right)(z)=z^{j}\left(1-\frac{[1]_{q}}{[n]_{q}}\right)\left(1-\frac{[2]_{q}}{[n]_{q}}\right) \ldots\left(1-\frac{[j-1]_{q}}{[n]_{q}}\right)
$$

Also, note that for $j \geq n+1$ we easily get $L_{n, q}\left(e_{j}\right)(z)=0$. Since an easy computation shows that $L_{n, q}(f)(z)=\sum_{j=0}^{\infty} c_{j} L_{n, q}\left(e_{j}\right)(z)$, for all $|z| \leq r$, we immediately obtain

$$
\begin{aligned}
& \left|L_{n, q}(f)(z)-f(z)\right| \\
& \leq \sum_{j=0}^{n}\left|c_{j}\right| \cdot\left|L_{n, q}\left(e_{j}\right)(z)-e_{j}(z)\right|+\sum_{j=n+1}^{\infty}\left|c_{j}\right| \cdot\left|L_{n, q}\left(e_{j}\right)(z)-e_{j}(z)\right| \\
& \leq \sum_{j=2}^{n}\left|c_{j}\right| r^{j}\left|\left(1-\frac{[1]_{q}}{[n]_{q}}\right)\left(1-\frac{[2]_{q}}{[n]_{q}}\right) \ldots\left(1-\frac{[j-1]_{q}}{[n]_{q}}\right)-1\right|+\sum_{j=n+1}^{\infty}\left|c_{j}\right| r^{j},
\end{aligned}
$$

for all $|z| \leq r$. Taking into account the inequality proved in [4, p. 247],

$$
1-\left(1-\frac{[1]_{q}}{[n]_{q}}\right)\left(1-\frac{[2]_{q}}{n}\right) \ldots\left(1-\frac{[j-1]_{q}}{n}\right) \leq \frac{(j-1)[j-1]_{q}}{[n]_{q}}
$$

we obtain

$$
\begin{aligned}
& \sum_{j=2}^{n}\left|c_{j}\right| r^{j}\left|\left(1-\frac{[1]_{q}}{[n]_{q}}\right)\left(1-\frac{[2]_{q}}{[n]_{q}}\right) \ldots\left(1-\frac{[j-1]_{q}}{[n]_{q}}\right)-1\right| \\
& \leq \frac{1}{[n]_{q}} \sum_{j=2}^{\infty}\left|c_{j}\right|(j-1)[j-1]_{q} r^{j} \leq \frac{1}{[n]_{q}} \sum_{j=2}^{\infty}\left|c_{j}\right| \cdot \frac{j q^{j}}{q-1} \cdot r^{j} \\
& \leq \frac{1}{[n]_{q}} \cdot \frac{1}{q-1} \sum_{j=2}^{\infty}\left|c_{j}\right|(j+1)(r q)^{j} \leq \frac{1}{[n]_{q}} \cdot \frac{1}{q-1} \sum_{j=2}^{\infty}\left|c_{j}\right|(j+1) r_{1}^{j}
\end{aligned}
$$

where by hypothesis on f we have $\sum_{j=0}^{\infty}\left|c_{j}\right|(j+1) r_{1}^{j}<\infty$.
On the other hand, the analyticity of f implies $c_{j}=\frac{f^{(k)}(0)}{j!}$ and by the Cauchy's estimates of the coefficients c_{j} in the disk $|z| \leq r_{1}$, we have $\left|c_{j}\right| \leq \frac{K_{r_{1}}}{r_{1}^{j}}$, for all $j \geq 0$, where

$$
K_{r_{1}}=\max \left\{|f(z)| ;|z| \leq r_{1}\right\} \leq \sum_{j=0}^{\infty}\left|c_{j}\right| r_{1}^{j} \leq \sum_{j=0}^{\infty}\left|c_{j}\right|(j+1) r_{1}^{j}:=R_{r_{1}}(f)<\infty
$$

Therefore we get

$$
\begin{aligned}
& \sum_{j=n+1}^{\infty}\left|c_{j}\right| r^{j} \leq R_{r_{1}}(f)\left[\frac{r}{r_{1}}\right]^{n+1} \sum_{j=0}^{\infty}\left(\frac{r}{r_{1}}\right)^{j}=R_{r_{1}}(f)\left[\frac{r}{r_{1}}\right]^{n+1} \cdot \frac{r_{1}}{r_{1}-r} \\
& =R_{r_{1}}(f) \cdot \frac{r}{r_{1}-r} \cdot\left[\frac{r}{r_{1}}\right]^{n} \leq \frac{R_{r_{1}}(f)}{q-1} \cdot\left[\frac{r}{r_{1}}\right]^{n} \leq \frac{R_{r_{1}}(f)}{q-1} \cdot \frac{1}{q^{n}} \leq \frac{2 R_{r_{1}}(f)}{(q-1)^{2}} \cdot \frac{1}{[n]_{q}}
\end{aligned}
$$

Collecting the estimates, finally we obtain

$$
\left|L_{n, q}(f)(z)-f(z)\right| \leq \frac{1}{[n]_{q}} \cdot \frac{R_{r_{1}}(f)}{q-1}\left(1+\frac{2}{q-1}\right)=\frac{1}{[n]_{q}} \cdot \frac{q+1}{(q-1)^{2}} \cdot \sum_{j=0}^{\infty}\left|c_{j}\right|(j+1) r_{1}^{j}
$$

for all $n \in \mathbb{N}$ and $|z| \leq r$.
(ii) Denoting by γ the circle of radius $r^{*}>r$ and center 0 , since for any $|z| \leq r$ and $v \in \gamma$, we have $|v-z| \geq r^{*}-r$, by the Cauchy's formulas it follows that for all $|z| \leq r$ and $n \in \mathbb{N}$, we have

$$
\begin{aligned}
& \left|L_{n, q}^{(p)}(f)(z)-f^{(p)}(z)\right|=\frac{p!}{2 \pi}\left|\int_{\gamma} \frac{L_{n, q}(f)(v)-f(v)}{(v-z)^{p+1}} \mathrm{~d} v\right| \\
& \leq \frac{M_{r_{1}, q}(f)}{[n]_{q}} \frac{p!}{2 \pi} \cdot \frac{2 \pi r^{*}}{\left(r^{*}-r\right)^{p+1}}=\frac{M_{r_{1}, q}(f)}{[n]_{q}} \cdot \frac{p!r^{*}}{\left(r^{*}-r\right)^{p+1}},
\end{aligned}
$$

which proves (ii) and the theorem.

3. QUANTITATIVE VORONOVSKAJA-TYPE THEOREM

The following Voronovskaja-type result hold.
Theorem 2. For $R>q^{4}>1$ let $f: \mathbb{D}_{R} \rightarrow \mathbb{C}$ be analytic in \mathbb{D}_{R}, that is $f(z)=\sum_{k=0}^{\infty} c_{k} z^{k}$ for all $z \in \mathbb{D}_{R}$, and let $1 \leq r<\frac{r_{1}}{q^{3}}<\frac{R}{q^{4}}$ be arbitrary fixed. For all $n \in \mathbb{N},|z| \leq r$ we have $\left|L_{n, q}(f)(z)-f(z)+\frac{P_{q}(f)(z)}{[n]_{q}}\right| \leq \frac{Q_{r_{1}, q}(f)}{[n]_{q}^{2}}$, where $P_{q}(f)(z)=\sum_{k=2}^{\infty} c_{k} \frac{[k]_{q}-k}{q-1} z^{k}=\sum_{k=2}^{\infty} c_{k}\left([1]_{q}+\ldots+[k-1]_{q}\right) z^{k}$, and $Q_{r_{1}, q}(f)=\frac{q^{2}-2 q+2}{(q-1)^{3}} \cdot \sum_{k=0}^{\infty}\left|c_{k}\right|(k+1)(k+2)^{2}\left(r_{1} q\right)^{k}<\infty$.

Proof. We have

$$
\begin{aligned}
& \left|L_{n, q}(f)(z)-f(z)+\frac{P_{q}(f)(z)}{[n]_{q}}\right| \\
& =\left|\sum_{k=0}^{\infty} c_{k}\left[L_{n, q}\left(e_{k}\right)(z)-e_{k}(z)+\frac{[k]_{q}-k}{(q-1)[n]_{q}} e_{k}(z)\right]\right| \\
& \leq\left|\sum_{k=0}^{n} c_{k}\left[L_{n, q}\left(e_{k}\right)(z)-e_{k}(z)+\frac{[k]_{q}-k}{(q-1)[n]_{q}} e_{k}(z)\right]\right| \\
& +\left|\sum_{k=n+1}^{\infty} c_{k} z^{k}\left(\frac{[k]-k}{(q-1)[n]_{q}}-1\right)\right| \\
& \leq\left|\sum_{k=0}^{n} c_{k}\left[L_{n, q}\left(e_{k}\right)(z)-e_{k}(z)+\frac{[k]_{q}-k}{(q-1)[n]_{q}} e_{k}(z)\right]\right| \\
& +\sum_{k=n+1}^{\infty}\left|c_{k}\right| r^{k}\left(\frac{[k]_{q}-k}{(q-1)[n]_{q}}-1\right),
\end{aligned}
$$

for all $|z| \leq r$ and $n \in \mathbb{N}$.
In what follows, firstly we will prove by mathematical induction with respect to k that

$$
\begin{equation*}
0 \leq E_{n, k, q}(z) \leq \frac{r_{1}^{2}}{[n]_{q}^{2}}(k-1)(k-2)^{2}[k-2]_{q}, \tag{2}
\end{equation*}
$$

for all $2 \leq k \leq n$ (here $n \in \mathbb{N}$ is arbitrary fixed) and $|z| \leq r$, where

$$
\begin{aligned}
E_{n, k, q}(z) & =L_{n, q}\left(e_{k}\right)(z)-e_{k}(z)+\frac{[k]_{q}-k}{(q-1)[n]_{q}} e_{k}(z) \\
& =L_{n, q}\left(e_{k}\right)(z)-e_{k}(z)+\frac{1}{[n]_{q}}\left([1]_{q}+\ldots+[k-1]_{q}\right) e_{k}(z)
\end{aligned}
$$

Note that the relationship $\frac{[k]_{q}-k}{(q-1)[n]_{q}} e_{k}(z)=\frac{1}{[n]_{q}}\left([1]_{q}+\ldots+[k-1]_{q}\right) e_{k}(z), k \geq$ 2 , easily follows by mathematical induction.

On the other hand, by the formula for $L_{n, q}\left(e_{k}\right)$ in the proof of Theorem 1 (i), simple calculation leads to $E_{n, 2, q}(z)=0$, for all $n \in \mathbb{N}$ and to the recurrence formulas

$$
\begin{gathered}
L_{n, q}\left(e_{j+1}\right)(z)=-\frac{z^{2}}{[n]_{q}} D_{q}\left[L_{n, q}\left(e_{j}\right)\right](z)+z L_{n, q}\left(e_{j}\right)(z), j \geq 1, n \in \mathbb{N},|z| \leq r, \\
E_{n, k, q}(z)=-\frac{z^{2}}{[n]_{q}} D_{q}\left(L_{n, q}\left(e_{k-1}\right)(z)-z^{k-1}\right)+z E_{n, k-1, q}(z), n \geq k \geq 3,|z| \leq r .
\end{gathered}
$$

Passing to absolute value above with $|z| \leq r$ and $3 \leq k \leq n$ and applying the mean value theorem in complex analysis, with the general notation $\|f\|_{r}=$ $\max \{|f(z)| ;|z| \leq r\}$, one obtains

$$
\begin{aligned}
\left|E_{n, k, q}(z)\right| & \leq \frac{r^{2}}{[n]_{q}}\left\|\left(L_{n, q}\left(e_{k-1}\right)(z)-z^{k-1}\right)^{\prime}\right\|_{q r}+r \cdot\left|E_{n, k-1, q}(z)\right| \\
& \leq r \cdot\left|E_{n, k-1, q}(z)\right|+\frac{r^{2}}{[n]_{q}} \cdot \frac{k-1}{q r}\left\|L_{n, q}\left(e_{k-1}\right)(z)-z^{k-1}\right\|_{q r} \\
& \leq r \cdot\left|E_{n, k-1, q}(z)\right|+\frac{r^{2}}{[n]_{q}} \cdot \frac{k-1}{q r} \cdot(q r)^{k-1} \cdot \frac{(k-2)[k-2]_{q}}{[n]_{q}},
\end{aligned}
$$

where above we used the estimate which easily follows from the proof of Theorem 1 (i): $\left|L_{n, q}\left(e_{k}\right)(z)-z^{k}\right| \leq r^{k} \frac{(k-1)[k-1]_{q}}{[n]_{q}},|z| \leq r, k \geq 2$. Therefore, for all $|z| \leq r, 3 \leq k \leq n$, we get

$$
\begin{aligned}
\left|E_{n, k, q}(z)\right| & \leq r \cdot\left|E_{n, k-1, q}(z)\right|+\frac{r^{2}}{[n]_{q}} \cdot \frac{k-1}{q r} \cdot(q r)^{k-1} \cdot \frac{(k-2)[k-2]_{q}}{[n]_{q}} \\
& \leq r_{1} \cdot\left|E_{n, k-1, q}(z)\right|+\frac{r_{1}^{2}}{[n]_{q}} \cdot(k-1) r_{1}^{k-2} \cdot \frac{(k-2)[k-2]_{q}}{[n]_{q}} \\
& =r_{1} \cdot\left|E_{n, k-1, q}(z)\right|+\frac{(k-1)(k-2)[k-2]_{q}}{[n]_{q}^{2}} \cdot r_{1}^{k} .
\end{aligned}
$$

Taking $k=3,4, \ldots$, step by step we easily obtain the estimate

$$
\begin{aligned}
\left|E_{n, k, q}(z)\right| & \leq \frac{r_{1}^{k}}{[n]_{q}^{2}}\left(\sum_{j=3}^{k}(j-1)(j-2)[j-2]_{q}\right) \leq \frac{r_{1}^{k}}{[n]_{q}^{2}}(k-1)(k-2)^{2}[k-2]_{q} \\
& \leq \frac{\left(r_{1} q\right)^{k}}{(q-1)[n]_{q}^{2}}(k-1)(k-2)^{2},
\end{aligned}
$$

for all $|z| \leq r$ and $3 \leq k$, because $[k-2]_{q} \leq \frac{q^{k}}{q-1}$. In conclusion, (2) is valid, which implies

$$
\begin{aligned}
& \left|\sum_{k=0}^{n} c_{k}\left[L_{n, q}\left(e_{k}\right)(z)-e_{k}(z)+\frac{[k]_{q}-k}{(q-1)[n]_{q}} e_{k}(z)\right]\right| \leq \sum_{k=0}^{n}\left|c_{k}\right| \cdot\left|E_{n, k, q}(z)\right| \\
& \leq \frac{1}{(q-1)[n]_{q}^{2}} \sum_{k=3}^{n}\left|c_{k}\right|(k-1)(k-2)^{2}\left(r_{1} q\right)^{k} \\
& \leq \frac{1}{(q-1)[n]_{q}^{2}} \sum_{k=0}^{\infty}\left|c_{k}\right|(k+1)(k+2)^{2}\left(r_{1} q\right)^{k} .
\end{aligned}
$$

On the other hand, since $\frac{[k]_{q}-k}{(q-1)[n]_{q}}-1 \geq 0$ for all $k \geq n+1$, reasoning as in the proof of Theorem 1 (i), and keeping the notation for $R_{r_{1}}(f)$ there, we get

$$
\begin{aligned}
& \sum_{k=n+1}^{\infty}\left|c_{k}\right| r^{k}\left(\frac{[k]_{q}-k}{(q-1)[n]_{q}}-1\right) \leq \sum_{k=n+1}^{\infty}\left|c_{k}\right| r^{k} \cdot \frac{[k]_{q}}{(q-1)[n]_{q}} \\
& \leq \frac{R_{r_{1}}(f)}{(q-1)[n]_{q}} \sum_{k=n+1}^{\infty} \frac{1}{r_{1}^{k}} \cdot r^{k} \cdot q^{k} \\
& =\frac{R_{r_{1}}(f)}{(q-1)[n]_{q}} \sum_{k=n+1}^{\infty}\left[\left(\frac{r}{r_{1}}\right)^{1 / 3}\right]^{k} \cdot\left[\left(\frac{r}{r_{1}}\right)^{1 / 3}\right]^{2 k} q^{k} \\
& \leq \frac{R_{r_{1}}(f)}{(q-1)[n]_{q}} \cdot\left(\frac{r}{r_{1}}\right)^{(n+1) / 3} \sum_{k=0}^{\infty}\left[\left(\frac{r}{r_{1}}\right)^{1 / 3}\right]^{k} \\
& =\frac{R_{r_{1}}(f)}{(q-1)[n]_{q}} \cdot\left[\left(\frac{r}{r_{1}}\right)^{1 / 3}\right]^{n} \cdot \frac{r^{1 / 3}}{r_{1}^{1 / 3}-r^{1 / 3}} \leq \frac{R_{r_{1}}(f)}{(q-1)^{3}[n]_{q}^{2}} \\
& \leq \frac{1}{(q-1)^{3}[n]_{q}^{2}} \sum_{k=0}^{\infty}\left|c_{k}\right|(k+1)(k+2)^{2}\left(r_{1} q\right)^{k},
\end{aligned}
$$

where we used the inequalities, $[k]_{q} \leq k q^{k}, \frac{1}{q^{n}} \leq \frac{1}{(q-1)[n] q}, \frac{r^{1 / 3}}{r_{1}^{1 / 3}-r^{1 / 3}} \leq \frac{1}{q-1}$, and where for $\rho=\left(\frac{r}{r_{1}}\right)^{1 / 3} \leq \frac{1}{q}$, we used the obvious inequality $\rho^{2 k} \cdot q^{k} \leq 1$.

Collecting now all the estimates and taking into account that $\frac{1}{q-1}+\frac{1}{(q-1)^{3}}=$ $\frac{q^{2}-2 q+2}{(q-1)^{3}}$, we arrive at the desired estimate.

4. EXACT APPROXIMATION ESTIMATES

The first main result of this section is the following.
ThEOREM 3. Let $R>q^{4}>1, f: \mathbb{D}_{R} \rightarrow \mathbb{C}$ be analytic in \mathbb{D}_{R}, that is $f(z)=\sum_{k=0}^{\infty} c_{k} z^{k}$ for all $z \in \mathbb{D}_{R}$, and $1 \leq r<\frac{r_{1}}{q^{3}}<\frac{R}{q^{4}}$ be arbitrary fixed. If f is not a polynomial of degree ≤ 1, then for all $n \in \mathbb{N}$ and $|z| \leq r$ we have $\left\|L_{n, q}(f)-f\right\|_{r} \geq \frac{C_{r, r_{1}, q}(f)}{[n]_{q}}$, where the constant $C_{r, r_{1}, q}(f)$ depends only on f, r and r_{1}. Here $\|f\|_{r}$ denotes $\max _{|z| \leq r}\{|f(z)|\}$.

Proof. For $P_{q}(f)(z)$ defined in the statement of Theorem 2, all $|z| \leq r$ and $n \in \mathbb{N}$ we have

$$
\begin{aligned}
& L_{n, q}(f)(z)-f(z) \\
& =\frac{1}{[n]_{q}}\left\{-P_{q}(f)(z)+\frac{1}{[n]_{q}}\left[[n]_{q}^{2}\left(L_{n, q}(f)(z)-f(z)+\frac{P_{q}(f)(z)}{[n]_{q}}\right)\right]\right\}
\end{aligned}
$$

In what follows we will apply to this identity the following obvious property:

$$
\|F+G\|_{r} \geq\left|\|F\|_{r}-\|G\|_{r}\right| \geq\|F\|_{r}-\|G\|_{r}
$$

It follows

$$
\left\|L_{n, q}(f)-f\right\|_{r} \geq \frac{1}{[n]_{q}}\left\{\left\|P_{q}(f)\right\|_{r}-\frac{1}{[n]_{q}}\left[[n]_{q}^{2}\left\|L_{n, q}(f)-f+\frac{P_{q}(f)}{[n]_{q}}\right\|_{r}\right]\right\}
$$

Since by hypothesis f is not a polynomial of degree ≤ 1 in \mathbb{D}_{R}, we get $\left\|P_{q}(f)\right\|_{r}>0$.

Indeed, supposing the contrary it follows that $P_{q}(f)(z)=0$ for all $z \in \overline{\mathbb{D}}_{r}=$ $\{z \in \mathbb{C} ;|z| \leq r\}$.

Since simple calculation shows that $P_{q}(f)(z)=z \cdot \frac{D_{q}(f)(z)-f^{\prime}(z)}{q-1}, P_{q}(f)(z)=$ 0 implies $D_{q}(f)(z)=f^{\prime}(z)$, for all $z \in \overline{\mathbb{D}}_{r} \backslash\{0\}$. Taking into account the representation of f as $f(z)=\sum_{k=0}^{\infty} c_{k} z^{k}$, the last equality immediately leads to $c_{k}=0$, for all $k \geq 2$, which means that f is linear in $\overline{\mathbb{D}}_{r}$, a contradiction with the hypothesis.

Now, by Theorem 2 we have $[n]_{q}^{2}\left\|L_{n, q}(f)-f+\frac{P_{q}(f)}{[n]_{q}}\right\|_{r} \leq Q_{r_{1}, q}(f)$, where $Q_{r_{1}, q}(f)$ is a positive constant depending only on f, r_{1} and q.

Since $\frac{1}{[n]_{q}} \rightarrow 0$ as $n \rightarrow \infty$, there exists an index n_{0} depending only on f, r, r_{1} and q, such that for all $n>n_{0}$ we have

$$
\left\|P_{q}(f)\right\|_{r}-\frac{1}{[n]_{q}}\left[[n]_{q}^{2}\left\|L_{n, q}(f)-f+\frac{P_{q}(f)}{[n]_{q}}\right\|_{r}\right] \geq \frac{1}{2}\left\|\frac{P_{q}(f)}{2}\right\|_{r}
$$

which immediately implies that

$$
\left\|L_{n, q}(f)-f\right\|_{r} \geq \frac{1}{[n]_{q}} \cdot \frac{1}{2}\left\|P_{q}(f)\right\|_{r}, \forall n>n_{0}
$$

For $n \in\left\{1, \ldots, n_{0}\right\}$ we obviously have $\left\|L_{n, q}(f)-f\right\|_{r} \geq \frac{M_{r, r_{1}, n, q}(f)}{[n]_{q}}$ with $M_{r, r_{1}, n, q}(f)=[n]_{q} \cdot\left\|L_{n, q}(f)-f\right\|_{r}>0$ (if $\left\|L_{n, q}(f)-f\right\|_{r}$ would be equal to 0 , this would imply that f is a linear function, a contradiction).

Therefore, finally we get $\left\|L_{n, q}(f)-f\right\|_{r} \geq \frac{C_{r, r_{1}, q}(f)}{n}$ for all $n \in \mathbb{N}$, where

$$
C_{r, r_{1}, q}(f)=\min \left\{M_{r, r_{1}, 1, q}(f), \ldots, M_{r, r_{1}, n_{0}, q}(f), \frac{1}{2}\left\|P_{q}(f)\right\|_{r}\right\}
$$

which completes the proof.
Combining now Theorem 3 with Theorem 1 (i), we immediately get the following.

Corollary 4. Let $R>q^{4}>1, f: \mathbb{D}_{R} \rightarrow \mathbb{C}$ be analytic in \mathbb{D}_{R}, that is $f(z)=\sum_{k=0}^{\infty} c_{k} z^{k}$ for all $z \in \mathbb{D}_{R}$, and $1 \leq r<\frac{r_{1}}{q^{3}}<\frac{R}{q^{4}}$ be arbitrary fixed. If f is not a polynomial of degree ≤ 1, then for all $n \in \mathbb{N}$ we have $\left\|L_{n, q}(f)-f\right\|_{r} \sim \frac{1}{[n]_{q}}$, where the constants in the equivalence depend on f, r, r_{1} and q but are independent of n.

Concerning the simultaneous approximation we present the following.
THEOREM 5. Let $R>q^{4}>1, f: \mathbb{D}_{R} \rightarrow \mathbb{C}$ be analytic in \mathbb{D}_{R}, that is $f(z)=\sum_{k=0}^{\infty} c_{k} z^{k}$ for all $z \in \mathbb{D}_{R}$, and $1 \leq r<r^{*}<\frac{r_{1}}{q^{3}}<\frac{R}{q^{4}}$ be arbitrary fixed. Also, let $p \in \mathbb{N}$. If f is not a polynomial of degree $\leq \max \{1, p-1\}$, then for all $n \in \mathbb{N}$ we have $\left\|L_{n, q}^{(p)}(f)-f^{(p)}\right\|_{r} \sim \frac{1}{[n]_{q}}$, where the constants in the equivalence depend on f, r, r^{*}, r_{1}, p and q but are independent of n.

Proof. Since by Theorem 1 (ii), we have the upper estimate for $\| L_{n, q}^{(p)}(f)-$ $f^{(p)} \|_{r}$, it remains to prove the lower estimate for $\left\|L_{n, q}^{(p)}(f)-f^{(p)}\right\|_{r}$.

For this purpose, denoting by Γ the circle of radius r^{*} and center 0 , we have the inequality $|v-z| \geq r^{*}-r$ valid for all $|z| \leq r$ and $v \in \Gamma$. The Cauchy's formula is expressed by

$$
L_{n, q}^{(p)}(f)(z)-f^{(p)}(z)=\frac{p!}{2 \pi i} \int_{\Gamma} \frac{L_{n, q}(f)(v)-f(v)}{(v-z)^{p+1}} \mathrm{~d} v
$$

Now, as in the proof of Theorem 1 (ii), for all $v \in \Gamma$ and $n \in \mathbb{N}$ we have

$$
\begin{aligned}
& L_{n, q}(f)(v)-f(v) \\
& =\frac{1}{[n]_{q}}\left\{-P_{q}(f)(v)+\frac{1}{[n]_{q}}\left[[n]_{q}^{2}\left(L_{n, q}(f)(v)-f(v)+\frac{P_{q}(f)(v)}{[n]_{q}}\right)\right]\right\}
\end{aligned}
$$

which replaced in the above Cauchy's formula implies

$$
\begin{aligned}
& L_{n, q}^{(p)}(f)(z)-f^{(p)}(z)=\frac{1}{[n]_{q}}\left\{\frac{p!}{2 \pi i} \int_{\Gamma}-\frac{P_{q}(f)(v)}{(v-z)^{p+1}} \mathrm{~d} v\right. \\
& \left.+\frac{1}{[n]_{q}} \cdot \frac{p!}{2 \pi i} \int_{\Gamma} \frac{[n]_{q}^{2}\left(L_{n, q}(f)(v)-f(v)+\frac{P_{q}(f)(v)}{[n]_{q}}\right)}{(v-z)^{p+1}} \mathrm{~d} v\right\} \\
& =\frac{1}{[n]_{q}}\left\{\left[-P_{q}(f)(z)\right]^{(p)}+\frac{1}{[n]_{q}} \cdot \frac{p!}{2 \pi i} \int_{\Gamma} \frac{[n]_{q}^{2}\left(L_{n, q}(f)(v)-f(v)+\frac{P_{q}(f)(v)}{[n]_{q}}\right)}{(v-z)^{p+1}} \mathrm{~d} v\right\}
\end{aligned}
$$

Passing now to $\|\cdot\|_{r}$, for all $n \in \mathbb{N}$ it follows

$$
\begin{aligned}
& \left\|L_{n, q}^{(p)}(f)-f^{(p)}\right\|_{r} \geq \frac{1}{[n]_{q}}\left\{\left\|\left[-P_{q}(f)\right]^{(p)}\right\|_{r}\right. \\
& \left.-\frac{1}{[n]_{q}}\left\|\frac{p!}{2 \pi} \int_{\Gamma} \frac{[n]_{q}^{2}\left(L_{n, q}(f)(v)-f(v)+\frac{P_{q}(f)(v)}{[n]_{q}}\right)}{(v-z)^{p+1}} \mathrm{~d} v\right\|_{r}\right\}
\end{aligned}
$$

where by using Theorem 2 , for all $n \in \mathbb{N}$ we get

$$
\begin{aligned}
& \left\|\frac{p!}{2 \pi} \int_{\Gamma} \frac{[n]_{q}^{2}\left(L_{n, q}(f)(v)-f(v)+\frac{P_{q}(f)(v)}{[n]_{q}}\right)}{(v-z)^{p+1}} \mathrm{~d} v\right\|_{r} \\
& \leq \frac{p!}{2 \pi} \cdot \frac{2 \pi r^{*}[n]_{q}^{2}}{\left(r^{*}-r\right)^{p+1}}\left\|L_{n, q}(f)-f+\frac{P_{q}(f)}{[n]_{q}}\right\|_{r^{*}} \leq Q_{r_{1}, q}(f) \cdot \frac{p!r^{*}}{\left(r^{*}-r\right)^{p+1}}
\end{aligned}
$$

But by hypothesis on f, we have $\left\|-\left[P_{q}(f)\right]^{(p)}\right\|_{r^{*}}>0$. Indeed, supposing the contrary would follow that $\left[P_{q}(f)\right]^{(p)}(z)=0$, for all $|z| \leq r^{*}$, where by the statement of Theorem 2 we have

$$
P_{q}(f)(z)=\sum_{k=2}^{\infty} c_{k}\left([1]_{q}+[2]_{q}+\ldots+[k-1]_{q}\right) z^{k}
$$

Firstly, supposing that $p=1$, by $P_{q}^{\prime}(f)(z)=\sum_{k=2}^{\infty} c_{k} k\left([1]_{q}+[2]_{q}+\ldots+[k-\right.$ $\left.1]_{q}\right) z^{k-1}=0$, for all $|z| \leq r^{*}$, would follow that $c_{k}=0$, for all $k \geq 2$, that is f would be a polynomial of degree $1=\max \{1, p-1\}$, a contradiction with the hypothesis.

Taking $p=2$, we would get $P_{q}^{\prime \prime}(z)=\sum_{k=2}^{\infty} c_{k} k(k-1)\left([1]_{q}+[2]_{q}+\ldots+[k-\right.$ $\left.1]_{q}\right) z^{k-2}=0$, for all $|z| \leq r^{*}$, which immediately would imply that $c_{k}=0$, for all $k \geq 2$, that is f would be a polynomial of degree $1=\max \{1, p-1\}$, a contradiction with the hypothesis.

Now, taking $p>2$, for all $|z| \leq r^{*}$ we would get

$$
P_{q}^{(p)}(f)(z)=\sum_{k=p}^{\infty} c_{k} k(k-1) \ldots(k-p+1)\left([1]_{q}+[2]_{q}+\ldots+[k-1]_{q}\right) z^{k-p}=0
$$

which would imply $c_{k}=0$ for all $k \geq p$, that is f would be a polynomial of degree $p-1=\max \{1, p-1\}$, a contradiction with the hypothesis.

In continuation, reasoning exactly as in the proof of Theorem 3, we immediately get the desired conclusion.

Remark 6. Taking into account that for $q>1$ we have the inequalities $(q-1) \cdot \frac{1}{q^{n}} \leq \frac{1}{[n]_{q}} \leq q \cdot \frac{1}{q^{n}}$, for all $n \in \mathbb{N}$, it follows that the exact order of approximation in Corollary 4 and Theorem 5 is q^{-n}, which is essentially better than the order of approximation $1 / n$, obtained in the case $q=1$, that is for $L_{n, 1}(f)(z):=L_{n}(f)(z)$, in [2].

5. APPROXIMATION BY ITERATES

For f analytic in \mathbb{D}_{R} that is of the form $f(z)=\sum_{k=0}^{\infty} c_{k} z^{k}$, for all $z \in$ \mathbb{D}_{R}, let us define the iterates of complex Lorentz polynomial $L_{n, q}(f)(z)$, by $L_{n, q}^{(1)}(f)(z)=L_{n, q}(f)(z)$ and $L_{n, q}^{(m)}(f)(z)=L_{n, q}\left[L_{n, q}^{(m-1)}(f)\right](z)$, for any $m \in$ $\mathbb{N}, m \geq 2$. Since we have $L_{n, q}(f)(z)=\sum_{k=0}^{\infty} c_{k} L_{n, q}\left(e_{k}\right)(z)$, by recurrence for all $m \geq 1$, we easily get that $L_{n, q}^{(m)}(f)(z)=\sum_{k=0}^{\infty} c_{k} L_{n, q}^{(m)}\left(e_{k}\right)(z)$, where $L_{n, q}^{(m)}\left(e_{k}\right)(z)=1$ if $k=0, L_{n, q}^{(m)}\left(e_{k}\right)(z)=z$ if $k=1, L_{n, q}^{(m)}\left(e_{k}\right)(z)=0$ if $k \geq n+1$ and

$$
L_{n, q}^{(m)}\left(e_{k}\right)(z)=\left(1-\frac{[1]_{q}}{[n]_{q}}\right)^{m}\left(1-\frac{[2]_{q}}{[n]_{q}}\right)^{m} \ldots\left(1-\frac{[k-1]_{q}}{[n]_{q}}\right)^{m} z^{k}, 2 \leq k \leq n .
$$

The main result of this section is the following.
Theorem 7. Let f be analytic in \mathbb{D}_{R}, that is $f(z)=\sum_{k=0}^{\infty} c_{k} z^{k}$, for all $z \in \mathbb{D}_{R}$, with $R>q>1$. Let $1 \leq r<\frac{r_{1}}{q}<\frac{R}{q}$. We have

$$
\left\|L_{n, q}^{(m)}(f)-f\right\|_{r} \leq \frac{m}{[n]_{q}} \cdot \frac{q+1}{(q-1)^{2}} \sum_{k=0}^{\infty}\left|c_{k}\right|(k+1) r_{1}^{k},
$$

and therefore if $\lim _{n \rightarrow \infty} \frac{m_{n}}{[n] q}=0$, then $\lim _{n \rightarrow \infty}\left\|L_{n, q}^{\left(m_{n}\right)}(f)-f\right\|_{r}=0$.
Proof. For all $|z| \leq r$, we easily obtain

$$
\begin{aligned}
& \left|f(z)-L_{n, q}^{(m)}(f)(z)\right| \\
& \leq \sum_{k=2}^{n}\left|c_{k}\right| r^{k}\left[1-\left(1-\frac{[1]_{q}}{[n]_{q}}\right)^{m}\left(1-\frac{[2]}{[n]_{q}}\right)^{m} \ldots\left(1-\frac{[k-1]_{q}}{[n]_{q}}\right)^{m}\right] \\
& +\sum_{k=n+1}^{\infty}\left|c_{k}\right| \cdot r^{k} .
\end{aligned}
$$

Denoting $A_{k, n}=\left(1-\frac{[1]_{q}}{[n]_{q}}\right)\left(1-\frac{[2]}{[n]_{q}}\right) \ldots\left(1-\frac{[k-1]_{q}}{[n]_{q}}\right)$, we get $1-A_{k, n}^{m}=(1-$ $\left.A_{k, n}\right)\left(1+A_{k, n}+A_{k, n}^{2}+\ldots+A_{k, n}^{m-1}\right) \leq m\left(1-A_{k, n}\right)$ and therefore since $1-A_{k, n} \leq$ $\frac{(k-1)[k-1]_{q}}{[n]_{q}}$, for all $|z| \leq r$ we obtain

$$
\begin{aligned}
& \sum_{k=2}^{n}\left|c_{k}\right| r^{k}\left[1-\left(1-\frac{[1]_{q}}{[n]_{q}}\right)^{m}\left(1-\frac{[2]_{q}}{[n]_{q}}\right)^{m} \ldots\left(1-\frac{[k-1]_{q}}{[n]_{q}}\right)^{m}\right] \\
& \leq m \sum_{k=2}^{\infty}\left|c_{k}\right| r^{k}\left[1-A_{k, n}\right] \leq \frac{m}{[n]_{q}} \sum_{k=2}^{\infty}\left|c_{k}\right|(k-1)[k-1]_{q} r^{k} \\
& \leq \frac{m}{[n]_{q}} \sum_{k=2}^{\infty}\left|c_{k}\right| \cdot \frac{k q^{k}}{q-1} \cdot r^{k} \leq \frac{m}{[n]_{q}} \cdot \frac{1}{q-1} \sum_{k=2}^{\infty}\left|c_{k}\right|(k+1)(r q)^{k} \\
& \leq \frac{m}{[n]_{q}} \cdot \frac{1}{q-1} \sum_{k=2}^{\infty}\left|c_{k}\right|(k+1) r_{1}^{k} .
\end{aligned}
$$

On the other hand, following exactly the reasonings in the proof of Theorem 1 , we get the estimate

$$
\sum_{k=n+1}^{\infty}\left|c_{k}\right| \cdot r^{k} \leq \frac{1}{[n]_{q}} \cdot \frac{2 \sum_{k=0}^{\infty}\left|c_{k}\right|(k+1) r_{1}^{k}}{(q-1)^{2}} \leq \frac{m}{[n]_{q}} \cdot \frac{2 \sum_{k=0}^{\infty}\left|c_{k}\right|(k+1) r_{1}^{k}}{(q-1)^{2}}
$$

Collecting now all the estimates and taking into account that $\frac{1}{q-1}+\frac{2}{(q-1)^{2}}=$ $\frac{q+1}{(q-1)^{2}}$, we arrive at the desired estimate.

Remark 8. Taking into account the equivalence $\frac{1}{[n]_{q}} \sim \frac{1}{q^{n}}$, from Theorem 7 it follows the conclusion that if $\lim _{n \rightarrow \infty} \frac{m_{n}}{q^{n}}=0$, then

$$
\lim _{n \rightarrow \infty}\left\|L_{n, q}^{\left(m_{n}\right)}(f)-f\right\|_{r}=0
$$

REFERENCES

[1] GaL, S.G., Approximation by complex Bernstein and convolution type operators, World Scientific Publishing Company, New Jersey, London, Singapore, Beijing, Shanghai, Hong Kong, Taipei, Chennai, 2009.
[2] GaL, S.G., Approximation by complex Lorentz polynomials, Math. Commun., 16 (2011), 67-75.
[3] Lorentz, G.G., Bernstein Polynomials, Chelsea Publishing Company, New York, 1986.
[4] Ostrovska, S., q-Bernstein polynomials and their iterates, J. Approx. Theory, 123 (2003), 232-255.

Received November 21, 2010
Accepted June 25, 2011

University of Oradea
Department of Mathematics and Computer Science
410087 Oradea, Romania
E-mail: galso@uoradea.ro

