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Abstract. In this paper we prove the generalized Hyers-Ulam stability of the
mixed type additive and quadratic functional equation
fBr+y)+fBz—y) = flz+y)+ fl@—y) +2f(3z) — 2f(x)
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1. INTRODUCTION

The study of stability problems for functional equations is related to a
question of Ulam [53] concerning the stability of group homomorphisms and
affirmatively answered for Banach spaces by Hyers [37]. Subsequently, the
result of Hyers was generalized by Aoki [2] for additive mappings and by Th.
M. Rassias [50] for linear mappings by considering an unbounded Cauchy
difference. The paper of Th. M. Rassias has provided a lot of influence in
the development of what we now call a generalized Hyers-Ulam stability of
functional equations. We refer the interested readers for more information on
such problems to the papers [4, 36, 39, 49].

In 1991, Z. Gajda [23] answered the question for the case p > 1, which
was raised by Rassias. This new concept is known as Hyers-Ulam-Rassias
stability of functional equations (see [19, 24, 38]). On the other hand, J.M.
Rassias [43]-[48] considered the Cauchy difference controlled by a product
of different powers of norm. This stability phenomenon is called the Ulam-
Gavruta-Rassias stability (see also [23]).

The functional equation

(1) flx+y) + flxz—y) =2f(x) +2f(y)

is related to symmetric bi-additive function (see [1, 40]). Hyers-Ulam-Rassias
stability problem for the quadratic functional equation (1) between Banach
spaces was proved by Skof (see [3, 4, 34, 51]).

A triangular norm (shortly, t-norm) is a binary operation 7" : [0, 1] x [0,1] —
[0, 1] which is commutative, associative, monotone and has 1 as the unit ele-
ment. A t-norm T can be extended (by associativity) in a unique way to an
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n-ary operation taking, for all (x1,...,x,) € [0,1]", the value T'(x1, ..., z,) de-
fined by T’ 1xl =1, Tz =T(T] :UZ,{L‘n) =T(x1,...,25). A t-norm T can
also be extended to a countable operation taking, for any sequence {x,}nen
n [0, 1], the value T2% x; = limy, o0 7" x;. Let £ = (L, <) be a complete
lattice and let U be a nonempty set called the universe. An L-fuzzy set in U is
defined as a mapping A : U — L. For each u in U, A(u) represents the degree
(in L) to which u is an element of U.
Consider the set L* and operation <y« defined by

L* = {(z1,32) : (z1,22) € [0,1]* and 21 + 22 < 1},
(z1,22) <+ (y1,92) <= 1 < y1,22 > Y2,

for all (x1,x2), (y1,y2) € L*. Then (L*, <p«) is a complete lattice (see [5]).

A triangular norm (t-norm) on L is a mapping T : L? — L satisfying the
following conditions:

(1) T'(z,11) = z, for all z € L; (boundary condition).

(2) T(z,y) = T(y,z), for all (z,y) € L?; (commutativity).

(3) T(x,T(y,2)) = T(T(x,y), 2), for all (x,y,2) € L3; (associativity).

(4) z <p 2,y <p v = T(x,y) <p T(2',y), for all (z,2',y,y’) € L*
(monotonicity).

A t-norm T on L is said to be continuous if, for any x,y € £ and any se-
quences {xy }, {yn} which converge to x and y, respectively, lim, o0 T'(2p, Yn) =
T(x,y). A t-norm T can also be defined recursively as an (n+1)-ary operation
(n € N)by Tt =T and T"™(z1, ..., wpt1) = T(T" (21, ..., 20), Tpy1), for all
n>2and x; € L.

(1) A negator on L is any decreasing mapping N : L — L satisfying N(0r) =
1L and N(lL) = OL.

(2) If N(N(z)) =z, for all x € L, then N is called an involutive negator.

(3) The negator Ny on ([0, 1], <) defined as Ny(x) = 1 —z, for all x € [0, 1],
is called the standard negator on ([0, 1], <).

DEFINITION 1. The triple (X, M, T) is said to be an L-fuzzy metric space
if X is an arbitrary (non-empty) set, 7' is a continuous ¢-norm on L and M
is an L-fuzzy set on X?x]0, +oo[ satisfying the following conditions: for all
z,y,z € X and t, s €]0, +o0],
(1) M(z,y, )>LOL;
(2) (x Y, )—1L, for all ¢t > 0 if and only if z = y;
(4) ( (. y,t),M(y,%S)) <L M(z, 2t + s);
(5) M(x,y,.) :]0,+oo[— L is continuous.
In this case, M is called an L-fuzzy metric.

DEFINITION 2. The triple (V, P,T) is said to be an L-fuzzy normed space
if V is a vector space, T is a continuous t-norm on L and P is an L-fuzzy

set on V'x]0,+oo[ satisfying the following conditions: for all z,y € V and
t,s €]0, +ool,
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ax,t) = P(x, |£[—‘) for each o # 0;

P(x,t), P(y,s)) <p P(z +y,t+s);

P(z,.) :]0,400[— L is continuous.
limy o P(z,t) =01 and limy_, P(x,t) =1p.

In this case, P is called an £-fuzzy norm.

A sequence {zy, }nen in an L-fuzzy normed space (V, P, T) is called a Cauchy
sequence if, for each e € L\{01} and ¢ > 0, there exists nyg € N such that, for
all n,m > ng, P(xy, — Tm,t) > N(€), where N is a negator on L.

A sequence {z, }nen is said to be convergent to x € V' in the £-fuzzy normed
space (V, P,T), which is denoted by z,, — z if P(x, — z,t) — 1., whenever
n — +oo, for all t > 0.

An L- fuzzy normed space (V, P,T) is said to be complete if and only if
every Cauchy sequence in V' is convergent.

B(
P(z,t) =1 if and only if z = 0;
B(
T(

Note that, if P is an L-fuzzy norm on V, then the following are satisfied:

(1) P(z,t) is nondecreasing with respect to ¢, for all x € V.

(2) P(z —y,t) = P(y — x,t), for all z,y € V and t €]0, +00].

Let (V, P,T) be an L-fuzzy normed space. If we define M(z,y,t) = P(x —
y,t), for all z,y € V and t €0, +oo[, then M is an L-fuzzy metric on V, which
is called the L-fuzzy metric induced by the £-fuzzy norm P.

In 1897, Hensel [35] introduced a field with a valuation in which does not
have the Archimedean property. Let K be a field. A non-Archimedean abso-
lute value on K is a function |.| : K — [0,4o00[ such that, for any a,b € K,

(1) Ja| > 0 and equality holds if and only if a = 0,

(2) |abl = [al[0],

(3) Ja + b| < max{|al,|b|} (the strict triangle inequality).

Note that |n| < 1 for each integer n. We always assume, in addition, that
|.| is non-trivial, i.e., there exists an ap € K such that |ag| # 0, 1.

DEFINITION 3. A non-Archimedean £-fuzzy normed space is a triple (V, P, T'),
where V is a vector space, T is a continuous ¢t-norm on L and P is an L-fuzzy
set on V' x]0,4o00| satisfying the following conditions: for all z,y € V and
t,s €]0, +o0],

1) 07, <1, P((IZ,t);

) P(z,t) =1, if and only if z = 0;

) P(ax,t) = P(z, |(i—‘), for all « # 0;
)
)

5) P(x,.) :]0,00[— L is continuous;
6) limy_,o P(x,t) = 0y and lim;_,o P(z,t) = 1.
Recently, S. Shakeri, R. Saadati and C. Park in [52], proved the generalized

Hyers-Ulam stability of functional equation (1) in non-Archimedean L£-fuzzy
normed spaces.
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In this paper we deal with the following mixed type additive-quadratic func-
tional equation (briefly AQ-functional equation):

fBr+y)+ fBx—y)=flz+y)+ flx—y)+2f(3zx) - 2f()
and prove the generalized Hyers-Ulam stability in non-Archimedean L-fuzzy
normed spaces. The stability problems of several mixed type functional equa-
tions have been extensively investigated by a number of authors and there are
many interesting results concerning them (see [6]-[20], [26]-[33], [41, 42]).

2. GENERALIZED L-FUZZY HYERS-ULAM STABILITY
Throughout this paper, assume that ¥ is an £-fuzzy set on X x X x [0, 00)
such that ¥(z,y,.) is nondecreasing,

t
U(cx,cx,t) > ¥ (x,x,H>, Vre X, c#0
c

and
lim U(z,y,t) =1z, Vr,ye X, t>0.

t—o00

THEOREM 4. Let K be a non-Archimedean field, X a vector space over K
and (Y, P,T) a non-Archimedean L-fuzzy Banach space over K. Suppose that
f:X =Y is an odd mapping satisfying

P(fBr+y)+ fBx—y) — flz+y) - flz —y) —2f(3z) + 2f(z),t)
>1 V(z,y,1),

for all x,y € X and t > 0. If there exist an a € R and an integer k, k > 2
with [2%| < a and |2| # 0 such that

(3) \P(2*kx,2*ky,t) >r ¥(z,y,at), VrelX, t>0,

oo alt
lim T2, M |z, o0 )| =1z, Vo eX, >0,

n—oo I ‘2’k]

then there exists a unique additive mapping A : X — Y such that
ians
W PU@ - A > TEM (o G
where
T x Tz 3z T x T bz
ey =r(r(r(u(2 50,03 2.)) 7 (62 2 )95 0),
(z,1) v\t v\t
2r 2x 2¢ 3.2x 2r 2x 2¢ 5.2x
r(r(w( ) v () (e () e ()
474" 't 47 4 t 47 4 t 47 4 t
271 2J Ly 20—l 3.2771 2= ly 2i—1
r(r(e () (P ) (e (P ),

‘P(zjf’w : )))))

forallz e X, t>0.

), Ve e X, t >0,
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Proof. We show by induction on j that, for all x € X, ¢t > 0, j > 1, we have
P(f(2z) =2 f(x),t) > M(=,1)

G CEORTER D) RIICEORTEA))}

(5) 2i—1ly 2i—ly 2i—1ly 3.2i-1y
el (e(Z ) 822 220 )

i—1 i—1 i—1 i—1
(eSS e ()
Putting y = x in (2), we obtain
(6) P(f(4z) —2f(3z) 4+ 2f(2),1) 2L ¥(z,z,1),
for all x € X and t > 0. If we let y = 3z in (2), we get by the oddness of f,
(1) P(f(6x) = 2f(3x) — f(4x) + 2f () + f(22),t) =L ¥(x,32,1),
for all z € X and ¢ > 0. It follows from (6) and (7) that
P(f(6z) —2f(4x) + f(22),1)

() >1 T(P(f () — 27 (32) + 21 (), ), P((62) — 2f(32) — f(4z) +2f(x)
+ f(2x),t)) > T(V(z,x,t), V(z,3z,t)),

for all z € X and ¢t > 0. Once again, by letting y = 5x in (2), we get by the
oddness of f,

(9)  P(f(82) — f(2x) — f(6x) + f(4x) — 2 (3x) + 2 (2), 1) > V(x, 5z, 1),
for all z € X and ¢t > 0. By (6) and (9), we get
(10) P(f(8z) — f(6x) — f(2x),t) 21 T(¥(x, z,t), ¥(x,5z,1)),
for all z € X and ¢ > 0. By (8) and (10), we obtain
P(f(8x) —2f(4x),t) > T(T(¥(x, z,t), V(x,3x,t)), T(V(z, z,t), U(z,bx,1))),
for all z € X and ¢ > 0. If we replace = by 7, we get

P(f(22) - 2f(2), 1)

2o (r(e(§30) v (50 (v (5 5 0) (5 70)

for all z € X and ¢ > 0. This proves (5) for j = 1.
Let (5) hold for some j > 1. Replacing = by 27z in (2.11), we obtain

PR ) —2f ). 0) 2, (T(w (20 20 1), w (22222 4)),

Wy Vx 2y 5.2x
(v ) e ()
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for all z € X and ¢ > 0. Since [2| < 1, it follows that
P(f(2 ) — 27 f(2), 1)
> T(P(f(2*2) = 2f(2'2), 1), P(2f(2'z) — 27 f(x). 1))
= T(PU@"19) - 2 (). 0), P(£(F) - 2'f(a), 7))
> T(P(F(27 ) — 2f(202), 0), P(f (D) — 2 (), 1)

2y 27 2y 3.27 2y 27
>, T(T(T(@(—x, —mt)@(—x —:Ct))T(\P(—x 7x,t),
44 4 4 44

¥(22 255 0))) M) = Myt

47 4
for all z € X and ¢ > 0. Thus (5) holds for all j > 1. In particular, we have
(12) P(f(2"x) =2 f(x), 1) > M(a,1),

for all € X and ¢t > 0. Replacing = by 2=*"+%)z in (12) and using the
inequality (3), we obtain

T k T T 11
o) ) ) 2 e ) e,

forall z € X, ¢t > 0 and n > 0. Thus we have

(1)~ 05 () 1) 21 )
forall z € X, ¢t > 0 and n > 0. Hence it follows that
(1) - 2 () )
o T (1) P )

it
> Tn+p_1M<:c, Lt),

o |(2%)7]
forall x € X, t > 0 and n > 0. Since lim,_, T;ﬁnM(g:, %t) = 1, for
allz € X and t > 0, {(Qk)"f(@f)n>} N is a Cauchy sequence in the non-
ne

Archimedean L-fuzzy Banach space (Y, P,T). Hence we can define a mapping
A: X — Y such that

(13) lim P((zk)"f(@f)n) - A(:U),t) — 1z,

n—oo
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for all z € X and ¢t > 0. Next, foralln > 1, x € X and t > 0, we have

P4 = @S (i) )
n—1

P8 [0 () - ()] )

21 5 (P (i) = @ (i) 1))

aitl
>r EZBIMG% Wt)
and so
P(f(z) — A(z),1)
k\n z k\n x
(14) > T(P(f(z) — (27) f((2k,)n),t),P((2 ) f<(2k:)n) — A(xz), 1))
attl x

2L T(:”;!olM(% |2k|z t)v P((Qk)nf((2k)n) - A('T)’t))

Taking the limit as n — oo in (14), P(f(z) — A(z),t) >, ﬂozooM<m, %),
which proves (4). Replacing z,y by 27%"2,27%%y in (2) and (3), we get

P () 2 () 25
() 2 (E) 42 ()

_ _ t at
>1 \I/<2 kmx’Q Imy, ’2kn’) >L ‘I’(x,% |2kn‘)’

for all z,y € X and ¢ > 0. Since lim, o ¥(z,y, %) = 1., we infer that A

is an additive mapping. For the uniqueness of A, let A" 1 X = Y be another
additive mapping such that P(A'(z) — f(z),t) >1 TiOZOOM(:c, %), for all
x € X and t > 0. Then we have, for all z € X and ¢t > 0,

P(A(z) — A'(2),t)

o0 (1 () () ). (7 () - 41010

Therefore, from (14), we conclude that A = A’". This completes the proof. [

THEOREM 5. Let K be a non-Archimedean field, X a vector space over K
and (Y, P,T) a non-Archimedean L-fuzzy Banach space over K. Suppose that
f:X =Y is an even mapping satisfying

P(fBr+y)+ fBz —y) — flz+y) — flz —y) —2f(3x) +2f(x),t)

(15) ZL l:[]('%'7:9707
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for all z,y € X and t > 0. If there exist an o € R and an integer k, k > 2
with |2F] < a and |2| # 0 such that

(16) W2 ke 27ky ) > U(x,y,at), VreX, t>0,
o alt
lim T5° N(x, —) —1p, VzeX, t>0,
n—00 ’2‘19]
then there exists a unique quadratic mapping Q : X — Y such that
qitl

a7 P(f() - Q@),t) = TN (w, W)’ Vre X, t>0,

where

e G G0 o) )
(o ) 0 ()

4
J— 1 j—1 j—1 =1, j—1 j—1
\Il<2 2 x,t>,\If 2 x,2 ,t)),T(\IJ(2 T 5.2 '«x t),

4 4
j—=1lyp _—3.9i-1,
\IJ<2 xj 3.2 ,t)) >’
4 4

forallx € X, t>0.

Proof. We show by induction on j that, for all x € X, ¢t > 0, j > 1, we have
P(f(2z) = 2% f(),1)

o= 1 ({03 2 (320 (o3 50,
(18) T —3x Il 2 1 ily 271y
o3t 2 (2 )
i1y 5.2 1y i 133 —3.2 1y
(o) (5 32 )

Replacing y by = + y in (15) we get

P(f(4x+y) + fQx —y) — f2x +y) — f(y) — 2f (3z) + 2f (), 1)
> Y(z,x + y,t),

(19)

for all x,y € X and t > 0. If we replace y by —y in (19), we obtain

P(f(dz —y) + f2z +y) — f2x —y) — f(y) — 2f(3z) + 2f(x), 1)
> U(x,z —y,t),

(20)

for all x,y € X and t > 0. By (19) and (20), we get

P(f(4x +y) + fldz —y) = 2f(y) — 4f (B3x) + 4f(2),1)

(21) > T(Y(z,z +y,t), ¥(z, 2 — y,t)).
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Letting y = 0 in (21), we get the inequality

(22)  P(2f(4x) — 4F(3x) + 4F(@),8) > T(W(a,,1), Wz, 1),

for all z € X and ¢ > 0. Once again, by letting y = 4z in (21), we get

(23) P(f(8z) —2f(4x) —4f(3x) + 4f(x),t) > T(V(x,5z,t), ¥(z, —3z,1)),
for all z € X and ¢ > 0. By (22) and (23), we get

P(f(8z) —4f(4x),1)

@Y P (e, 2. t), U, 2. 1)), T (2, 5. 1), Uz, —32. 1)),

for all x € X and ¢ > 0. If we replace z in (24) by 7, we get
P(f(22) —4f(2),1)

= (r(e(G 50w (5 50 7o (50 (5 ),

for all z € X and ¢ > 0. This proves (18) for j = 1.
Let (18) hold for some j > 1. Replacing = by 27z in (25), we obtain

P(f(27 ) — 4F(22),1) >1, T<T<\I/(2;$, 2ft>\11<2f 21%))

2z 5.27x 2x —3.27x
T@(T’ 4 ’t>’\p<7’ 4 t)))
for all z € X and ¢ > 0. Since |2| < 1, it follows that
P(f(2*'2) = 22U* D f(x), 1)
> T(P(f(22) — 4f(Px), 1), P(4f(2x) — 220D f(2), 1))
= 7P ) — 47(@00), 1), P(7 () — 2 (), 1))
4]
> T(P(f(2" @) = 4f(272),1), P(f(27x) — 2% f(x),1))
2y Vg 2y 2
> - - - -
=L T<T<‘P( 474 t)q’( 44 t))
2ix 5.2z 29x —3.20x
T () V(G ) e ) = N,
for all z € X and ¢ > 0. Thus (18) holds for all j > 1. In particular, we have
(26) P(f(2°z) — 2% f(2),1) > N(a,1),

for all z € X and t > 0. Replacing = by 2=*"*%)z in (26) and using the
inequality (3), we obtain

P(f(%) -2 f(2;m+k),t) >L N(Wat) >r N(z,a""'t),
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forall z € X, ¢t > 0 and n > 0. Thus we have

P2 () ~ @ (i) 1) 22 ¥ o gy
an+1
21 N (@ o)

forall z € X, ¢t > 0 and n > 0. Hence it follows that
P () - 1))
amxwwwa@»<www@%ao

Jj+1
nt+p—1nr @
20 TN (@ )

forall z € X, ¢ >0and n > 0. Since limy, o T;gnN(x, %t) — 1, for

allz € X and t > 0, {(22k)”f(ﬁ>} N is a Cauchy sequence in the non-
ne

Archimedean L-fuzzy Banach space (Y, P,T). Hence we can define a mapping
Q@ : X — Y such that

X

(27) tim P2 ((5i7) — Q)st) = e,

n—oo

for all z € X and ¢t > 0. Next, foralln > 1, x € X and t > 0, we have

P(s@) =" f (i) )
)~ @ () 1)

i) = (g ) 1)

_P( {2%

(2k)
>LTn 1( (2% f(
1 Tizg IN( 2k|z )
and so

P(f(z) - Q(x),t)
oy 20 T(PU@ =@ () 1) P (i) - Q)

o (1 o ) () - 0o
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Taking the limit as n — oo in (28), P(f(z) — Q(z),t) >1. J;OZOON(Q;, %)
which proves (17). Replacing z,y by 275"z 27%"y in (15) and (16), we get
3 +y 3r —y r+y
2% 2k 2k
P(2 nf( 2kn )+2 nf( 2kn >_2 nf( 2’%)
2k r—y 2k 3z 2k x
- () - 22 () + 227 (g ) )

>pw(2 g 2 by LY s o
ZL €T, Y, ‘2]”1‘ ZL z,y, ’2kn’ )

for all ,y € X and t > 0. Since lim;,, 5o \P(x,y, %) = 1., we infer that

is a quadratic mapping. For the uniqueness of @, let Q" : X — Y be another
quadratic mapping such that P(Q/ (z) — f(2),t) > TN <w, Or;%if), for all
x € X and t > 0. Then we have, for all z € X and ¢t > 0,

P(Q(z) ~ Q (),t)

> _ (92k\n £ 2k\n T " )

>, T(P(Q) = @' (g5 ) 1) P (i) ~ @ @):1))

Therefore, from (27), we conclude that @ = Q'. This completes the proof. O

THEOREM 6. Let K be a non-Archimedean field, X a vector space over K
and (Y, P,T) a non-Archimedean L-fuzzy Banach space over K. Suppose that
f:X =Y is a mapping satisfying

P(fB3z+y)+ fBz —y) — flz+y) — flx—y) —2f(3x) +2f(2),1)
2L \Il(xayat)7

for all z,y € X and t > 0. If there exist an a € R and an integer k, k > 2
with |2F] < a and |2| # 0 such that

W(27Fe, 27%y t) >, U(x,y,at), VzeX, t>0,

207t 207t
N ~
Jim 772, (7 (21 |2|kj>’M(*°””’ |2ykj>>) =le

207t 207t
: oo — —_— =
nlggoT]:n(T(N<x, ‘2’kj>,]\f< T, mkj))) 1z,
then there exist an additive mapping A : X — Y and a quadratic mapping

Q: X —Y such that

PU) ~ C(w) ~ Qo)) 20 7 (150 (1 (M (2, 2250,

(29) i+1 i+1 i+1
M (=)D 251 (¥ (o ) ¥ (= )
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where

.....

and

forallz e X, t>0.

Proof. Let fo(z) = §[f(z)—f(—=)], forallz € X. Then f5(0) =0, fo(—z) =
—fo(x), and

P(fo(3z +y) + foBz —y) — folz +y) — folz —y) — 2fo(3z) + 2fo(z),t)
> T(P(G[£Br+9)+ fGBe—y) — fla+y) — fla —y) ~ 2/(30)
r27(@)]. 1), P(G [1(-82 = 9) + F(Bo 4 3) — F-x—y) — f-a +9)
= 2(=32) + 2f(~x)| 1)) 21 T(W(w,y,2), W(—2, —y,21),

for all z,y € X and ¢t > 0. By Theorem 4, it follows that there exists a unique
additive function A : X — Y satisfying

(30) Plfa(e)  AGw).0) 20 T (70 2‘@’;",;:?%]%( - %))),

for all z,y € X and t > 0.
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Let fe(z) = 3[f(z)+ f(—=)], for all z € X. Then f.(0) = 0, fo(—2) = fe(z),
and

Pfo(B2 +y) + fol30 —9) — fola +5) — folz — y) = 26 (32) + 2£o(2), )
>, T(P(G[£Br +9)+ £Br— ) — fla +9) — fla —y) ~ 2f(30)

+20@)] ), P(SLF(-32 —9) + F(-32+y) — f(~x—y) = f-z +y)

—2(=32) + 2f(~a)| 1) ) 21 T(W(w,y,26), W(~z, —y,20)),
for all z,y € X and ¢t > 0. By Theorem 5, it follows that there exists a unique
quadratic function @ : X — Y satisfying

2ai+1t 2ai+1t

(1) PUele) = Q). 1) 20 T (T(N (& e ). N (= ) )
for all z,y € X and t > 0. Hence (29) follows from (30) and (31). O
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