STABILITY OF AQ-FUNCTIONAL EQUATIONS IN NON-ARCHIMEDEAN \mathcal{L}-FUZZY NORMED SPACES

MADJID ESHAGHI GORDJI, MEYSAM BAVAND SAVADKOUHI, and ASGHR TAHERI SARTESHNIZI

Abstract

In this paper we prove the generalized Hyers-Ulam stability of the mixed type additive and quadratic functional equation $$
f(3 x+y)+f(3 x-y)=f(x+y)+f(x-y)+2 f(3 x)-2 f(x)
$$ in non-Archimedean \mathcal{L}-fuzzy normed spaces. MSC 2010. 39B82,39B52. Key words. Stability, quadratic functional equation, non-Archimedean \mathcal{L}-fuzzy normed space.

1. INTRODUCTION

The study of stability problems for functional equations is related to a question of Ulam [53] concerning the stability of group homomorphisms and affirmatively answered for Banach spaces by Hyers [37]. Subsequently, the result of Hyers was generalized by Aoki [2] for additive mappings and by Th. M. Rassias [50] for linear mappings by considering an unbounded Cauchy difference. The paper of Th. M. Rassias has provided a lot of influence in the development of what we now call a generalized Hyers-Ulam stability of functional equations. We refer the interested readers for more information on such problems to the papers $[4,36,39,49]$.

In 1991, Z. Gajda [23] answered the question for the case $p>1$, which was raised by Rassias. This new concept is known as Hyers-Ulam-Rassias stability of functional equations (see [19, 24, 38]). On the other hand, J.M. Rassias [43]-[48] considered the Cauchy difference controlled by a product of different powers of norm. This stability phenomenon is called the Ulam-Găvruta-Rassias stability (see also [23]).

The functional equation

$$
\begin{equation*}
f(x+y)+f(x-y)=2 f(x)+2 f(y) \tag{1}
\end{equation*}
$$

is related to symmetric bi-additive function (see [1, 40]). Hyers-Ulam-Rassias stability problem for the quadratic functional equation (1) between Banach spaces was proved by Skof (see [3, 4, 34, 51]).

A triangular norm (shortly, t-norm) is a binary operation $T:[0,1] \times[0,1] \rightarrow$ $[0,1]$ which is commutative, associative, monotone and has 1 as the unit element. A t-norm T can be extended (by associativity) in a unique way to an
n-ary operation taking, for all $\left(x_{1}, \ldots, x_{n}\right) \in[0,1]^{n}$, the value $T\left(x_{1}, \ldots, x_{n}\right)$ defined by $T_{i=1}^{0} x_{i}=1, T_{i=1}^{n} x_{i}=T\left(T_{i=1}^{n-1} x_{i}, x_{n}\right)=T\left(x_{1}, \ldots, x_{n}\right)$. A t-norm T can also be extended to a countable operation taking, for any sequence $\left\{x_{n}\right\}_{n \in N}$ in $[0,1]$, the value $T_{i=1}^{\infty} x_{i}=\lim _{n \rightarrow \infty} T_{i=1}^{n} x_{i}$. Let $\mathcal{L}=\left(L, \leq_{L}\right)$ be a complete lattice and let U be a nonempty set called the universe. An \mathcal{L}-fuzzy set in U is defined as a mapping $A: U \rightarrow L$. For each u in $U, A(u)$ represents the degree (in L) to which u is an element of U.

Consider the set L^{*} and operation $\leq_{L^{*}}$ defined by

$$
\begin{aligned}
& L^{*}=\left\{\left(x_{1}, x_{2}\right):\left(x_{1}, x_{2}\right) \in[0,1]^{2} \text { and } x_{1}+x_{2} \leq 1\right\}, \\
& \left(x_{1}, x_{2}\right) \leq_{L^{*}}\left(y_{1}, y_{2}\right) \Longleftrightarrow x_{1} \leq y_{1}, x_{2} \geq y_{2},
\end{aligned}
$$

for all $\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right) \in L^{*}$. Then $\left(L^{*}, \leq_{L^{*}}\right)$ is a complete lattice (see [5]).
A triangular norm (t-norm) on L is a mapping $T: L^{2} \rightarrow L$ satisfying the following conditions:
(1) $T\left(x, 1_{L}\right)=x$, for all $x \in L$; (boundary condition).
(2) $T(x, y)=T(y, x)$, for all $(x, y) \in L^{2}$; (commutativity).
(3) $T(x, T(y, z))=T(T(x, y), z)$, for all $(x, y, z) \in L^{3}$; (associativity).
(4) $x \leq_{L} x^{\prime}, y \leq_{L} y^{\prime} \Longrightarrow T(x, y) \leq_{L} T\left(x^{\prime}, y^{\prime}\right)$, for all $\left(x, x^{\prime}, y, y^{\prime}\right) \in L^{4}$; (monotonicity).

A t-norm T on \mathcal{L} is said to be continuous if, for any $x, y \in \mathcal{L}$ and any sequences $\left\{x_{n}\right\},\left\{y_{n}\right\}$ which converge to x and y, respectively, $\lim _{n \rightarrow \infty} T\left(x_{n}, y_{n}\right)=$ $T(x, y)$. A t-norm T can also be defined recursively as an $(n+1)$-ary operation $(n \in N)$ by $T^{1}=T$ and $T^{n}\left(x_{1}, \ldots, x_{n+1}\right)=T\left(T^{n-1}\left(x_{1}, \ldots, x_{n}\right), x_{n+1}\right)$, for all $n \geq 2$ and $x_{i} \in L$.
(1) A negator on \mathcal{L} is any decreasing mapping $N: L \rightarrow L$ satisfying $N\left(0_{L}\right)=$ 1_{L} and $N\left(1_{L}\right)=0_{L}$.
(2) If $N(N(x))=x$, for all $x \in L$, then N is called an involutive negator.
(3) The negator N_{s} on $([0,1], \leq)$ defined as $N_{s}(x)=1-x$, for all $x \in[0,1]$, is called the standard negator on $([0,1], \leq)$.

Definition 1. The triple (X, M, T) is said to be an \mathcal{L}-fuzzy metric space if X is an arbitrary (non-empty) set, T is a continuous t-norm on L and M is an \mathcal{L}-fuzzy set on $\left.X^{2} \times\right] 0,+\infty[$ satisfying the following conditions: for all $x, y, z \in X$ and $t, s \in] 0,+\infty[$,
(1) $M(x, y, t)>_{L} 0_{L}$;
(2) $M(x, y, t)=1_{L}$, for all $t>0$ if and only if $x=y$;
(3) $M(x, y, t)=M(y, x, t)$;
(4) $T(M(x, y, t), M(y, z, s)) \leq_{L} M(x, z, t+s)$;
(5) $M(x, y,):.] 0,+\infty[\rightarrow L$ is continuous.

In this case, M is called an \mathcal{L}-fuzzy metric.
Definition 2. The triple (V, P, T) is said to be an \mathcal{L}-fuzzy normed space if V is a vector space, T is a continuous t-norm on L and P is an \mathcal{L}-fuzzy set on $V \times] 0,+\infty[$ satisfying the following conditions: for all $x, y \in V$ and $t, s \in] 0,+\infty[$,
(1) $P(x, t)>{ }_{L} 0_{L}$;
(2) $P(x, t)=1_{L}$ if and only if $x=0$;
(3) $P(\alpha x, t)=P\left(x, \frac{t}{|\alpha|}\right)$ for each $\alpha \neq 0$;
(4) $T(P(x, t), P(y, s)) \leq_{L} P(x+y, t+s)$;
(5) $P(x,):.] 0,+\infty[\rightarrow L$ is continuous.
(6) $\lim _{t \rightarrow 0} P(x, t)=0_{L}$ and $\lim _{t \rightarrow \infty} P(x, t)=1_{L}$.

In this case, P is called an \mathcal{L}-fuzzy norm.
A sequence $\left\{x_{n}\right\}_{n \in N}$ in an \mathcal{L}-fuzzy normed space (V, P, T) is called a Cauchy sequence if, for each $\epsilon \in L \backslash\left\{0_{L}\right\}$ and $t>0$, there exists $n_{0} \in \mathbb{N}$ such that, for all $n, m \geq n_{0}, P\left(x_{n}-x_{m}, t\right)>_{L} N(\epsilon)$, where N is a negator on \mathcal{L}.

A sequence $\left\{x_{n}\right\}_{n \in N}$ is said to be convergent to $x \in V$ in the \mathcal{L}-fuzzy normed space (V, P, T), which is denoted by $x_{n} \rightarrow x$ if $P\left(x_{n}-x, t\right) \rightarrow 1_{\mathcal{L}}$, whenever $n \rightarrow+\infty$, for all $t>0$.

An \mathcal{L} - fuzzy normed space (V, P, T) is said to be complete if and only if every Cauchy sequence in V is convergent.

Note that, if P is an \mathcal{L}-fuzzy norm on V, then the following are satisfied:
(1) $P(x, t)$ is nondecreasing with respect to t, for all $x \in V$.
(2) $P(x-y, t)=P(y-x, t)$, for all $x, y \in V$ and $t \in] 0,+\infty[$.

Let (V, P, T) be an \mathcal{L}-fuzzy normed space. If we define $M(x, y, t)=P(x-$ $y, t)$, for all $x, y \in V$ and $t \in] 0,+\infty[$, then M is an \mathcal{L}-fuzzy metric on V, which is called the \mathcal{L}-fuzzy metric induced by the \mathcal{L}-fuzzy norm P.

In 1897, Hensel [35] introduced a field with a valuation in which does not have the Archimedean property. Let K be a field. A non-Archimedean absolute value on K is a function $||:. K \rightarrow[0,+\infty[$ such that, for any $a, b \in K$,
(1) $|a| \geq 0$ and equality holds if and only if $a=0$,
(2) $|a b|=|a||b|$,
(3) $|a+b| \leq \max \{|a|,|b|\}$ (the strict triangle inequality).

Note that $|n| \leq 1$ for each integer n. We always assume, in addition, that

Definition 3. A non-Archimedean \mathcal{L}-fuzzy normed space is a triple (V, P, T), where V is a vector space, T is a continuous t-norm on L and P is an \mathcal{L}-fuzzy set on $V \times] 0,+\infty[$ satisfying the following conditions: for all $x, y \in V$ and $t, s \in] 0,+\infty[$,
(1) $0_{L}<_{L} P(x, t)$;
(2) $P(x, t)=1_{L}$ if and only if $x=0$;
(3) $P(\alpha x, t)=P\left(x, \frac{t}{|\alpha|}\right)$, for all $\alpha \neq 0$;
(4) $T(P(x, t), P(y, s)) \leq_{L} P(x+y, \max \{t, s\})$;
(5) $P(x,):.] 0, \infty[\rightarrow L$ is continuous;
(6) $\lim _{t \rightarrow 0} P(x, t)=0_{L}$ and $\lim _{t \rightarrow \infty} P(x, t)=1_{L}$.

Recently, S. Shakeri, R. Saadati and C. Park in [52], proved the generalized Hyers-Ulam stability of functional equation (1) in non-Archimedean \mathcal{L}-fuzzy normed spaces.

In this paper we deal with the following mixed type additive-quadratic functional equation (briefly AQ-functional equation):

$$
f(3 x+y)+f(3 x-y)=f(x+y)+f(x-y)+2 f(3 x)-2 f(x)
$$

and prove the generalized Hyers-Ulam stability in non-Archimedean \mathcal{L}-fuzzy normed spaces. The stability problems of several mixed type functional equations have been extensively investigated by a number of authors and there are many interesting results concerning them (see [6]-[20], [26]-[33], [41, 42]).

2. GENERALIZED \mathcal{L}-FUZZY HYERS-ULAM STABILITY

Throughout this paper, assume that Ψ is an \mathcal{L}-fuzzy set on $X \times X \times[0, \infty)$ such that $\Psi(x, y,$.$) is nondecreasing,$

$$
\Psi(c x, c x, t) \geq_{L} \Psi\left(x, x, \frac{t}{|c|}\right), \quad \forall x \in X, c \neq 0
$$

and

$$
\lim _{t \rightarrow \infty} \Psi(x, y, t)=1_{\mathcal{L}}, \quad \forall x, y \in X, t>0
$$

Theorem 4. Let K be a non-Archimedean field, X a vector space over K and (Y, P, T) a non-Archimedean \mathcal{L}-fuzzy Banach space over K. Suppose that $f: X \rightarrow Y$ is an odd mapping satisfying

$$
\begin{align*}
& P(f(3 x+y)+f(3 x-y)-f(x+y)-f(x-y)-2 f(3 x)+2 f(x), t) \\
& \geq_{L} \Psi(x, y, t) \tag{2}
\end{align*}
$$

for all $x, y \in X$ and $t>0$. If there exist an $\alpha \in \mathbb{R}$ and an integer $k, k \geq 2$ with $\left|2^{k}\right|<\alpha$ and $|2| \neq 0$ such that

$$
\begin{gather*}
\Psi\left(2^{-k} x, 2^{-k} y, t\right) \geq_{L} \Psi(x, y, \alpha t), \quad \forall x \in X, t>0 \tag{3}\\
\lim _{n \rightarrow \infty} T_{j=n}^{\infty} M\left(x, \frac{\alpha^{j} t}{|2|^{k j}}\right)=1_{\mathcal{L}}, \quad \forall x \in X, t>0
\end{gather*}
$$

then there exists a unique additive mapping $A: X \rightarrow Y$ such that

$$
\begin{equation*}
P(f(x)-A(x), t) \geq T_{i=0}^{\infty} M\left(x, \frac{\alpha^{i+1} t}{|2|^{k i}}\right), \quad \forall x \in X, t>0 \tag{4}
\end{equation*}
$$

where

$$
\begin{aligned}
& M(x, t):=T\left(T\left(T\left(\Psi\left(\frac{x}{4}, \frac{x}{4}, t\right), \Psi\left(\frac{x}{4}, \frac{3 x}{4}, t\right)\right), T\left(\Psi\left(\frac{x}{4}, \frac{x}{4}, t\right), \Psi\left(\frac{x}{4}, \frac{5 x}{4}, t\right)\right)\right)\right. \\
& T\left(T\left(\Psi\left(\frac{2 x}{4}, \frac{2 x}{4}, t\right), \Psi\left(\frac{2 x}{4}, \frac{3.2 x}{4}, t\right)\right), T\left(\Psi\left(\frac{2 x}{4}, \frac{2 x}{4}, t\right), \Psi\left(\frac{2 x}{4}, \frac{5.2 x}{4}, t\right)\right)\right), \ldots \\
& T\left(T\left(\Psi\left(\frac{2^{j-1} x}{4}, \frac{2^{j-1} x}{4}, t\right), \Psi\left(\frac{2^{j-1} x}{4}, \frac{3.2^{j-1} x}{4}, t\right)\right), T\left(\Psi\left(\frac{2^{j-1} x}{4}, \frac{2^{j-1} x}{4}, t\right),\right.\right. \\
& \left.\left.\left.\Psi\left(\frac{2^{j-1} x}{4}, \frac{5.2^{j-1} x}{4}, t\right)\right)\right)\right)
\end{aligned}
$$

for all $x \in X, \quad t>0$.

Proof. We show by induction on j that, for all $x \in X, t>0, j \geq 1$, we have

$$
\begin{align*}
& P\left(f\left(2^{j} x\right)-2^{j} f(x), t\right) \geq_{L} M_{j}(x, t) \\
& :=T\left(T\left(T\left(\Psi\left(\frac{x}{4}, \frac{x}{4}, t\right), \Psi\left(\frac{x}{4}, \frac{3 x}{4}, t\right)\right), T\left(\Psi\left(\frac{x}{4}, \frac{x}{4}, t\right), \Psi\left(\frac{x}{4}, \frac{5 x}{4}, t\right)\right)\right)\right. \\
& \ldots, T\left(T\left(\Psi\left(\frac{2^{j-1} x}{4}, \frac{2^{j-1} x}{4}, t\right), \Psi\left(\frac{2^{j-1} x}{4}, \frac{3.2^{j-1} x}{4}, t\right)\right)\right. \tag{5}\\
& \left.\left.T\left(\Psi\left(\frac{2^{j-1} x}{4}, \frac{2^{j-1} x}{4}, t\right), \Psi\left(\frac{2^{j-1} x}{4}, \frac{5.2^{j-1} x}{4}, t\right)\right)\right)\right)
\end{align*}
$$

Putting $y=x$ in (2), we obtain

$$
\begin{equation*}
P(f(4 x)-2 f(3 x)+2 f(x), t) \geq_{L} \Psi(x, x, t) \tag{6}
\end{equation*}
$$

for all $x \in X$ and $t>0$. If we let $y=3 x$ in (2), we get by the oddness of f,

$$
\begin{equation*}
P(f(6 x)-2 f(3 x)-f(4 x)+2 f(x)+f(2 x), t) \geq_{L} \Psi(x, 3 x, t) \tag{7}
\end{equation*}
$$

for all $x \in X$ and $t>0$. It follows from (6) and (7) that

$$
\begin{aligned}
& P(f(6 x)-2 f(4 x)+f(2 x), t) \\
(8) & \geq_{L} T(P(f(4 x)-2 f(3 x)+2 f(x), t), P(f(6 x)-2 f(3 x)-f(4 x)+2 f(x) \\
& +f(2 x), t)) \geq_{L} T(\Psi(x, x, t), \Psi(x, 3 x, t))
\end{aligned}
$$

for all $x \in X$ and $t>0$. Once again, by letting $y=5 x$ in (2), we get by the oddness of f,
(9) $P(f(8 x)-f(2 x)-f(6 x)+f(4 x)-2 f(3 x)+2 f(x), t) \geq_{L} \Psi(x, 5 x, t)$,
for all $x \in X$ and $t>0$. By (6) and (9), we get

$$
\begin{equation*}
P(f(8 x)-f(6 x)-f(2 x), t) \geq_{L} T(\Psi(x, x, t), \Psi(x, 5 x, t)) \tag{10}
\end{equation*}
$$

for all $x \in X$ and $t>0$. By (8) and (10), we obtain

$$
P(f(8 x)-2 f(4 x), t) \geq_{L} T(T(\Psi(x, x, t), \Psi(x, 3 x, t)), T(\Psi(x, x, t), \Psi(x, 5 x, t)))
$$ for all $x \in X$ and $t>0$. If we replace x by $\frac{x}{4}$, we get

$$
\begin{align*}
& P(f(2 x)-2 f(x), t) \\
& \geq_{L} T\left(T\left(\Psi\left(\frac{x}{4}, \frac{x}{4}, t\right), \Psi\left(\frac{x}{4}, \frac{3 x}{4}, t\right)\right), T\left(\Psi\left(\frac{x}{4}, \frac{x}{4}, t\right), \Psi\left(\frac{x}{4}, \frac{5 x}{4}, t\right)\right)\right) \tag{11}
\end{align*}
$$

for all $x \in X$ and $t>0$. This proves (5) for $j=1$.
Let (5) hold for some $j>1$. Replacing x by $2^{j} x$ in (2.11), we obtain

$$
\begin{array}{r}
P\left(f\left(2^{j+1} x\right)-2 f\left(2^{j} x\right), t\right) \geq_{L} T\left(T\left(\Psi\left(\frac{2^{j} x}{4}, \frac{2^{j} x}{4}, t\right), \Psi\left(\frac{2^{j} x}{4}, \frac{3.2^{j} x}{4}, t\right)\right)\right. \\
\left.T\left(\Psi\left(\frac{2^{j} x}{4}, \frac{2^{j} x}{4}, t\right), \Psi\left(\frac{2^{j} x}{4}, \frac{5.2^{j} x}{4}, t\right)\right)\right)
\end{array}
$$

for all $x \in X$ and $t>0$. Since $|2|<1$, it follows that

$$
\begin{aligned}
& P\left(f\left(2^{j+1} x\right)-2^{j+1} f(x), t\right) \\
& \geq_{L} T\left(P\left(f\left(2^{j+1} x\right)-2 f\left(2^{j} x\right), t\right), P\left(2 f\left(2^{j} x\right)-2^{j+1} f(x), t\right)\right) \\
& =T\left(P\left(f\left(2^{j+1} x\right)-2 f\left(2^{j} x\right), t\right), P\left(f\left(2^{j} x\right)-2^{j} f(x), \frac{t}{|2|}\right)\right) \\
& \geq_{L} T\left(P\left(f\left(2^{j+1} x\right)-2 f\left(2^{j} x\right), t\right), P\left(f\left(2^{j} x\right)-2^{j} f(x), t\right)\right) \\
& \geq_{L} T\left(T \left(T\left(\Psi\left(\frac{2^{j} x}{4}, \frac{2^{j} x}{4}, t\right), \Psi\left(\frac{2^{j} x}{4}, \frac{3 \cdot 2^{j} x}{4}, t\right)\right), T\left(\Psi\left(\frac{2^{j} x}{4}, \frac{2^{j} x}{4}, t\right),\right.\right.\right. \\
& \left.\left.\left.\Psi\left(\frac{2^{j} x}{4}, \frac{5.2^{j} x}{4}, t\right)\right)\right), M_{j}(x, t)\right)=M_{j+1}(x, t),
\end{aligned}
$$

for all $x \in X$ and $t>0$. Thus (5) holds for all $j \geq 1$. In particular, we have

$$
\begin{equation*}
P\left(f\left(2^{k} x\right)-2^{k} f(x), t\right) \geq_{L} M(x, t) \tag{12}
\end{equation*}
$$

for all $x \in X$ and $t>0$. Replacing x by $2^{-(k n+k)} x$ in (12) and using the inequality (3), we obtain

$$
P\left(f\left(\frac{x}{2^{k n}}\right)-2^{k} f\left(\frac{x}{2^{k n+k}}\right), t\right) \geq_{L} M\left(\frac{x}{2^{k n+k}}, t\right) \geq_{L} M\left(x, \alpha^{n+1} t\right),
$$

for all $x \in X, t>0$ and $n \geq 0$. Thus we have

$$
P\left(\left(2^{k}\right)^{n} f\left(\frac{x}{\left(2^{k}\right)^{n}}\right)-\left(2^{k}\right)^{n+1} f\left(\frac{x}{\left(2^{k}\right)^{n+1}}\right), t\right) \geq_{L} M\left(x, \frac{\alpha^{n+1}}{\left|\left(2^{k}\right)^{n}\right|} t\right),
$$

for all $x \in X, t>0$ and $n \geq 0$. Hence it follows that

$$
\begin{aligned}
& P\left(\left(2^{k}\right)^{n} f\left(\frac{x}{\left(2^{k}\right)^{n}}\right)-\left(2^{k}\right)^{n+p} f\left(\frac{x}{\left(2^{k}\right)^{n+p}}\right), t\right) \\
& \geq_{L} T_{j=n}^{n+p-1} P\left(\left(2^{k}\right)^{j} f\left(\frac{x}{\left(2^{k}\right)^{j}}\right)-\left(2^{k}\right)^{j+1} f\left(\frac{x}{\left(2^{k}\right)^{j+1}}\right), t\right) \\
& \geq_{L} T_{j=n}^{n+p-1} M\left(x, \frac{\alpha^{j+1}}{\left|\left(2^{k}\right)^{j}\right|} t\right),
\end{aligned}
$$

for all $x \in X, t>0$ and $n \geq 0$. Since $\lim _{n \rightarrow \infty} T_{j=n}^{\infty} M\left(x, \frac{\alpha^{j+1}}{\left|\left(2^{k}\right)^{j}\right|} t\right)=1_{\mathcal{L}}$, for all $x \in X$ and $t>0,\left\{\left(2^{k}\right)^{n} f\left(\frac{x}{\left(2^{k}\right)^{n}}\right)\right\}_{n \in \mathbb{N}}$ is a Cauchy sequence in the nonArchimedean \mathcal{L}-fuzzy Banach space (Y, P, T). Hence we can define a mapping $A: X \rightarrow Y$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} P\left(\left(2^{k}\right)^{n} f\left(\frac{x}{\left(2^{k}\right)^{n}}\right)-A(x), t\right)=1_{\mathcal{L}}, \tag{13}
\end{equation*}
$$

for all $x \in X$ and $t>0$. Next, for all $n \geq 1, x \in X$ and $t>0$, we have

$$
\begin{aligned}
& P\left(f(x)-\left(2^{k}\right)^{n} f\left(\frac{x}{\left(2^{k}\right)^{n}}\right), t\right) \\
& =P\left(\sum_{i=0}^{n-1}\left[\left(2^{k}\right)^{i} f\left(\frac{x}{\left(2^{k}\right)^{i}}\right)-\left(2^{k}\right)^{i+1} f\left(\frac{x}{\left(2^{k}\right)^{i+1}}\right)\right], t\right) \\
& \geq_{L} T_{i=0}^{n-1}\left(P\left(\left(2^{k}\right)^{i} f\left(\frac{x}{\left(2^{k}\right)^{i}}\right)-\left(2^{k}\right)^{i+1} f\left(\frac{x}{\left(2^{k}\right)^{i+1}}\right), t\right)\right) \\
& \geq_{L} T_{i=0}^{n-1} M\left(x, \frac{\alpha^{i+1}}{\left|2^{k}\right|^{i}} t\right)
\end{aligned}
$$

and so

$$
\begin{align*}
& P(f(x)-A(x), t) \\
& \geq_{L} T\left(P\left(f(x)-\left(2^{k}\right)^{n} f\left(\frac{x}{\left(2^{k}\right)^{n}}\right), t\right), P\left(\left(2^{k}\right)^{n} f\left(\frac{x}{\left(2^{k}\right)^{n}}\right)-A(x), t\right)\right) \tag{14}\\
& \geq_{L} T\left(T_{i=0}^{n-1} M\left(x, \frac{\alpha^{i+1}}{\left|2^{k}\right|^{i}} t\right), P\left(\left(2^{k}\right)^{n} f\left(\frac{x}{\left(2^{k}\right)^{n}}\right)-A(x), t\right)\right)
\end{align*}
$$

Taking the limit as $n \rightarrow \infty$ in (14), $P(f(x)-A(x), t) \geq_{L} T_{i=0}^{\infty} M\left(x, \frac{\alpha^{i+1} t}{\left|2^{k}\right|^{i}}\right)$, which proves (4). Replacing x, y by $2^{-k n} x, 2^{-k n} y$ in (2) and (3), we get

$$
\begin{aligned}
& P\left(2^{k n} f\left(\frac{3 x+y}{2^{k n}}\right)+2^{k n} f\left(\frac{3 x-y}{2^{k n}}\right)-2^{k n} f\left(\frac{x+y}{2^{k n}}\right)\right. \\
& \left.-2^{k n} f\left(\frac{x-y}{2^{k n}}\right)-2.2^{k n} f\left(\frac{3 x}{2^{k n}}\right)+2.2^{k n} f\left(\frac{x}{2^{k n}}\right), t\right) \\
& \geq_{L} \Psi\left(2^{-k n} x, 2^{-k n} y, \frac{t}{\left|2^{k n}\right|}\right) \geq_{L} \Psi\left(x, y, \frac{\alpha^{n} t}{\left|2^{k n}\right|}\right)
\end{aligned}
$$

for all $x, y \in X$ and $t>0$. Since $\lim _{n \rightarrow \infty} \Psi\left(x, y, \frac{\alpha^{n} t}{\left|2^{k}\right|^{n}}\right)=1_{\mathcal{L}}$, we infer that A is an additive mapping. For the uniqueness of A, let $A^{\prime}: X \rightarrow Y$ be another additive mapping such that $P\left(A^{\prime}(x)-f(x), t\right) \geq_{L} T_{i=0}^{\infty} M\left(x, \frac{\alpha^{i+1} t}{\left|2^{k}\right|^{i}}\right)$, for all $x \in X$ and $t>0$. Then we have, for all $x \in X$ and $t>0$,

$$
\begin{aligned}
& P\left(A(x)-A^{\prime}(x), t\right) \\
& \geq_{L} T\left(P\left(A(x)-\left(2^{k}\right)^{n} f\left(\frac{x}{\left(2^{k}\right)^{n}}\right), t\right), P\left(\left(2^{k}\right)^{n} f\left(\frac{x}{\left(2^{k}\right)^{n}}\right)-A^{\prime}(x), t\right)\right)
\end{aligned}
$$

Therefore, from (14), we conclude that $A=A^{\prime}$. This completes the proof.
Theorem 5. Let K be a non-Archimedean field, X a vector space over K and (Y, P, T) a non-Archimedean \mathcal{L}-fuzzy Banach space over K. Suppose that $f: X \rightarrow Y$ is an even mapping satisfying

$$
\begin{align*}
& P(f(3 x+y)+f(3 x-y)-f(x+y)-f(x-y)-2 f(3 x)+2 f(x), t) \\
& \geq_{L} \Psi(x, y, t) \tag{15}
\end{align*}
$$

for all $x, y \in X$ and $t>0$. If there exist an $\alpha \in \mathbb{R}$ and an integer $k, k \geq 2$ with $\left|2^{k}\right|<\alpha$ and $|2| \neq 0$ such that

$$
\begin{gather*}
\Psi\left(2^{-k} x, 2^{-k} y, t\right) \geq_{L} \Psi(x, y, \alpha t), \quad \forall x \in X, t>0 \tag{16}\\
\lim _{n \rightarrow \infty} T_{j=n}^{\infty} N\left(x, \frac{\alpha^{j} t}{|2|^{k j}}\right)=1_{\mathcal{L}}, \quad \forall x \in X, t>0
\end{gather*}
$$

then there exists a unique quadratic mapping $Q: X \rightarrow Y$ such that

$$
\begin{equation*}
P(f(x)-Q(x), t) \geq T_{i=0}^{\infty} N\left(x, \frac{\alpha^{i+1} t}{|2|^{k i}}\right), \quad \forall x \in X, t>0 \tag{17}
\end{equation*}
$$

where
$N(x, t):=T\left(T\left(T\left(\Psi\left(\frac{x}{4}, \frac{x}{4}, t\right), \Psi\left(\frac{x}{4}, \frac{x}{4}, t\right)\right), T\left(\Psi\left(\frac{x}{4}, \frac{5 x}{4}, t\right), \Psi\left(\frac{x}{4}, \frac{-3 x}{4}, t\right)\right)\right)\right.$,
$T\left(T\left(\Psi\left(\frac{2 x}{4}, \frac{2 x}{4}, t\right), \Psi\left(\frac{2 x}{4}, \frac{2 x}{4}, t\right)\right), T\left(\Psi\left(\frac{2 x}{4}, \frac{5.2 x}{4}, t\right), \Psi\left(\frac{2 x}{4}, \frac{-3.2 x}{4}, t\right)\right)\right), \ldots$,
$T\left(T\left(\Psi\left(\frac{2^{j-1} x}{4}, \frac{2^{j-1} x}{4}, t\right), \Psi\left(\frac{2^{j-1} x}{4}, \frac{2^{j-1} x}{4}, t\right)\right), T\left(\Psi\left(\frac{2^{j-1} x}{4}, \frac{5.2^{j-1} x}{4}, t\right)\right.\right.$,
$\left.\left.\left.\Psi\left(\frac{2^{j-1} x}{4}, \frac{-3.2^{j-1} x}{4}, t\right)\right)\right)\right)$,
for all $x \in X, \quad t>0$.
Proof. We show by induction on j that, for all $x \in X, t>0, j \geq 1$, we have

$$
\begin{align*}
& P\left(f\left(2^{j} x\right)-2^{2 j} f(x), t\right) \\
& \geq_{L} N_{j}(x, t):=T\left(T \left(T\left(\Psi\left(\frac{x}{4}, \frac{x}{4}, t\right), \Psi\left(\frac{x}{4}, \frac{x}{4}, t\right)\right), T\left(\Psi\left(\frac{x}{4}, \frac{5 x}{4}, t\right)\right.\right.\right. \\
& \left.\left.\Psi\left(\frac{x}{4}, \frac{-3 x}{4}, t\right)\right)\right), \ldots, T\left(T\left(\Psi\left(\frac{2^{j-1} x}{4}, \frac{2^{j-1} x}{4}, t\right), \Psi\left(\frac{2^{j-1} x}{4}, \frac{2^{j-1} x}{4}, t\right)\right)\right. \tag{18}\\
& \left.\left.T\left(\Psi\left(\frac{2^{j-1} x}{4}, \frac{5.2^{j-1} x}{4}, t\right), \Psi\left(\frac{2^{j-1} x}{4}, \frac{-3.2^{j-1} x}{4}, t\right)\right)\right)\right)
\end{align*}
$$

Replacing y by $x+y$ in (15) we get

$$
\begin{align*}
& P(f(4 x+y)+f(2 x-y)-f(2 x+y)-f(y)-2 f(3 x)+2 f(x), t) \\
& \geq_{L} \Psi(x, x+y, t) \tag{19}
\end{align*}
$$

for all $x, y \in X$ and $t>0$. If we replace y by $-y$ in (19), we obtain

$$
\begin{align*}
& P(f(4 x-y)+f(2 x+y)-f(2 x-y)-f(y)-2 f(3 x)+2 f(x), t) \\
& \geq_{L} \Psi(x, x-y, t) \tag{20}
\end{align*}
$$

for all $x, y \in X$ and $t>0$. By (19) and (20), we get

$$
\begin{align*}
& P(f(4 x+y)+f(4 x-y)-2 f(y)-4 f(3 x)+4 f(x), t) \\
& \geq_{L} T(\Psi(x, x+y, t), \Psi(x, x-y, t)) . \tag{21}
\end{align*}
$$

Letting $y=0$ in (21), we get the inequality

$$
\begin{equation*}
P(2 f(4 x)-4 f(3 x)+4 f(x), t) \geq_{L} T(\Psi(x, x, t), \Psi(x, x, t)), \tag{22}
\end{equation*}
$$

for all $x \in X$ and $t>0$. Once again, by letting $y=4 x$ in (21), we get
(23) $P(f(8 x)-2 f(4 x)-4 f(3 x)+4 f(x), t) \geq_{L} T(\Psi(x, 5 x, t), \Psi(x,-3 x, t))$,
for all $x \in X$ and $t>0$. By (22) and (23), we get

$$
\begin{align*}
& P(f(8 x)-4 f(4 x), t) \\
& \geq_{L} T(T(\Psi(x, x, t), \Psi(x, x, t)), T(\Psi(x, 5 x, t), \Psi(x,-3 x, t))) \tag{24}
\end{align*}
$$

for all $x \in X$ and $t>0$. If we replace x in (24) by $\frac{x}{4}$, we get

$$
\begin{align*}
& P(f(2 x)-4 f(x), t) \\
& \geq_{L} T\left(T\left(\Psi\left(\frac{x}{4}, \frac{x}{4}, t\right), \Psi\left(\frac{x}{4}, \frac{x}{4}, t\right)\right), T\left(\Psi\left(\frac{x}{4}, \frac{5 x}{4}, t\right), \Psi\left(\frac{x}{4}, \frac{-3 x}{4}, t\right)\right)\right), \tag{25}
\end{align*}
$$

for all $x \in X$ and $t>0$. This proves (18) for $j=1$.
Let (18) hold for some $j>1$. Replacing x by $2^{j} x$ in (25), we obtain

$$
\begin{aligned}
& P\left(f\left(2^{j+1} x\right)-4 f\left(2^{j} x\right), t\right) \geq_{L} T\left(T\left(\Psi\left(\frac{2^{j} x}{4}, \frac{2^{j} x}{4}, t\right), \Psi\left(\frac{2^{j} x}{4}, \frac{2^{j} x}{4}, t\right)\right),\right. \\
& \left.T\left(\Psi\left(\frac{2^{j} x}{4}, \frac{5.2^{j} x}{4}, t\right), \Psi\left(\frac{2^{j} x}{4}, \frac{-3.2^{j} x}{4}, t\right)\right)\right),
\end{aligned}
$$

for all $x \in X$ and $t>0$. Since $|2|<1$, it follows that

$$
\begin{aligned}
& P\left(f\left(2^{j+1} x\right)-2^{2(j+1)} f(x), t\right) \\
& \geq_{L} T\left(P\left(f\left(2^{j+1} x\right)-4 f\left(2^{j} x\right), t\right), P\left(4 f\left(2^{j} x\right)-2^{2(j+1)} f(x), t\right)\right) \\
& =T\left(P\left(f\left(2^{j+1} x\right)-4 f\left(2^{j} x\right), t\right), P\left(f\left(2^{j} x\right)-2^{2 j} f(x), \frac{t}{|4|}\right)\right) \\
& \geq_{L} T\left(P\left(f\left(2^{j+1} x\right)-4 f\left(2^{j} x\right), t\right), P\left(f\left(2^{j} x\right)-2^{2 j} f(x), t\right)\right) \\
& \geq_{L} T\left(T\left(\Psi\left(\frac{2^{j} x}{4}, \frac{2^{j} x}{4}, t\right), \Psi\left(\frac{2^{j} x}{4}, \frac{2^{j} x}{4}, t\right)\right)\right. \\
& \left.T\left(\Psi\left(\frac{2^{j} x}{4}, \frac{5 \cdot 2^{j} x}{4}, t\right), \Psi\left(\frac{2^{j} x}{4}, \frac{-3.2^{j} x}{4}, t\right)\right), N_{j}(x, t)\right)=N_{j+1}(x, t),
\end{aligned}
$$

for all $x \in X$ and $t>0$. Thus (18) holds for all $j \geq 1$. In particular, we have

$$
\begin{equation*}
P\left(f\left(2^{k} x\right)-2^{2 k} f(x), t\right) \geq_{L} N(x, t) \tag{26}
\end{equation*}
$$

for all $x \in X$ and $t>0$. Replacing x by $2^{-(k n+k)} x$ in (26) and using the inequality (3), we obtain

$$
P\left(f\left(\frac{x}{2^{k n}}\right)-2^{2 k} f\left(\frac{x}{2^{k n+k}}\right), t\right) \geq_{L} N\left(\frac{x}{2^{k n+k}}, t\right) \geq_{L} N\left(x, \alpha^{n+1} t\right)
$$

for all $x \in X, t>0$ and $n \geq 0$. Thus we have

$$
\begin{aligned}
P\left(\left(2^{2 k}\right)^{n} f\left(\frac{x}{\left(2^{k}\right)^{n}}\right)-\left(2^{2 k}\right)^{n+1} f\left(\frac{x}{\left(2^{k}\right)^{n+1}}\right), t\right) & \geq_{L} N\left(x, \frac{\alpha^{n+1}}{\left|\left(2^{2 k}\right)^{n}\right|} t\right) \\
& \geq_{L} N\left(x, \frac{\alpha^{n+1}}{\left|\left(2^{k}\right)^{n}\right|} t\right),
\end{aligned}
$$

for all $x \in X, t>0$ and $n \geq 0$. Hence it follows that

$$
\begin{aligned}
& P\left(\left(2^{2 k}\right)^{n} f\left(\frac{x}{\left(2^{k}\right)^{n}}\right)-\left(2^{2 k}\right)^{n+p} f\left(\frac{x}{\left(2^{k}\right)^{n+p}}\right), t\right) \\
& \geq_{L} T_{j=n}^{n+p-1} P\left(\left(2^{2 k}\right)^{j} f\left(\frac{x}{\left(2^{k}\right)^{j}}\right)-\left(2^{2 k}\right)^{j+1} f\left(\frac{x}{\left(2^{k}\right)^{j+1}}\right), t\right) \\
& \geq_{L} T_{j=n}^{n+p-1} N\left(x, \frac{\alpha^{j+1}}{\left|\left(2^{k}\right)^{j}\right|} t\right),
\end{aligned}
$$

for all $x \in X, t>0$ and $n \geq 0$. Since $\lim _{n \rightarrow \infty} T_{j=n}^{\infty} N\left(x, \frac{\alpha^{j+1}}{\left|\left(2^{k}\right)^{j}\right|} t\right)=1_{\mathcal{L}}$, for all $x \in X$ and $t>0,\left\{\left(2^{2 k}\right)^{n} f\left(\frac{x}{\left(2^{k}\right)^{n}}\right)\right\}_{n \in \mathbb{N}}$ is a Cauchy sequence in the nonArchimedean \mathcal{L}-fuzzy Banach space (Y, P, T). Hence we can define a mapping $Q: X \rightarrow Y$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} P\left(\left(2^{2 k}\right)^{n} f\left(\frac{x}{\left(2^{k}\right)^{n}}\right)-Q(x), t\right)=1_{\mathcal{L}} \tag{27}
\end{equation*}
$$

for all $x \in X$ and $t>0$. Next, for all $n \geq 1, x \in X$ and $t>0$, we have

$$
\begin{aligned}
& P\left(f(x)-\left(2^{2 k}\right)^{n} f\left(\frac{x}{\left(2^{k}\right)^{n}}\right), t\right) \\
& =P\left(\sum_{i=0}^{n-1}\left[\left(2^{2 k}\right)^{i} f\left(\frac{x}{\left(2^{k}\right)^{i}}\right)-\left(2^{2 k}\right)^{i+1} f\left(\frac{x}{\left(2^{k}\right)^{i+1}}\right)\right], t\right) \\
& \geq_{L} T_{i=0}^{n-1}\left(P\left(\left(2^{2 k}\right)^{i} f\left(\frac{x}{\left(2^{k}\right)^{i}}\right)-\left(2^{2 k}\right)^{i+1} f\left(\frac{x}{\left(2^{k}\right)^{i+1}}\right), t\right)\right) \\
& \geq_{L} T_{i=0}^{n-1} N\left(x, \frac{\alpha^{i+1}}{\left|2^{k}\right|^{i}} t\right)
\end{aligned}
$$

and so

$$
\begin{align*}
& P(f(x)-Q(x), t) \\
& \geq_{L} T\left(P\left(f(x)-\left(2^{2 k}\right)^{n} f\left(\frac{x}{\left(2^{k}\right)^{n}}\right), t\right), P\left(\left(2^{2 k}\right)^{n} f\left(\frac{x}{\left(2^{k}\right)^{n}}\right)-Q(x), t\right)\right) \tag{28}\\
& \geq_{L} T\left(T_{i=0}^{n-1} N\left(x, \frac{\alpha^{i+1}}{\left|2^{k}\right|^{i}} t\right), P\left(\left(2^{2 k}\right)^{n} f\left(\frac{x}{\left(2^{k}\right)^{n}}\right)-Q(x), t\right)\right) .
\end{align*}
$$

Taking the limit as $n \rightarrow \infty$ in (28), $P(f(x)-Q(x), t) \geq_{L} T_{i=0}^{\infty} N\left(x, \frac{\alpha^{i+1} t}{\left|2^{k}\right|^{i}}\right)$, which proves (17). Replacing x, y by $2^{-k n} x, 2^{-k n} y$ in (15) and (16), we get

$$
\begin{aligned}
& P\left(2^{2 k n} f\left(\frac{3 x+y}{2^{k n}}\right)+2^{2 k n} f\left(\frac{3 x-y}{2^{k n}}\right)-2^{2 k n} f\left(\frac{x+y}{2^{k} n}\right)\right. \\
& \left.-2^{2 k n} f\left(\frac{x-y}{2^{k n}}\right)-2.2^{2 k n} f\left(\frac{3 x}{2^{k n}}\right)+2.2^{2 k n} f\left(\frac{x}{2^{k n}}\right), t\right) \\
& \geq_{L} \Psi\left(2^{-k n} x, 2^{-k n} y, \frac{t}{\left|2^{k n}\right|}\right) \geq_{L} \Psi\left(x, y, \frac{\alpha^{n} t}{\left|2^{k n}\right|}\right)
\end{aligned}
$$

for all $x, y \in X$ and $t>0$. Since $\lim _{n \rightarrow \infty} \Psi\left(x, y, \frac{\alpha^{n} t}{\left|2^{k}\right|^{n}}\right)=1_{\mathcal{L}}$, we infer that Q is a quadratic mapping. For the uniqueness of Q, let $Q^{\prime}: X \rightarrow Y$ be another quadratic mapping such that $P\left(Q^{\prime}(x)-f(x), t\right) \geq_{L} T_{i=0}^{\infty} N\left(x, \frac{\alpha^{i+1} t}{\left|2^{k}\right|^{i}}\right)$, for all $x \in X$ and $t>0$. Then we have, for all $x \in X$ and $t>0$,

$$
\begin{aligned}
& P\left(Q(x)-Q^{\prime}(x), t\right) \\
& \geq_{L} T\left(P\left(Q(x)-\left(2^{2 k}\right)^{n} f\left(\frac{x}{\left(2^{k}\right)^{n}}\right), t\right), P\left(\left(2^{2 k}\right)^{n} f\left(\frac{x}{\left(2^{k}\right)^{n}}\right)-Q^{\prime}(x), t\right)\right)
\end{aligned}
$$

Therefore, from (27), we conclude that $Q=Q^{\prime}$. This completes the proof.
THEOREM 6. Let K be a non-Archimedean field, X a vector space over K and (Y, P, T) a non-Archimedean \mathcal{L}-fuzzy Banach space over K. Suppose that $f: X \rightarrow Y$ is a mapping satisfying

$$
\begin{aligned}
& P(f(3 x+y)+f(3 x-y)-f(x+y)-f(x-y)-2 f(3 x)+2 f(x), t) \\
& \geq_{L} \Psi(x, y, t)
\end{aligned}
$$

for all $x, y \in X$ and $t>0$. If there exist an $\alpha \in \mathbb{R}$ and an integer $k, k \geq 2$ with $\left|2^{k}\right|<\alpha$ and $|2| \neq 0$ such that

$$
\begin{aligned}
& \Psi\left(2^{-k} x, 2^{-k} y, t\right) \geq_{L} \Psi(x, y, \alpha t), \quad \forall x \in X, t>0 \\
& \lim _{n \rightarrow \infty} T_{j=n}^{\infty}\left(T\left(M\left(x, \frac{2 \alpha^{j} t}{|2|^{k j}}\right), M\left(-x, \frac{2 \alpha^{j} t}{|2|^{k j}}\right)\right)\right)=1_{\mathcal{L}} \\
& \lim _{n \rightarrow \infty} T_{j=n}^{\infty}\left(T\left(N\left(x, \frac{2 \alpha^{j} t}{|2|^{k j}}\right), N\left(-x, \frac{2 \alpha^{j} t}{|2|^{k j}}\right)\right)\right)=1_{\mathcal{L}}
\end{aligned}
$$

then there exist an additive mapping $A: X \rightarrow Y$ and a quadratic mapping $Q: X \rightarrow Y$ such that

$$
\begin{align*}
& P(f(x)-C(x)-Q(x), t) \geq_{L} T\left(T _ { i = 0 } ^ { \infty } \left(T \left(M\left(x, \frac{2 \alpha^{i+1} t}{\left|2^{k}\right|^{i}}\right)\right.\right.\right. \\
& \left.\left.\left.M\left(-x, \frac{2 \alpha^{i+1} t}{\left|2^{k}\right|^{i}}\right)\right)\right), T_{i=0}^{\infty}\left(T\left(N\left(x, \frac{2 \alpha^{i+1} t}{\left|2^{k}\right|^{i}}\right), N\left(-x, \frac{2 \alpha^{i+1} t}{\left|2^{k}\right|^{i}}\right)\right)\right)\right), \tag{29}
\end{align*}
$$

where

$$
\begin{aligned}
& M(x, t):=T\left(T \left(T\left(\Psi\left(\frac{x}{4}, \frac{x}{4}, t\right), \Psi\left(\frac{x}{4}, \frac{3 x}{4}, t\right)\right), T\left(\Psi\left(\frac{x}{4}, \frac{x}{4}, t\right),\right.\right.\right. \\
& \left.\left.\Psi\left(\frac{x}{4}, \frac{5 x}{4}, t\right)\right)\right), T\left(T\left(\Psi\left(\frac{2 x}{4}, \frac{2 x}{4}, t\right), \Psi\left(\frac{2 x}{4}, \frac{3.2 x}{4}, t\right)\right)\right. \\
& \left.T\left(\Psi\left(\frac{2 x}{4}, \frac{2 x}{4}, t\right), \Psi\left(\frac{2 x}{4}, \frac{5.2 x}{4}, t\right)\right)\right), \ldots \\
& T\left(T\left(\Psi\left(\frac{2^{j-1} x}{4}, \frac{2^{j-1} x}{4}, t\right), \Psi\left(\frac{2^{j-1} x}{4}, \frac{3.2^{j-1} x}{4}, t\right)\right)\right. \\
& \left.\left.T\left(\Psi\left(\frac{2^{j-1} x}{4}, \frac{2^{j-1} x}{4}, t\right), \Psi\left(\frac{2^{j-1} x}{4}, \frac{5.2^{j-1} x}{4}, t\right)\right)\right)\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& N(x, t):=T\left(T \left(T\left(\Psi\left(\frac{x}{4}, \frac{x}{4}, t\right), \Psi\left(\frac{x}{4}, \frac{x}{4}, t\right)\right), T\left(\Psi\left(\frac{x}{4}, \frac{5 x}{4}, t\right),\right.\right.\right. \\
& \left.\left.\Psi\left(\frac{x}{4}, \frac{-3 x}{4}, t\right)\right)\right), T\left(T\left(\Psi\left(\frac{2 x}{4}, \frac{2 x}{4}, t\right), \Psi\left(\frac{2 x}{4}, \frac{2 x}{4}, t\right)\right),\right. \\
& \left.T\left(\Psi\left(\frac{2 x}{4}, \frac{5.2 x}{4}, t\right), \Psi\left(\frac{2 x}{4}, \frac{-3.2 x}{4}, t\right)\right)\right), \ldots, \\
& T\left(T\left(\Psi\left(\frac{2^{j-1} x}{4}, \frac{2^{j-1} x}{4}, t\right), \Psi\left(\frac{2^{j-1} x}{4}, \frac{2^{j-1} x}{4}, t\right)\right),\right. \\
& \left.\left.T\left(\Psi\left(\frac{2^{j-1} x}{4}, \frac{5.2^{j-1} x}{4}, t\right), \Psi\left(\frac{2^{j-1} x}{4}, \frac{-3.2^{j-1} x}{4}, t\right)\right)\right)\right)
\end{aligned}
$$

for all $x \in X, \quad t>0$.
Proof. Let $f_{0}(x)=\frac{1}{2}[f(x)-f(-x)]$, for all $x \in X$. Then $f_{0}(0)=0, f_{0}(-x)=$ $-f_{0}(x)$, and

$$
\begin{aligned}
& P\left(f_{0}(3 x+y)+f_{0}(3 x-y)-f_{0}(x+y)-f_{0}(x-y)-2 f_{0}(3 x)+2 f_{0}(x), t\right) \\
& \geq_{L} T\left(P \left(\frac{1}{2}[f(3 x+y)+f(3 x-y)-f(x+y)-f(x-y)-2 f(3 x)\right.\right. \\
& +2 f(x)], t), P\left(\frac{-1}{2}[f(-3 x-y)+f(-3 x+y)-f(-x-y)-f(-x+y)\right. \\
& -2 f(-3 x)+2 f(-x)], t)) \geq_{L} T(\Psi(x, y, 2 t), \Psi(-x,-y, 2 t))
\end{aligned}
$$

for all $x, y \in X$ and $t>0$. By Theorem 4 , it follows that there exists a unique additive function $A: X \rightarrow Y$ satisfying
(30) $P\left(f_{0}(x)-A(x), t\right) \geq_{L} T_{i=0}^{\infty}\left(T\left(M\left(x, \frac{2 \alpha^{i+1} t}{\left|2^{k}\right|^{i}}\right), M\left(-x, \frac{2 \alpha^{i+1} t}{\left|2^{k}\right|^{i}}\right)\right)\right)$,
for all $x, y \in X$ and $t>0$.

Let $f_{e}(x)=\frac{1}{2}[f(x)+f(-x)]$, for all $x \in X$. Then $f_{e}(0)=0, f_{e}(-x)=f_{e}(x)$, and

$$
\begin{aligned}
& P\left(f_{e}(3 x+y)+f_{e}(3 x-y)-f_{e}(x+y)-f_{e}(x-y)-2 f_{e}(3 x)+2 f_{e}(x), t\right) \\
& \geq_{L} T\left(P \left(\frac{1}{2}[f(3 x+y)+f(3 x-y)-f(x+y)-f(x-y)-2 f(3 x)\right.\right. \\
& +2 f(x)], t), P\left(\frac{1}{2}[f(-3 x-y)+f(-3 x+y)-f(-x-y)-f(-x+y)\right. \\
& -2 f(-3 x)+2 f(-x)], t)) \geq_{L} T(\Psi(x, y, 2 t), \Psi(-x,-y, 2 t))
\end{aligned}
$$

for all $x, y \in X$ and $t>0$. By Theorem 5 , it follows that there exists a unique quadratic function $Q: X \rightarrow Y$ satisfying

$$
\begin{equation*}
P\left(f_{e}(x)-Q(x), t\right) \geq_{L} T_{i=0}^{\infty}\left(T\left(N\left(x, \frac{2 \alpha^{i+1} t}{\left|2^{k}\right|^{i}}\right), N\left(-x, \frac{2 \alpha^{i+1} t}{\left|2^{k}\right|^{i}}\right)\right)\right) \tag{31}
\end{equation*}
$$

for all $x, y \in X$ and $t>0$. Hence (29) follows from (30) and (31).

REFERENCES

[1] Aczel, J. and Dhombres, J., Functional Equations in Several Variables, Cambridge Univ. Press, 1989.
[2] Aoki, T., On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan., 2 (1950), 64-66.
[3] Cholewa, P.W., Remarks on the stability of functional equations, Aequationes Math., 27 (1984), 76-86.
[4] Czerwik, S., On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg, 62 (1992), 59-64.
[5] Deschrijver, G. and Kerre, E., On the relationship between some extensions of fuzzy set theory, Fuzzy Sets and Systems, 133 (2003), 227-235.
[6] Ebadian, A., Najati A. and Gordji, M.E., On approximate additive-quartic and quadratic-cubic functional equations in two variables on abelian groups, Results Math., 58 (2010), 39-53.
[7] Eshaghi Gordji, M., Stability of a functional equation deriving from quartic and additive functions, Bull. Korean Math. Soc., 47 (2010), 491-502.
[8] Eshaghi Gordji, M., Stability of an additive-quadratic functional equation of two variables in F-spaces, J. Nonlinear Sci. Appl., 2 (2009), 251-259.
[9] Eshaghi Gordji, M., Nearly ring homomorphisms and nearly ring derivations on nonArchimedean Banach algebras, Abs. Appl. Anal., 2010, Article ID 393247, 12 pages.
[10] Eshaghi Gordji, M. and Bavand Savadkouhi, M., Stability of cubic and quartic functional equations in non-Archimedean spaces, Acta Appl. Math., 110 (2010), 13211329.
[11] Eshaghi Gordji, M. and Bavand Savadkouhi, M., Stability of a mixed type cubicquartic functional equation in non-Archimedean spaces, Appl. Math. Letters, 23 (2010), 1198-1202.
[12] Eshaghi Gordji, M. and Bavand Savadkouhi, M., On approximate cubic homomorphisms, Adv. Difference Equ., 2009, Article ID 618463, 11 pages.
[13] Eshaghi Gordji, M., Ebadian, A. and Zolfaghari, S., Stability of a functional equation deriving from cubic and quartic functions, Abstr. Appl. Anal., 2008, Article ID 801904, 17 pages.
[14] Eshaghi Gordji, M., Ghaemi, M.B., Kaboli Gharetapeh, S., Shams, S. and Ebadian, A., On the stability of J^{*}-derivations, J. Geom. Phys., 60 (2010), 454-459.
[15] Eshaghi Gordji, M., Ghaemi, M.B., and Majani, H., Generalized Hyers-UlamRassias theorem in Menger probabilistic normed spaces, Discrete Dyn. Nat. Soc., 2010, Article ID 162371, 11 pages.
[16] Eshaghi Gordji, M., Ghaemi, M.B., Majani, H. and Park, C., Generalized UlamHyers stability of Jensen functional equation in Šerstnev PN spaces, J. Ineq. Appl., 2010, Article ID 868193, 14 pages.
[17] Eshaghi Gordji M., Khodabakhsh, R., Jung, S.M. and Khodaei, H., AQCQfunctional equation in non-Archimedean normed spaces, Abs. Appl. Anal., 2010, Article ID 741942, 22 pages.
[18] Eshaghi Gordji, M. and Khodaei, H., On the generalized Hyers-Ulam-Rassias stability of quadratic functional equations, Abs. Appl. Anal., 2009, Article ID 923476, 11 pages.
[19] Eshaghi Gordji, M. and Khodaei, H., Stability of Functional Equations, LAP LAMBERT Academic Publishing, 2010.
[20] Eshaghi Gordji, M. and Khodaei, H., Solution and stability of generalized mixed type cubic, quadratic and additive functional equation in quasi-Banach spaces, Nonlinear Anal.-TMA, 71 (2009), 5629-5643.
[21] Eshaghi Gordji, M., Khodaei H. and Khodabakhsh, R., General quartic-cubicquadratic functional equation in non-Archimedean normed spaces, U.P.B. Sci. Bull. (Series A), 72 (2010), 69-84.
[22] Eshaghi Gordji, M. and Najati, A., Approximately J^{*}-homomorphisms: a fixed point approach, J. Geom. Phys., 60 (2010), 809-814.
[23] Gajda, Z., On stability of additive mappings, Internat. J. Math. Math. Sci., 14 (1991), 431-434.
[24] Găvruta, P., A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184 (1994), 431-436.
[25] Goguen, J., L-fuzzy sets, Math. Anal. Appl., 18 (1967), 145-174.
[26] Gordji, M.E., Zolfaghari, S., Rassias, J.M. and Savadkouhi, M.B., Solution and stability of a mixed type cubic and quartic functional equation in quasi-Banach spaces, Abs. Appl. Anal., 2009, Article ID 417473, 14 pages.
[27] Gordji, M.E., Abbaszadeh, S. and Park, C., On the stability of generalized mixed type quadratic and quartic functional equation in quasi-Banach spaces, J. Inequal. Appl., 2009 (2009), Article ID 153084, 26 pages.
[28] Gordji, M.E., Kaboli-Gharetapeh, S., Park, C. and Zolfaghri, S., Stability of an additive-cubic-quartic functional equation, Adv. Difference Equ., 2009 (2009), Article ID 395693, 20 pages.
[29] Gordji, M.E., Kaboli Gharetapeh, S., Rassias, J.M. and Zolfaghari, S., Solution and stability of a mixed type additive, quadratic and cubic functional equation, Adv. Difference Equ., 2009, Article ID 826130, 17 pages.
[30] Gordji, M.E. and Savadkouhi, M.B., Stability of a mixed type cubic and quartic functional equations in random normed spaces, J. Inequal. Appl., 2009 (2009), Article ID 527462, 9 pages.
[31] Gordji, M.E., Savadkouhi, M.B. and Park, C. Quadratic-quartic functional equations in RN-spaces, J. Inequal. Appl., 2009 (2009), Article ID 868423, 14 pages.
[32] Gordji, M.E. and Savadkouhi, M.B., Approximation of generalized homomorphisms in quasi-Banach algebras, An. Ştiinţ. Univ. "Ovidius" Constanţa, 17 (2009), 203-214.
[33] Gordji, M.E., Savadkouhi, M.B. and Bidkham, M., Stability of a mixed type additive and quadratic functional equation in non-Archimedean spaces, J. Comput. Anal. Appl., 12 (2010), 454-462.
[34] Grabiec, A., The generalized Hyers-Ulam stability of a class of functional equations, Publ. Math. Debrecen., 48 (1996), 217-235.
[35] Hensel, K., Über eine neue Begrundung der Theorie der algebraischen Zahlen, Jahresber. Deutsch. Math.-Verein., 6 (1897), 83-88.
[36] Hyers, D.H., Isac, G. and Rassias, Th.M., Stability of functional equations in several variables, Birkhäuser, Basel, 1998.
[37] Hyers, D.H., On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA, 27 (1941), 222-224.
[38] Isac, G. and Rassias, Th. M., On the Hyers-Ulam stability of ψ-additive mappings, J. Approx. Theory, 72 (1993), 131-137.
[39] Jung, S.M., Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press, Palm Harbor, 2001.
[40] Kannappan, Pl., Quadratic functional equation and inner product spaces, Results Math., 27 (1995), 368-372.
[41] Najati, A. and Rassias, Th.M., Pexider type operators and their norms in X_{λ} spaces, Czechoslovak Math. J., 59 (134) (2009), 1087-1094.
[42] Najati, A. and Zamani Eskandani, G., Stability of a mixed additive and cubic functional equation in quasi-Banach spaces, J. Math. Anal. Appl., 342 (2008), 1318-1331.
[43] Rassias, J.M., On Approximation of approximately linear mappings by linear mappings, J. Funct. Anal., 46 (1982), 126-130.
[44] Rassias, J.M., On Approximation of approximately linear mappings by linear mappings, Bull. Sci. Math., 108 (1984), 445-446.
[45] Rassias, J.M., Solution of a problem of Ulam, J. Approx. Theory., 57 (1989), 268-273.
[46] Rassias, J.M., On the stability of the Euler-Lagrange functional equation, Chinese J. Math., 20 (1992), 185-190.
[47] Rassias, J.M., Solution of a stability problem of Ulam, Discuss. Math., 12 (1992), 95-103.
[48] Rassias, J. M., Complete solution of the multi-dimensional problem of Ulam, Discuss. Math., 14 (1994), 101-107.
[49] Rassias, Th.M., Functional Equations Inequalities and Applications, Kluwer Academic Publishers, Dordrecht, Boston and London, 2003.
[50] Rassias, Th.M., On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297-300.
[51] Skof, F., Proprietá locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano, 53 (1983), 113-129.
[52] Shakeri, S., Saadati, R. and Park, C., Stability of the quadratic functional equation in non-Archimedean \mathcal{L}-fuzzy normed spaces, Int. J. Nonlin. Anal. Appl, 1 (2010), 1-12.
[53] Ulam, S.M., Problems in Modern Mathematics, Science Ed., Wiley, New York, 1940.
Received August 8, 2010
Accepted January 16, 2011

Semnan University
Department of Mathematics
P.O. Box 35195-363, Semnan, Iran
CENAA, Semnan University, Iran
E-mail: madjid.eshaghi@gmail.com
E-mail: bavand.m@gmail.com
Payame Noor University
Department of Mathematics
Broojen Branch, Broojen, Iran
E-mail: taheri2028@gmail.com

