MATHEMATICA, Tome 54 (77), N° 1, 2012, pp. 26-37

$Q_{K, \omega, \log }(p, q)$-TYPE SPACES OF ANALYTIC AND MEROMORPHIC FUNCTIONS

A. EL-SAYED AHMED and ALAA KAMAL

Abstract

In this paper, we define the space $Q_{K, \omega, \log }(p, q)$ of analytic functions on the unit disk. We obtain some characterizations for the space $Q_{K, \omega, \log }(p, q)$ by the help of the nondecreasing function K and the reasonable function ω. Moreover, the meromorphic $Q_{K, \omega, \log }^{\#}(p, q)$ space is also considered and studied.

MSC 2010. 30D45, 46E15.
Key words. Logarithmic Bloch functions, $Q_{K, \omega, \log }(p, q)$ spaces.

1. INTRODUCTION

We start here with some terminology, notation and the definition of various classes of analytic functions defined on the open unit disk $\mathbb{D}=\{z:|z|<1\}$ in the complex plane \mathbb{C} with boundary $\partial \mathbb{D}$. $\mathrm{d} A(z)$ be the normalized area measure on \mathbb{D} so that $A(\mathbb{D}) \equiv 1$. Recall that the weighted logarithmic α-Bloch space $\mathcal{B}_{\text {log }}^{\alpha}($ see [15]) is defined as follows:
$\mathcal{B}_{\log }^{\alpha}=\left\{f: f\right.$ analytic in \mathbb{D} and $\left.\sup _{z \in \mathbb{D}}\left(1-|z|^{2}\right)^{\alpha}\left(\log \frac{2}{1-|z|^{2}}\right)\left|f^{\prime}(z)\right|<\infty\right\}$.
The little weighted logarithmic α-Bloch space $\mathcal{B}_{\text {log }, 0}^{\alpha}$ (see [15]) is a subspace of $\mathcal{B}_{\log }^{\alpha}$ consisting of all $f \in \mathcal{B}_{\log }^{\alpha}$ such that

$$
\lim _{|z| \rightarrow 1^{-}}\left(1-|z|^{2}\right)\left(\log \frac{2}{1-|z|^{2}}\right)\left|f^{\prime}(z)\right|=0
$$

Denote by $\mathcal{D}=\left\{f: f\right.$ analytic in \mathbb{D} and $\left.\int_{\mathbb{D}}\left|f^{\prime}(z)\right|^{2} \mathrm{~d} A(z)<\infty\right\}$ the Dirichlet space. Let $0<q<\infty$. Then the Besov-type spaces

$$
\begin{aligned}
\mathbf{B}^{\mathbf{q}}= & \{f: f \text { analytic in } \mathbb{D} \text { and } \\
& \left.\sup _{a \in \mathbb{D}} \int_{\mathbb{D}}\left|f^{\prime}(z)\right|^{q}\left(1-|z|^{2}\right)^{q-2}\left(1-\left|\varphi_{a}(z)\right|^{2}\right)^{2} \mathrm{~d} A(z)<\infty\right\}
\end{aligned}
$$

are introduced and studied intensively by Stroethoff (cf. [11]). Here, $\varphi_{a}(z)$ stands for the Möbius transformation of \mathbb{D} and it is given by $\varphi_{a}(z)=\frac{a-z}{1-\bar{a} z}$, where $a \in \mathbb{D}$. In [3] a class of holomorphic functions, the so called \mathcal{Q}_{p}-space is introduced as follows:

$$
\mathcal{Q}_{p}=\left\{f: f \text { analytic in } \mathbb{D} \text { and } \sup _{a \in \mathbb{D}} \int_{\mathbb{D}}\left|f^{\prime}(z)\right|^{2} g^{p}(z, a) \mathrm{d} A(z)<\infty\right\}
$$

where $0<p<\infty$ and the weight function $g(z, a)=\log \left|\frac{1-\bar{a} z}{a-z}\right|$ is defined as the composition of the Möbius transformation φ_{a}. The weight function $g(z, a)$ is actually Green's function in \mathbb{D} with pole at $a \in \mathbb{D}$.

For a point $a \in \mathbb{D}$ and $0<r<1$, the pseudo-hyperbolic disk $D(a, r)$ with pseudo-hyperbolic center a and pseudo-hyperbolic radius r is defined by $D(a, r)=\varphi_{a}(r D)$. The pseudo-hyperbolic disk $D(a, r)$ is also an Euclidean disk: its Euclidean center and Euclidean radius are $\frac{\left(1-r^{2}\right) a}{1-r^{2}|a|^{2}}$ and $\frac{\left(1-|a|^{2}\right) r}{1-r^{2}|a|^{2}}$, respectively (see [11]). Let A denote the normalized Lebesgue area measure on \mathbb{D}, and for a Lebesgue measurable set $K_{1} \subset \mathbb{D}$, denote by $\left|K_{1}\right|$ the measure of K_{1} with respect to A. It follows immediately that:

$$
|D(a, r)|=\frac{\left(1-|a|^{2}\right)^{2}}{\left(1-r^{2}|a|^{2}\right)^{2}} r^{2}
$$

Let $K:[0, \infty) \rightarrow[0, \infty)$ be a nondecreasing function. For $0<p<\infty,-2<$ $q<\infty$, we say that a function f analytic in \mathbb{D} belongs to the space $Q_{K}(p, q)$ (cf. [14]), if

$$
\|f\|_{Q_{K}(p, q)}^{p}=\sup _{a \in \mathbb{D}} \int_{\mathbb{D}}\left|f^{\prime}(z)\right|^{p}\left(1-|z|^{2}\right)^{q} K(g(z, a)) \mathrm{d} A(z)<\infty
$$

Using the above mentioned function K, several authors have been studied some classes of holomorphic and meromorphic function spaces (see $[1,2,5,6$, $8,9,13,14]$ and others).

Now, given a reasonable function $\omega:(0,1] \rightarrow(0, \infty)$, the weighted Bloch space \mathcal{B}_{ω} (see [4]) is defined as the set of all analytic functions f on \mathbb{D} satisfying

$$
(1-|z|)\left|f^{\prime}(z)\right| \leq C \omega(1-|z|), \quad z \in \mathbb{D}
$$

for some fixed $C=C_{f}>0$. In the special case where $\omega \equiv 1, \mathcal{B}_{\omega}$ reduces to the classical Bloch space \mathcal{B}. Here, the word "reasonable" is a non-mathematical term; it was just intended to mean that the "not too bad" and the function satisfy some natural conditions.

We introduce the following definitions:
DEfinition 1.1. For a given reasonable function $\omega:(0,1] \rightarrow(0, \infty)$ and for $0<\alpha<\infty$, an analytic function f on \mathbb{D} is said to belong to the weighted logarithmic α-Bloch space $\mathcal{B}_{\omega, \text { log }}^{\alpha}$ if

$$
\|f\|_{\mathcal{B}_{\omega, \log }^{\alpha}}=\sup _{z \in \mathbb{D}} \frac{(1-|z|)^{\alpha}}{\omega(1-|z|)}\left|f^{\prime}(z)\right|\left(\log \frac{2}{1-|z|^{2}}\right)<\infty .
$$

DEFInition 1.2. For a given reasonable function $\omega:(0,1] \rightarrow(0, \infty)$ and for $0<\alpha<\infty$, an analytic function f on \mathbb{D} is said to belong to the little weighted logarithmic α-Bloch space $\mathcal{B}_{\omega, 0}^{\alpha}$ if

$$
\|f\|_{\mathcal{B}_{\omega, \log , 0}^{\alpha}}=\lim _{|z| \rightarrow 1^{-}} \frac{(1-|z|)^{\alpha}}{\omega(1-|z|)^{2}}\left|f^{\prime}(z)\right|\left(\log \frac{2}{1-|z|^{2}}\right)=0
$$

Throughout this paper and for some techniques, we consider the case of $\omega \not \equiv 0$.

The logarithmic order (log-order) of the function $K(r)$ is defined as

$$
\rho=\limsup _{r \rightarrow \infty} \frac{\ln ^{+} \ln ^{+} K(r)}{\ln r}
$$

where $\ln ^{+} x=\max \{\ln x, 0\}$. If $0<\rho<\infty$, the logarithmic type (log-type) of the function $K(r)$ is defined as

$$
\sigma=\limsup _{r \rightarrow \infty} \frac{\ln ^{+} K(r)}{r^{\rho}}
$$

Note that if f is an entire function, then the growth order of f is just the log-order of $M(r)$, the maximum modulus function of f.

Definition 1.3. Let $0<p<\infty$ and $-2<q<\infty$. For a nondecreasing function $K:[0, \infty) \rightarrow[0, \infty)$ and for a given reasonable function $\omega:(0,1] \rightarrow$ $(0, \infty)$, an analytic function f in \mathbb{D} is said to belong to the space $Q_{K, \omega, \log }(p, q)$ if
$\|f\|_{Q_{K, \omega, \log (p, q)}^{p}}^{p} \sup _{a \in \mathbb{D}} \int_{\mathbb{D}}\left|f^{\prime}(z)\right|^{p} \frac{(1-|z|)^{q} K(g(z, a))}{\omega^{p}(1-|z|)}\left(\log \frac{2}{1-|z|^{2}}\right) \mathrm{d} A(z)<\infty$.
Definition 1.4. Let $0<p<\infty,-2<q<\infty$ and $0<s<\infty$. For a given reasonable function $\omega:(0,1] \rightarrow(0, \infty)$ an analytic function f in \mathbb{D} is said to belong to the spaces $F_{\omega, \log }(p, q, s)$ if
$\|f\|_{F_{\omega, \log }(p, q, s)}^{p}=\sup _{a \in \mathbb{D}} \int_{\mathbb{D}}\left|f^{\prime}(z)\right|^{p}\left(1-|z|^{2}\right)^{q} \frac{g^{s}(z, a)}{\omega^{p}(1-|z|)}\left(\log \frac{2}{1-|z|^{2}}\right) \mathrm{d} A(z)<\infty$.
Moreover, if

$$
\lim _{|a| \rightarrow 1^{-}} \int_{\mathbb{D}}\left|f^{\prime}(z)\right|^{p}\left(1-|z|^{2}\right)^{q} \frac{g^{s}(z, a)}{\omega^{p}(1-|z|)}\left(\log \frac{2}{1-|z|^{2}}\right) \mathrm{d} A(z)=0
$$

then $f \in F_{\omega, \log , 0}(p, q, s)$.
We assume throughout the paper that

$$
\int_{0}^{1}\left(1-r^{2}\right)^{-2} K\left(\log \frac{1}{r}\right) r \mathrm{~d} r<\infty
$$

We can define an auxiliary function as follows:

$$
\varphi_{K}(s)=\sup _{0<t \leq 1} \frac{K(s t)}{K(t)}, \quad 0<s<\infty
$$

Remark. It should be remarked that our $Q_{K, \omega, \log }(p, q)$ classes are more general than many classes of analytic functions. If $\omega \equiv 1$, and $\log \frac{2}{1-|z|^{2}}=1$, then we obtain $Q_{K}(p, q)$ type spaces. If $p=2, q=0, \omega \equiv 1$, and $\log \frac{2}{1-|z|^{2}}=1$, we obtain Q_{K} space. If $p=2, q=0, \omega \equiv 1$, and $\log \frac{2}{1-|z|^{2}}=1$, we obtain
Q_{p} spaces as studied in [3]. If $\omega \equiv 1, \log \frac{2}{1-|z|^{2}}=1$ and $K(t)=t^{s}$, then $Q_{K, \omega, \log }=F(p, q, s)$ classes.

Throughout this paper, we assume that $K:[0, \infty) \rightarrow[0, \infty)$ is a right continuous and nondecreasing function. Moreover, we suppose that $\omega:(0,1] \rightarrow$ $(0, \infty)$ is a nondecreasing function.

2. ANALYTIC CLASSES

We first give some basic properties of analytic $Q_{K, \omega, \log }(p, q)$ spaces.
Proposition 2.1. Let $K:[0, \infty) \rightarrow[0, \infty)$ be a nondecreasing function and $\omega:(0,1] \rightarrow(0, \infty)$, where $\omega(\lambda t)=\lambda \omega(t)$. For $0<p<\infty$ and $-2<q<\infty$, we have that the spaces $Q_{K, \omega, \log }(p, q)$ are subsets of the weighted logarithmic Bloch spaces $\mathcal{B}_{\omega, \text { log. }}^{\frac{q+2}{p}}$.

Proof. For a fixed $r \in(0,1)$ and $a \in \mathbb{D}$, let $E(a, r)=\{z \in \mathbb{D},|z-a|<$ $r(1-|a|)\}$. Also, suppose that $f \in Q_{K, \omega, \log }(p, q)$. We obtain:

$$
\begin{aligned}
\|f\|_{Q_{K, \omega, \log (p, q)}^{p}}^{p} & =\sup _{a \in \mathbb{D}} \int_{\mathbb{D}}\left|f^{\prime}(z)\right|^{p}(1-|z|)^{q} \frac{K(g(z, a))}{\omega^{p}(1-|z|)}\left(\log \frac{2}{1-|z|^{2}}\right) \mathrm{d} A(z) \\
& \geq \int_{\mathbb{D}}\left|f^{\prime}(z)\right|^{p}\left(1-|z|^{2}\right)^{q} \frac{K(g(z, a))}{\omega^{p}(1-|z|)}\left(\log \frac{2}{1-|z|^{2}}\right) \mathrm{d} A(z) \\
& \geq \int_{D(a, r)}\left|f^{\prime}(z)\right|^{p}\left(1-|z|^{2}\right)^{q} \frac{K(g(z, a))}{\omega^{p}(1-|z|)}\left(\log \frac{2}{1-|z|^{2}}\right) \mathrm{d} A(z) \\
& \geq K\left(\log \frac{1}{r}\right) \int_{D(a, r)}\left|f^{\prime}(z)\right|^{p} \frac{\left(1-|z|^{2}\right)^{q}}{\omega^{p}(1-|z|)}\left(\log \frac{2}{1-|z|^{2}}\right) \mathrm{d} A(z) \\
& \geq K\left(\log \frac{1}{r}\right) \int_{E(a, r)}\left|f^{\prime}(z)\right|^{p} \frac{\left(1-|z|^{2}\right)^{q}}{\omega^{p}(1-|z|)}\left(\log \frac{2}{1-|z|^{2}}\right) \mathrm{d} A(z) .
\end{aligned}
$$

We know that $E(a, r) \subset D(a, r)$ and for any $z \in E(a, r)$, we have

$$
(1-r)(1-|a|) \leq 1-|z| \leq(1+r)(1-|a|) .
$$

Now, since we assume that ω is non-decreasing, we obtain:

$$
\begin{aligned}
\|f\|_{Q_{K, \omega, \log (p, q)}}^{p} & \geq K\left(\log \frac{1}{r}\right) \int_{E(a, r)}\left|f^{\prime}(z)\right|^{p} \frac{\left(1-|z|^{2}\right)^{q}}{\omega^{p}(1-|z|)}\left(\log \frac{2}{1-|z|^{2}}\right) \mathrm{d} A(z) \\
& \geq \frac{C(r)(1-|a|)^{q}\left(\log \frac{2}{(1+r)(1-|a|)}\right)}{\omega^{p}((1-r)(1-|a|))} \int_{E(a, r)}\left|f^{\prime}(z)\right|^{p} \mathrm{~d} A(z)
\end{aligned}
$$

where $C(r)$ is a constant depends on r. Since $\left|f^{\prime}(z)\right|^{p}$ is a subharmonic function, we have:

$$
\int_{E(a, r)}\left|f^{\prime}(z)\right|^{p} \mathrm{~d} A(z) \geq|E(a, r)|\left|f^{\prime}(a)\right|^{p}=r^{2}(1-|a|)^{2}\left|f^{\prime}(a)\right|^{p} .
$$

Then, we obtain

$$
\|f\|_{Q_{K, \omega, \log }(p, q)}^{p} \geq \frac{C_{1}(r)(1-|a|)^{q+2}\left|f^{\prime}(a)\right|^{p}\left(\log \frac{2}{(1-|a|)}\right)}{\omega^{p}(1-|a|)},
$$

where $C_{1}(r)$ is a constant depends on r. Then, we deduce that,

$$
\begin{equation*}
\|f\|_{\substack{\mathcal{B}_{\omega, \log }^{p+2}}}^{p} \leq \frac{\|f\|_{Q_{K, \omega, \log (p, q)}^{p}}^{p}}{C_{1}(r)} . \tag{1}
\end{equation*}
$$

Our proposition is therefore established.
Next we give the following proposition.
Proposition 2.2. Let $\omega:(0,1] \rightarrow(0, \infty)$ and $0<p<\infty,-2<q<\infty$. If the log-order ρ and the log-type σ of a nondecreasing function $K(r)$ satisfy one of the following conditions:
(i) $\rho>1$;
(ii) $\rho=1$ and $0<\sigma<\infty$, then $\|f\|_{Q_{K, \omega, \log (p, q)}}^{p} \subset\|f\|_{\mathcal{B}_{\omega, \log }}^{p}$.

Proof. By Proposition 2.1, it suffices to show that each non-constant weighted logarithmic α-Bloch function f can not belong to the spaces $Q_{K, \omega, \log }(p, q)$.

In fact, if either the log-order ρ of $K(r)$ is greater than 0 , or the log-order ρ of $K(r)$ equals 1 and the log-type σ of $K(r)$ is greater than 2 , then there exists a sequence $\left\{r_{n}\right\}$ with $r_{n} \rightarrow \infty$ as $n \rightarrow \infty$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\ln ^{+} \ln ^{+} K\left(r_{n}\right)}{\ln r_{n}}=\rho>1 \tag{2}
\end{equation*}
$$

or

$$
\begin{equation*}
\sigma=\lim _{n \rightarrow \infty} \frac{\ln ^{+} K\left(r_{n}\right)}{r_{n}}=\lambda>0 . \tag{3}
\end{equation*}
$$

In the case (2) or (3), we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{K\left(r_{n}\right)}{\mathrm{e}^{\lambda r_{n}}}=\text { const. } \tag{4}
\end{equation*}
$$

Let f be a non-constant weighted logarithmic α-Bloch function. Then

$$
\|f\|_{\substack{\mathcal{B}_{\omega, l o g}^{p}}}^{p}=\sup _{z \in \mathbb{D}}^{q+\mathbb{D}}\left\{\frac{\left(1-|z|^{2}\right)^{q}}{\omega^{p}(1-|z|)}\left(\log \frac{2}{(1-|z|)}\right)\left|f^{\prime}(z)\right|^{p}: z \in \mathbb{D}\right\} \neq 0 .
$$

However, by (1) and (4) we have

$$
\begin{aligned}
\|f\|_{Q_{K, \omega, \log (p, q)}^{p}}^{p} & =\sup _{a \in \mathbb{D}} \int_{\mathbb{D}}\left|f^{\prime}(z)\right|^{p}\left(1-|z|^{2}\right)^{q} \frac{K(g(z, a))}{\omega^{p}(1-|z|)}\left(\log \frac{2}{(1-|z|)}\right) \mathrm{d} A(z) \\
& \geq \pi\|f\|^{p}{ }_{\substack{\mathcal{B}_{\omega, \log }^{p+2} \\
\frac{q+2}{p}}}\left(1-t_{n}\right)^{p} K\left(\log \frac{1}{t_{n}}\right) \nrightarrow \infty .
\end{aligned}
$$

Hence $f \in Q_{K, \omega, \log }(p, q)$.

Theorem 2.3. Let $K:[0, \infty) \rightarrow[0, \infty)$ be a nondecreasing function and $\omega:(0,1] \rightarrow(0, \infty)$, satisfying both of the following:
(A) There exists a constant $p>1$ such that $\lim _{n \rightarrow \infty} \frac{K(r)}{r^{p}}=c \neq 0$;
(B) The log-order ρ and the log-type σ satisfy one of the following cases:
(i) $0 \leq \rho<1$;
(ii) $\rho=1$ and $0<\sigma<\infty$.

Then $Q_{K, \omega, \log (p, q)}=\mathcal{B}_{\omega, \log }^{\frac{q+2}{p}}$.
Proof. Let $\lim _{r \rightarrow \infty} \frac{K(r)}{r^{p}}=C \neq 0$, for some $p \in(1, \infty)$. Then there exists a fixed $r_{1} \in(0,1)$ such that

$$
\begin{equation*}
\frac{c}{2} \leq \frac{K(r)}{r^{p}} \leq c+1, \quad 0<r<r_{1} . \tag{5}
\end{equation*}
$$

We may choose $r_{0} \in(0,1)$ such that

$$
\begin{equation*}
z \in \mathbb{D} \backslash D\left(a, r_{0}\right) \Rightarrow g(z, a)=\log \frac{1}{\left|\varphi_{a}(z)\right|}<r_{1} \tag{6}
\end{equation*}
$$

Now we first suppose that $f \in Q_{K, \omega, \log }(p, q)$ with

$$
\sup _{a \in \mathbb{D}} \int_{\mathbb{D}}\left|f^{\prime}(z)\right|^{p}\left(1-|z|^{2}\right)^{q} \frac{K(g(z, a))}{\omega^{p}(1-|z|)}\left(\log \frac{2}{(1-|z|)}\right) \mathrm{d} A(z)=C,
$$

and write

$$
\begin{align*}
& \int_{\mathbb{D}}\left|f^{\prime}(z)\right|^{p}\left(1-|z|^{2}\right)^{q} \frac{(g(z, a))^{p}}{\omega^{p}(1-|z|)}\left(\log \frac{2}{(1-|z|)}\right) \mathrm{d} A(z) \\
& =\int_{D\left(a, r_{0}\right)}\left|f^{\prime}(z)\right|^{p}\left(1-|z|^{2}\right)^{q} \frac{(g(z, a))^{p}}{\omega^{p}(1-|z|)}\left(\log \frac{2}{(1-|z|)}\right) \mathrm{d} A(z) \tag{7}\\
& +\int_{\mathbb{D} \backslash D\left(a, r_{0}\right)} \left\lvert\, f^{\prime}\left(\left.z\right|^{p}\left(1-|z|^{2}\right)^{q} \frac{(g(z, a))^{p}}{\omega^{p}(1-|z|)}\left(\log \frac{2}{(1-|z|)}\right) \mathrm{d} A(z)\right.\right. \\
& =I_{1}+I_{2} .
\end{align*}
$$

Since $Q_{K, \omega, \log }(p, q) \subset \mathcal{B}_{\omega, \log }^{\frac{p+2}{q}}$ from Proposition 2.1, we have

$$
\begin{align*}
I_{1} & =\int_{D\left(a, r_{0}\right)}\left|f^{\prime}(z)\right|^{p}\left(1-|z|^{2}\right)^{q} \frac{(g(z, a))^{p}}{\omega^{p}(1-|z|)}\left(\log \frac{2}{(1-|z|)}\right) \mathrm{d} A(z) \\
& \leq\|f\|_{\mathcal{B}_{\omega, \log }^{p}}^{p} \int_{D\left(a, r_{0}\right)}^{\frac{q+2}{p}} \int\left(1-|z|^{2}\right)^{-2}\left(\log \frac{1}{\varphi_{a}(z)}\right)^{p} \mathrm{~d} A(z) \\
& =2 \pi\|f\|^{p}{ }_{\mathcal{B}_{\omega, \log }^{p+2}}^{p} \int_{0}^{r_{0}} r\left(1-r^{2}\right)^{-2}\left(\log \frac{1}{r}\right)^{p} \mathrm{~d} r \tag{8}\\
& =2 \pi\|f\|_{\substack{p \\
\mathcal{B}_{\omega, \log }^{p+2}}}^{\left.q+r_{0}, p\right),}
\end{align*}
$$

where the integral

$$
I\left(r_{0}, p\right)=\int_{0}^{r_{0}} r\left(1-r^{2}\right)^{-2}\left(\log \frac{1}{r}\right)^{p} \mathrm{~d} r<\infty
$$

for $0<r_{0}<1$ and $1<p<\infty$. On the other hand, by (5) and (6), we get with $\mathbb{D}_{0}=\mathbb{D} \backslash D\left(a, r_{0}\right)$:

$$
\begin{align*}
I_{2} & =\int_{\mathbb{D}_{0}}\left|f^{\prime}(z)\right|^{p}\left(1-|z|^{2}\right)^{q} \frac{(g(z, a))^{p}}{\omega^{p}(1-|z|)}\left(\log \frac{2}{(1-|z|)}\right) \mathrm{d} A(z) \\
& \leq \frac{2}{c} \int_{\mathbb{D}_{0}}\left|f^{\prime}(z)\right|^{p}\left(1-|z|^{2}\right)^{q} \frac{K(g(z, a))}{\omega^{p}(1-|z|)}\left(\log \frac{2}{(1-|z|)}\right) \mathrm{d} A(z)<\infty \tag{9}
\end{align*}
$$

Consequently, by (7), (8) and (9), we obtain that
$\sup _{a \in \mathbb{D}} \int_{\mathbb{D}}\left|f^{\prime}(z)\right|^{p}\left(1-|z|^{2}\right)^{q} \frac{(g(z, a))^{p}}{\omega^{p}(1-|z|)}\left(\log \frac{2}{(1-|z|)}\right) \mathrm{d} A(z) \leq \sup \left\{I_{1}+I_{2}\right\}<\infty$.
Thus $f \in Q_{K, \omega, \log }(p, q)$. Hence $Q_{K, \omega, \log }(p, q) \subset \mathcal{B}_{\omega, \log }^{\frac{p+2}{q}}$. Since $f \in Q_{K, \omega, \log }(p, q)$, f must be a weighted logarithmic Bloch function in \mathbb{D}, and

$$
\sup _{a \in \mathbb{D}} \int_{\mathbb{D}}\left|f^{\prime}(z)\right|^{p}\left(1-|z|^{2}\right)^{q} \frac{\left(1-\left|\varphi_{a}(z)\right|^{2}\right)^{p}}{\omega^{p}(1-|z|)}\left(\log \frac{2}{(1-|z|)}\right) \mathrm{d} A(z)=C<\infty
$$

With $\mathbb{D}_{0}=\mathbb{D} \backslash D\left(a, r_{0}\right)$, it follows from (5) and (6) that

$$
\begin{align*}
J_{2} & =\int_{\mathbb{D}_{0}}\left|f^{\prime}(z)\right|^{p}\left(1-|z|^{2}\right)^{q} \frac{K\left(\log \frac{1}{\varphi_{a}(z)}\right)}{\omega^{p}(1-|z|)}\left(\log \frac{2}{(1-|z|)}\right) \mathrm{d} A(z) \\
& \leq(c+1) \int_{\mathbb{D}_{0}}\left|f^{\prime}(z)\right|^{p}\left(1-|z|^{2}\right)^{q} \frac{\left(\log \frac{1}{\varphi_{a}(z)}\right)^{p}}{\omega^{p}(1-|z|)}\left(\log \frac{2}{(1-|z|)}\right) \mathrm{d} A(z) \tag{10}\\
& =(c+1) C .
\end{align*}
$$

Since $f \in Q_{K, \omega, \log }(p, q), f$ must be a weighted logarithmic Bloch function in \mathbb{D}. Similar to (8), we have

$$
\begin{align*}
J_{1} & =\int_{D\left(a, r_{0}\right)}\left|f^{\prime}(z)\right|^{p}\left(1-|z|^{2}\right)^{q} \frac{K\left(\log \frac{1}{\varphi_{a}(z)}\right)}{\omega^{p}(1-|z|)}\left(\log \frac{2}{(1-|z|)}\right) \mathrm{d} A(z) \\
& \leq 2 \pi\|f\|_{\mathcal{B}_{\omega, \log }^{p}}^{p+2} \int_{0}^{r_{0}}\left(1-r^{2}\right)^{-2} K\left(\log \frac{1}{r}\right) r \mathrm{~d} r \tag{11}\\
& \leq \frac{2 \pi}{\left(1-r_{0}^{2}\right)^{2}}\|f\|_{\mathcal{B}_{\omega, \log }^{p}}^{p} \int_{0}^{\frac{q+2}{p}} \int_{0}^{r_{0}} K\left(\log \frac{1}{r}\right) r \mathrm{~d} r .
\end{align*}
$$

Now we show that the integral $\int_{0}^{r_{0}} K\left(\log \frac{1}{r}\right) r \mathrm{~d} r$ in (11) is convergent. Setting $t=\log \frac{1}{r}$, we have

$$
J(K)=\int_{0}^{r_{0}} K\left(\log \frac{1}{r}\right) r \mathrm{~d} r=\int_{t_{0}}^{+\infty} \frac{K(t)}{\mathrm{e}^{2 t}} \mathrm{~d} t
$$

If $K(t)$ satisfies condition (i), then for given $\epsilon>0$ with $\rho+\epsilon<1$, there exists $t_{1}>t_{0}$ such that $K(t)<\mathrm{e}^{t \rho+\epsilon}<\mathrm{e}^{t}, t \geq t_{1}$. Therefore,
(12) $J(K)=\int_{t_{0}}^{t_{1}} \frac{K(t)}{\mathrm{e}^{2 t}} \mathrm{~d} t+\int_{t_{1}}^{+\infty} \frac{K(t)}{\mathrm{e}^{2 t}} \mathrm{~d} t \leq \int_{t_{0}}^{t_{1}} \frac{K(t)}{\mathrm{e}^{2 t}} \mathrm{~d} t+\int_{t_{1}}^{+\infty} \frac{1}{\mathrm{e}^{2 t}} \mathrm{~d} t<\infty$.

If $K(t)$ satisfies condition (ii), then for given $\epsilon>0$ with $0<\sigma+2 \varepsilon<2$, there exists $t_{2}>t_{0}$ such that $K(t)<\mathrm{e}^{(\sigma+\epsilon) t}<\mathrm{e}^{(2-\varepsilon) t}, t \geq t_{2}$. Thus

$$
\begin{aligned}
J(K) & =\int_{t_{0}}^{t_{2}} \frac{K(t)}{\mathrm{e}^{2 t}} \mathrm{~d} t+\int_{t_{2}}^{+\infty} \frac{K(t)}{\mathrm{e}^{2 t}} \mathrm{~d} t \leq \int_{t_{0}}^{t_{2}} \frac{K(t)}{\mathrm{e}^{2 t}} \mathrm{~d} t+\int_{t_{2}}^{+\infty} \frac{\mathrm{e}^{(2-\varepsilon) t}}{\mathrm{e}^{2 t}} \mathrm{~d} t \\
& =\int_{t_{0}}^{t_{2}} \frac{K(t)}{\mathrm{e}^{2 t}} \mathrm{~d} t+\int_{t_{2}}^{+\infty} \mathrm{e}^{-\varepsilon t} \mathrm{~d} t<\infty .
\end{aligned}
$$

Therefore, by (10) and (11), we get
$\sup _{a \in \mathbb{D}} \int_{\mathbb{D}}\left|f^{\prime}(z)\right|^{p}\left(1-|z|^{2}\right)^{q} \frac{K(g(z, a))}{\omega^{p}(1-|z|)}\left(\log \frac{2}{1-|z|}\right) \mathrm{d} A(z)=\sup _{a \in \mathbb{D}}\left\{J_{1}+J_{2}\right\}<\infty$.
This implies that $f \in Q_{K, \omega, \log }(p, q)$. The proof is therefore completed.

3. MEROMORPHIC CLASSES

A natural analogue of $\left|f^{\prime}(z)\right|$ is the spherical derivative

$$
f^{\#}(z)=\frac{\left|f^{\prime}(z)\right|}{\left(1+|f(z)|^{2}\right)}
$$

We define the classes $F_{\omega, \log }^{\#}(p, q, s)$ and $F_{\omega, \log , 0}^{\#}(p, q, s)$ as follows.
Definition 3.1. Let $0<p<\infty,-2<q<\infty$ and $0 \leq s<\infty$. A function f meromorphic in \mathbb{D} is said to belong to the class $F_{\omega, \log }^{\#}(p, q, s)$ if

$$
\sup _{a \in \mathbb{D}} \int_{\mathbb{D}}\left(f^{\#}(z)\right)^{p}\left(1-|z|^{2}\right)^{q} \frac{g^{s}(z, a)}{\omega^{p}(1-|z|)}\left(\log \frac{2}{1-|z|^{2}}\right) \mathrm{d} A(z)<\infty,
$$

that is, $\|f\|_{F_{\omega, \log }^{\#}(p, q, s)}^{p}<\infty$. Moreover, if

$$
\lim _{|a| \rightarrow 1^{-}} \int_{\mathbb{D}}\left(f^{\#}(z)\right)^{p}\left(1-|z|^{2}\right)^{q} \frac{g^{s}(z, a)}{\omega^{p}(1-|z|)}\left(\log \frac{2}{1-|z|^{2}}\right) \mathrm{d} A(z)=0,
$$

that is, $\|f\|_{F_{\omega, \text { oge }, 0}^{\#}(p, q, s)}^{p}=0$, then $f \in F_{\omega, \log }^{\#}(p, q, s)$.
Therefore we define the classes $M_{\omega, \log }^{\#}(p, q, s)$ and $M_{\omega, \log , 0}^{\#}(p, q, s)$ as follows.

Definition 3.2. Let $0<p<\infty,-2<q<\infty$ and $0 \leq s<\infty$. A function f meromorphic in \mathbb{D} is said to belong to the class $M_{\omega, \log }^{\#}(p, q, s)$ if

$$
\sup _{a \in \mathbb{D}} \int_{\mathbb{D}}\left(f^{\#}(z)\right)^{p}\left(1-|z|^{2}\right)^{q} \frac{\left(1-\left|\varphi_{a}(z)\right|^{2}\right)^{s}}{\omega^{p}(1-|z|)}\left(\log \frac{2}{1-|z|^{2}}\right) \mathrm{d} A(z)<\infty,
$$

that is, $\|f\|_{M_{\omega, \log }^{\#}(p, q, s)}^{p}<\infty$. Moreover, if

$$
\lim _{|a| \rightarrow 1^{-}} \int_{\mathbb{D}}\left(f^{\#}(z)\right)^{p}\left(1-|z|^{2}\right)^{q} \frac{\left(1-\left|\varphi_{a}(z)\right|^{2}\right)^{s}}{\omega^{p}(1-|z|)}\left(\log \frac{2}{1-|z|^{2}}\right) \mathrm{d} A(z)=0
$$

that is, $\|f\|_{M_{\omega, \log , 0}^{\#}(p, q, s)}^{p}=0$, then $f \in M_{\omega, \log , 0}^{\#}(p, q, s)$.
Let $\mathcal{N}_{\omega, \log }^{\alpha}$ be the class of all normal functions in \mathbb{D}. A function f meromorphic in \mathbb{D} is said to be logarithmic normal if and only if

$$
\sup _{z \in \mathbb{D}} \frac{\left(1-|z|^{2}\right)^{\alpha}}{\omega(1-|z|)} f^{\#}(z)\left(\log \frac{2}{1-|z|^{2}}\right)<\infty .
$$

Now we give the following theorem.
Theorem 3.3. Let $0<p<\infty,-2<q<\infty$ and $0 \leq s<1$. Then a function f meromorphic in \mathbb{D} is logarithmic normal if and only if

$$
\|f\|_{F_{\omega, \log }^{\#}(p, q, s)}^{p}<\infty
$$

Proof. The proof of this theorem is very similar to the corresponding result in [12], so it will be omitted.

In the corresponding way to the analytic case, we define the meromorphic classes $Q_{K, \omega, \log }^{\#}(p, q)$ as follows.

Definition 3.4. Let $K:[0, \infty) \rightarrow[0, \infty)$ be a nondecreasing function. For $0<p<\infty$ and $-2<q<\infty$, a function f meromorphic in \mathbb{D} is said to belong to the classes $Q_{K, \omega, \log }^{\#}(p, q)$ if

$$
\begin{equation*}
\sup _{a \in \mathbb{D}} \int_{\mathbb{D}}\left(f^{\#}(z)\right)^{p}\left(1-\mid z^{2}\right)^{q} \frac{K(g(z, a))}{\omega^{p}(1-|z|)}\left(\log \frac{2}{1-|z|^{2}}\right) \mathrm{d} A(z)<\infty . \tag{13}
\end{equation*}
$$

Remark. Similar to the analytic case, if we take $\omega \equiv 1$ and $K(t)=t^{s}$ for $0 \leq s<\infty$ and $\log \frac{2}{1-|z|^{2}}=1$, then $Q_{K, \omega, \log }^{\#}(p, q)=F^{\#}(p, q, s)$ (see [10]), the corresponding meromorphic of $F(p, q, s)$ spaces. If we take $K(t)=t^{p}, q=0$ and $\omega \equiv 1$ and $\log \frac{2}{1-|z|^{2}}=1$, then $Q_{K, \omega, \log }^{\#}(p, q)=Q_{p}^{\#}($ see $[3])$.

Definition 3.5. [12] A function f meromorphic in \mathbb{D} is said to be a spherical Bloch function, denoted by $f \in \mathcal{B}^{\#}$, if there exists an $r, 0<r<1$, such that

$$
\sup _{a \in \mathbb{D}} \int_{\mathbb{D}}\left(f^{\#}(z)\right)^{2} \mathrm{~d} A(z)<\infty .
$$

It is easy to see that a normal function is a spherical Bloch function, that is, $\mathcal{N} \subset \mathcal{B}^{\#}$, but the converse is not true. A counterexample can be found in [7].

Proposition 3.6. Let $K:[0, \infty) \rightarrow[0, \infty)$ be a right continuous and nondecreasing function and suppose that $\omega:(0,1] \rightarrow(0, \infty)$ is a nondecreasing function. Then, the classes $Q_{K, \omega, \log }^{\#}(p, q)$ are subsets of the spherical Bloch classes $\mathcal{B}^{\#} \underset{\omega, \log }{\frac{q+2}{p}}$, where $0<p<\infty$ and $-2<q<\infty$.

Proof. We can prove the proposition by making the obvious modifications to the proof of Proposition 2.1.

THEOREM 3.7. Let $K:[0, \infty) \rightarrow[0, \infty)$ be a right continuous, bounded and nondecreasing function and suppose that $\omega:(0,1] \rightarrow(0, \infty)$ is a nondecreasing function. Moreover, suppose that f is a logarithmic normal function. Let $0<p<\infty$ and $-2<q<\infty$. If $\lim _{r \rightarrow 0} \frac{K(r)}{r^{s}}=c<\infty$ holds for some $0<s<\infty$, then $f \in Q_{K, \omega, \log }^{\#}(p, q)$.

Proof. Suppose that $\lim _{r \rightarrow 0} \frac{K(r)}{r^{s}}=c<\infty$ holds for some $0<s<\infty$. Then there exists a fixed $r_{1} \in(0,1)$ such that $\frac{K(r)}{r^{s}} \leq c+1$ for $0<r<r_{0}$, we may take $r_{0} \in(0,1)$ such that both

$$
g(z, a)=\log \frac{1}{\left|\varphi_{a}(z)\right|}<r_{1}, \quad \log \frac{1}{\left|\varphi_{a}(z)\right|} \leq c_{1}\left(1-\left|\varphi_{a}(z)\right|^{2}\right)
$$

hold for constant $c_{1}>0$ whenever $z \in \mathbb{D} \backslash D\left(a, r_{0}\right)$. Now we have

$$
\begin{aligned}
& \|f\|_{Q_{K, \omega, \log }^{\#}(p, q)}^{p}=\sup _{a \in \mathbb{D}} \int_{\mathbb{D}}\left(f_{0}^{\#}(z)\right)^{p}\left(1-|z|^{2}\right)^{q} \frac{K(g(z, a))}{\omega^{p}(1-|z|)}\left(\log \frac{2}{1-|z|^{2}}\right) \mathrm{d} A(z) \\
& =\sup _{D\left(a, r_{0}\right)} \int_{D\left(a, r_{0}\right)}\left(f_{0}^{\#}(z)\right)^{p}\left(1-|z|^{2}\right)^{q} \frac{K(g(z, a))}{\omega^{p}(1-|z|)}\left(\log \frac{2}{1-|z|^{2}}\right) \mathrm{d} A(z) \\
& +\sup _{\mathbb{D} \backslash D\left(a, r_{0}\right)} \int_{\mathbb{D}}\left(f_{0}^{\#}(z)\right)^{p}\left(1-|z|^{2}\right)^{q} \frac{K(g(z, a))}{\omega^{p}(1-|z|)}\left(\log \frac{2}{1-|z|^{2}}\right) \mathrm{d} A(z) .
\end{aligned}
$$

For $a \in \mathbb{D}$ and r_{0} as above, and $\mathbb{D}_{0}=\mathbb{D} \backslash D\left(a, r_{0}\right)$, using Theorem 3.3 we have that

$$
\begin{aligned}
L_{2} & =\int_{\mathbb{D}_{0}}\left(f_{0}^{\#}(z)\right)^{p}\left(1-|z|^{2}\right)^{q} \frac{K(g(z, a))}{\omega^{p}(1-|z|)}\left(\log \frac{2}{1-|z|^{2}}\right) \mathrm{d} A(z) \\
& \leq(c+1)\left(c_{1}\right)^{s} \int_{\mathbb{D}_{0}}\left(f_{0}^{\#}(z)\right)^{p}\left(1-|z|^{2}\right)^{q} \frac{\left(1-\left|\varphi_{a}(z)\right|^{2}\right)^{s}}{\omega^{p}(1-|z|)}\left(\log \frac{2}{1-|z|^{2}}\right) \mathrm{d} A(z)
\end{aligned}
$$

Then $L_{2} \leq(c+1)\left(c_{1}\right)^{s}\|f\|_{F_{\omega, \log }^{\#}(p, q, s)}^{p}<\infty$.

On the other hand, since K is bounded, there exists a constant C_{2} such that $K(r) \leq C_{2}$ for all $r,, 0<r<\infty$. Thus

$$
\begin{aligned}
& L_{1}=\int_{D\left(a, r_{0}\right)}\left(f_{0}^{\#}(z)\right)^{p}\left(1-|z|^{2}\right)^{q} \frac{K(g(z, a))}{\omega^{p}(1-|z|)}\left(\log \frac{2}{1-|z|^{2}}\right) \mathrm{d} A(z) \\
& \leq \frac{C_{2}}{\left(1-r_{0}^{2}\right)^{s}} \int_{D\left(a, r_{0}\right)}\left(f_{0}^{\#}(z)\right)^{p}\left(1-|z|^{2}\right)^{q} \frac{\left(1-\left|\varphi_{a}(z)\right|^{2}\right)^{s}}{\omega^{p}(1-|z|)}\left(\log \frac{2}{1-|z|^{2}}\right) \mathrm{d} A(z)
\end{aligned}
$$

Then $L_{1} \leq \frac{C_{2}}{\left(1-r_{0}^{2}\right)^{s}}\|f\|_{F_{\omega, \log }^{\#}(p, q, s)}^{p}$.
Therefore, we have

$$
\begin{aligned}
& \sup _{a \in \mathbb{D}} \int_{\mathbb{D}}\left(f_{0}^{\#}(z)\right)^{p}\left(1-|z|^{2}\right)^{q} \frac{K\left(1-\left|\varphi_{a}(z)\right|^{2}\right)}{\omega^{p}(1-|z|)}\left(\log \frac{2}{1-|z|^{2}}\right) \mathrm{d} A(z) \\
& =\sup _{a \in \mathbb{D}}\left\{L_{1}+L_{2}\right\}<\infty .
\end{aligned}
$$

Thus $f_{0} \in\|f\|_{Q^{\#}}^{p, \omega, \log (p, q)}{ }^{p}$, and the proof of our theorem is completed.
Finally, we consider the harmonic counterpart of $Q_{K, \omega, \log }(p, q)$ as follows.
Definition 3.8. Let $0<p<\infty$ and $-2<q<\infty$ and let $K:[0, \infty) \rightarrow$ $[0, \infty)$ be a right continuous, bounded and nondecreasing function and suppose that $\omega:(0,1] \rightarrow(0, \infty)$ is a nondecreasing function. A real-valued harmonic function u in \mathbb{D} is said to belong to the space $Q_{K h, \omega, \log }(p, q)$ if

$$
\sup _{a \in \mathbb{D}} \int_{\mathbb{D}}|\nabla u(z)|^{p}\left(1-|z|^{2}\right)^{q} \frac{K(g(z, a))}{\omega^{p}(1-|z|)}\left(\log \frac{2}{1-|z|^{2}}\right) \mathrm{d} A(z)<\infty,
$$

where $\nabla u(z)=\left(u_{x}, u_{y}\right)$ is the gradient of u and $|\nabla u(z)|=\sqrt{u_{x}^{2}+u_{y}^{2}}$.
The harmonic logarithmic weighted α-Bloch space $\mathcal{B}_{h, \omega, \text { log }}^{\alpha}$, is defined by the set

$$
\left\{u: u \text { harmonic in } \mathbb{D} \text { and } \sup _{z \in \mathbb{D}} \frac{\left(1-|z|^{2}\right)^{\alpha}|\nabla u(z)|}{\omega(1-|z|)}\left(\log \frac{2}{1-|z|^{2}}\right)<\infty\right\} .
$$

Remark. It is easy to see that some corresponding results to Propositions 2.1, 2.2, and Theorem 2.3 are also true for $Q_{K h, \omega, \log }(p, q)$ and the proofs are similar to those of them.

REFERENCES

[1] El-Sayed Ahmed, A. and Bahkit, M.A., Hadamard products and \mathcal{N}_{K} space, Math. Comput. Modelling, 51 (2010), 33-43.
[2] El-Sayed Ahmed, A. and Bahkit, M.A., Sequences of some meromorphic function spaces, Bull. Belg. Math. Soc. Simon Stevin, 16 (2009), 395-408.
[3] Aulaskari, R. and Lappan, P., Criteria for an analytic function to be Bloch and a harmonic or meromorphic function to be normal. In Complex Analysis and its Applications (Y. Chung-Chun et al., Eds.), Pitman Research Notes in Mathematics, 305, Longman, 1994, pp. 136-146.
[4] Dyakonov, K.M., Weighted Bloch spaces, H^{p}, and BMOA, J. Lond. Math. Soc. (2), 65 (2002), 411-417.
[5] Essén, M. and Wulan, H., On analytic and meromorphic functions and spaces of Q_{K} type, Illinois J. Math., 46 (2002), 1233-1258.
[6] Essén, M. Wulan, H. and Xiao, J., Several Function-theoretic characterizations of Möbius invariant Q_{K} spaces, J. Funct. Anal., 230 (2006), 78-115.
[7] Lappan, P., A non-normal locally uniformly univalent function, Bull. London Math. Soc., 5 (1973), 491-495.
[8] Rashwan, R.A., El-Sayed Ahmed, A. and Kamal, A., Some characterizations of weighted holomorphic Bloch space, Eur. J. Pure Appl. Math., 2 (2009), 250-267.
[9] Rashwan, R.A., El-Sayed Ahmed, A. and Kamal, A., Integral characterizations of weighted Bloch space and $Q_{K, \omega}(p, q)$ spaces, Mathematica, 51 (74) (2009), 63-76.
[10] RätтуÄ, J., On some Complex function spaces and classes, Ann. Acad. Sci. Fenn. Math. Diss., 124 (2001), 1-73.
[11] Stroethoff, K., Besov-type characterisations for the Bloch space, Bull. Austral. Math. Soc., 39 (1989), 405-420.
[12] Wulan, H., On some classes of meromorphic functions, Ann. Acad. Sci. Fenn. Math. Diss., 116 (1998), 1-57.
[13] Wulan, H. and Wu, P., Characterizations of Q_{T} spaces, J. Math. Anal. Appl., 254 (2001), 484-497.
[14] Wulan, H. and Zhu, K., Q_{K} type spaces of analytic functions, J. Funct. Spaces Appl., 4 (2006), 73-84.
[15] Yoneda, R., The composition operators on weighted Bloch space, Arch. Math. (Basel), 78 (2002), 310-317.

Received December 30, 2010
Accepted April 2, 2012

Sohag University
Faculty of Science
Mathematics Department
82524 Sohag, Egypt
Taif University
Faculty of Science
Mathematics Department
El-Taif 5700, El-Hawiyah, Saudi Arabia
E-mail: ahsayed80@hotmail.com
Majmaah University
Faculty of Science
Department of Mathematics
Saudi Arabia
E-mail: alaa_mohamed1@yahoo.com

