IDEMPOTENT-NILPOTENT UNITS
 OF COMMUTATIVE GROUP RINGS

PETER DANCHEV

Abstract

Suppose that R is a commutative unital ring and G is a multiplicative abelian group. We find a criterion when the decomposition of normalized invertible elements $V(R G)=I d(R G) \times(1+I(N(R) G ; G))$ holds. In particular, when $\operatorname{supp}(G) \cap \operatorname{inv}(R) \neq \emptyset$, we establish such a necessary and sufficient condition only in terms of R and G. This strengthens a result due to Karpilovsky (Arch. Math., 1983) as well as results of the author (Bull. Greek Math. Soc., 2009), (Comm. Algebra, 2010) and (Comment. Math. Univ. Carolin., 2012).

MSC 2010. 16S34, 16U60, 20K10, 20K20, 20 K 21.

Key words. Group rings, unit groups, decompositions, nilpotents, idempotents.

1. INTRODUCTION

Throughout the paper, let it be agreed that R is a commutative ring with identity 1_{R} (called unital) and G is an abelian group written multiplicatively as is the custom when discussing group rings. As usual, $R G$ denotes the group ring of G over R with unit group $U(R G)$ and its subgroup of normalized units $V(R G)$; it is easily observed that the equality $U(R G)=V(R G) \times U(R)$ is valid, where $U(R)$ is the multiplicative group of R. Standardly, $G_{0}=\coprod_{p} G_{p}$ will always denote the torsion part of G with p-primary component G_{p}.

Imitating [9], we define the sets $\operatorname{supp}(G)=\left\{p \mid G_{p} \neq 1\right\}, \operatorname{inv}(R)=\left\{p \mid p \cdot 1_{R} \in\right.$ $U(R)\}, z d(R)=\{p \mid \exists r \in R \backslash\{0\}: p r=0\}$ and recollect once again the ideal $N(R)=\left\{r \in R \mid \exists n \in \mathbb{N}: r^{n}=0\right\}$ of R called nil-radical. Likewise, define the set $n p(R)=\{p \mid \exists r \in R \backslash N(R): p r \in N(R)\}$ (e.g., see [5]).

Moreover, $I(N(R) G ; G)$ is the fundamental (augmentation) ideal of the subalgebra $N(R) G \subseteq N(R G)$ of $R G, i d(R)=\left\{e \in R \mid e^{2}=e\right\}$ is the set of all idempotents in R, and

$$
\begin{gathered}
I d(R G)=\left\{e_{1} g_{1}+\cdots+e_{s} g_{s} \mid e_{1}, \ldots, e_{s} \in i d(R), e_{1}+\cdots+e_{s}=1\right. \\
\left.e_{i} \cdot e_{j}=0(i \neq j) ; g_{1}, \ldots, g_{s} \in G\right\}
\end{gathered}
$$

It is worthwhile noticing that if $i d(R)=\{0,1\}$, i.e., R is indecomposable, then $\operatorname{Id}(R G)=G$ and vice versa.

All other notions and notations are in agreement with $[8,9]$.
A problem of central interest in the commutative group ring theory is to describe $V(R G)$ up to an isomorphism in terms associated only with R and

[^0]G. There are too many investigations in this theme (e.g., see $[2,3,4,5]$ as well as the bibliography in [9]). In that aspect, Karpilovsky proved in $[6,7]$ (see also $[8,9])$ that $V(R G)$ can be decomposed like $\operatorname{Id}(R G) \times(1+$ $I(N(R) G ; G))$ whenever $G_{0}=1$. In particular, when G is torsion-free and R is both indecomposable and reduced, $V(R G)=G$ holds, which generalizes a classical result due to Higman for trivial units.

The purpose of this paper is to extend the theorem of Karpilovsky by finding a suitable criterion when the above decomposition is true without any additional restriction on R and G. We shall do that into two statements, where in the second one we will require that there are no invertible primes whenever there are nonidentity primary components of the group.

2. MAIN RESULTS

We foremost begin with a few well-known technicalities from ring theoretical aspect.
It is well known the classical fact of lifting idempotents modulo nil-ideals, namely if $f \in i d(R / N(R))$, then there is $e \in i d(R)$ such that $f=e+N(R)$. More generally, the following folklore affirmation is fulfilled:

Proposition 1. Let $1=f_{1}+\cdots+f_{k}$ be a decomposition of 1 as a sum of orthogonal idempotents f_{1}, \ldots, f_{k} in R / I where I is a nil-ideal of R. Then there exist orthogonal idempotents $e_{1}, \ldots, e_{k} \in R$ with $1=e_{1}+\cdots+e_{k}$ such that $e_{1}+I=f_{1}, \ldots, e_{k}+I=f_{k}$.

Next, by taking $I=N(R)$, we will obtain our pivotal reduction tool.
Lemma 2. Let $\phi: R \rightarrow R / N(R)$ be the natural map. Then all five maps presented below, defined by

$$
\Phi\left(\sum_{g \in G} \alpha_{g} g\right)=\sum_{g \in G} \phi\left(\alpha_{g}\right) g=\sum_{g \in G}\left(\alpha_{g}+N(R)\right) g,
$$

are epimorphisms (i.e., surjective homomorphisms):
(i) $\Phi: R G \rightarrow(R / N(R)) G$.
(ii) $\Phi: N(R G) \rightarrow N((R / N(R)) G)$.
(iii) $\Phi: V(R G) \rightarrow V((R / N(R)) G)$.
(iv) $\Phi: V_{p}(R G) \rightarrow V_{p}((R / N(R)) G)$.
$(\mathrm{v}) \Phi: \operatorname{Id}(R G) \rightarrow \operatorname{Id}((R / N(R)) G)$.
Proof. (i) This is straightforward since ϕ is linearly extended to Φ. Notice that the kernel of this homomorphism is $N(R) G$.
(ii) Given $x \in N((R / N(R)) G)$, by (i) there is $y \in(R / N(R)) G$ such that $\Phi(y)=x$. But $x^{t}=0$ for some $t \in \mathbb{N}$ and hence $(\Phi(y))^{t}=\Phi\left(y^{t}\right)=0$. Therefore, $y^{t} \in \operatorname{ker} \Phi=N(R) G \subseteq N(R G)$. This forces that $y \in N(R G)$, as required.
(iii) Choose $x \in V((R / N(R)) G)$. Then there is $x^{\prime} \in V((R / N(R)) G)$ with $x x^{\prime}=1^{\prime}$ and $y, y^{\prime} \in R G$ with $\Phi(y)=x$ and $\Phi\left(y^{\prime}\right)=x^{\prime}$. Consequently, $\Phi(y) \Phi\left(y^{\prime}\right)=\Phi\left(y y^{\prime}\right)=1^{\prime}=\Phi(1)$ and thus $\Phi\left(y y^{\prime}-1\right)=0$. So, $y y^{\prime}-1 \in \operatorname{ker} \Phi=$ $N(R) G$ and $y y^{\prime} \in 1+N(R) G \subseteq 1+N(R G) \subseteq U(R G)=V(R G) \times U(R)$. Therefore, $y \in U(R G)$ and we can write $y=v u$ where $v \in V(R G)$ and $u \in U(R)$. Furthermore, $x=\Phi(v) \Phi(u)$. But $\Phi(V(R G)) \subseteq V((R / N(R)) G)$ so that $\Phi(v) \in V((R / N(R)) G)$. Observe also that $\phi: U(R) \rightarrow U(R / N(R))$ is given by $\phi(r)=r+N(R)$ where $r \in R$ and $\operatorname{ker} \phi_{U(R)}=1+N(R)$. Since $V((R / N(R)) G) \cap U(R / N(R))=1$, one can conclude that $x=\Phi(v)$ as wanted. Thus $\Phi_{V(R G)}$ is a surjection, as claimed. Finally, note that the kernel of this homomorphism is $1+I(N(R) G ; G)$.
(iv) This is a direct consequence of (iii).
(v) Given $x \in \operatorname{Id}((R / N(R)) G)$, we can write $x=\left(r_{1}+N(R)\right) g_{1}+\cdots+$ $\left(r_{s}+N(R)\right) g_{s}$, where $r_{i}+N(R) \in i d(R / N(R)), r_{1}+\cdots+r_{s}-1 \in N(R)$ and $r_{i} r_{j} \in N(R)$ whenever $i \neq j ; 1 \leq i, j \leq s$. Invoking Proposition 1 , there exist $e_{1}, \ldots, e_{s} \in i d(R)$ with the properties $e_{1}+\cdots+e_{s}=1, e_{i} e_{j}=0$ provided $i \neq j$ and $e_{i}+N(R)=r_{i}+N(R)$. Thus, it is readily seen that the element $e_{1} g_{1}+\cdots+e_{s} g_{s} \in \operatorname{Id}(R G)$ is the wanted pre-image.

Remark 3. In [2] we have proved the same technical assertion, in a little more general form, but when $\operatorname{char}(R)=p$ is a prime integer. Moreover, we have also omitted the above trivial arguments, as these in (iii), about the normalization of the existing element.

As a direct consequence, we yield the following:
Corollary 4. $N((R / N(R)) G)=0 \Leftrightarrow N(R G)=N(R) G$.
Proof. As noticed above, the kernel in Lemma 2 (i) is $N(R) G$. Hence, it easily follows from Lemma 2 (ii) that $N(R G) / N(R) G \cong N((R / N(R)) G)$. The final argument is immediate.

So, we come to our main reduction statement.
Proposition 5. We have $V(R G)=\operatorname{Id}(R G) \times(1+I(N(R) G ; G)) \Leftrightarrow$ $V((R / N(R)) G)=I d((R / N(R)) G)$.

Proof. The necessity follows by a direct application of Lemma 2 (iii) and (v) since Φ maps $1+I(N(R) G ; G)$ to 1 .

Conversely, the sufficiency follows like this: given $v \in V(R G)$, there is $z \in V((R / N(R)) G$ with the property $\Phi(v)=z$. But z lies in $\operatorname{Id}((R / N(R) G)$ and in virtue of Lemma $2(\mathrm{v})$ there exists $u \in \operatorname{Id}(R G)$ such that $\Phi(u)=z$. Thus $\Phi(v)=\Phi(u)$, i.e., $\Phi(v) \Phi(u)^{-1}=\Phi(v) \Phi\left(u^{-1}\right)=\Phi\left(v u^{-1}\right)=1$. Furthermore, $v u^{-1} \in \operatorname{ker} \Phi=1+I(N(R) G ; G)$ which immediately forces that $v \in I d(R G)(1+I(N(R) G ; G))$, as wanted.

We next establish some elementary but useful relationships between some ring-theoretic sets.

Proposition 6. $n p(R) \subseteq z d(R)$.
Proof. Assume $p \in n p(R)$, whence $p r \in N(R)$ for some $r \in R \backslash N(R)$. Hence there is $k \in \mathbb{N}$ such that $p \cdot p^{k-1} r^{k}=0$. Note that $r^{k} \neq 0$. Denote $r^{\prime}=p^{k-1} r^{k}$. If $r^{\prime} \neq 0$ we are done. Otherwise, if $r^{\prime}=0$ we write $p \cdot p^{k-2} r^{k}=0$ and denote $r^{\prime \prime}=p^{k-2} r^{k}$. If $r^{\prime \prime} \neq 0$ we are done. In the remaining case $p^{k-2} r^{k}=0$ etc. we proceed similarly to obtaining that there is some non-zero $f \in R$ with $p f=0$. Thus $p \in z d(R)$ and the proof is over.

As an immediate consequence, we derive:
Corollary 7. Suppose either $N(R)=0$ or char $(R)=p$ is prime. Then $n p(R)=z d(R)=z d(R / N(R))$.

Proof. If R is reduced, the claim follows at once. If now R has prime characteristic p, then it plainly follows that $p \cdot 1=0$, and hence $q \cdot r \neq 0$ for each $r \neq 0$ because $(p, q)=1$. That is why, $z d(R)=\{p\} \subseteq n p(R)$. Taking into account Proposition 6, the first equality is obtained.

Finally, note that the equality $z d(R / N(R))=n p(R)$ was proved in ([5, Lemma 3]), and hence the second equality follows as well.

Proposition 8. $V\left(R G_{0}+N(R) G\right)=V\left(R G_{0}\right)(1+I(N(R) G ; G))$.
Proof. It is apparent that both $V\left(R G_{0}\right)$ and $(1+I(N(R) G ; G) \subseteq V(R G) \cap$ [$N(R) G$] are contained in $V\left(R G_{0}+N(R) G\right)$, whence the same is valid for their product.

As for the converse, choosing $x \in V\left(R G_{0}+N(R) G\right)$, we write $x=r_{1} g_{1}+$ $\cdots+r_{s} g_{s}+f_{1} a_{1}+\cdots+f_{k} a_{k}$ with $r_{1}+\cdots+r_{s}+f_{1}+\cdots+f_{k}=1$, where $r_{1} g_{1}+\cdots+r_{s} g_{s} \in R G_{0}, f_{1} a_{1}+\cdots+f_{k} a_{k} \in N(R) G$. Note only that since $f_{1}+\cdots+f_{k} \in N(R)$ and the sum of a nilpotent and a unit is again a unit, it follows that $r_{1}+\cdots+r_{s} \in U(R)$. Furthermore, $x=r_{1} g_{1}+\cdots+r_{s} g_{s}+f_{1}+$ $\cdots+f_{k}+f_{1}\left(a_{1}-1\right)+\cdots+f_{k}\left(a_{k}-1\right)=y+f_{1}\left(a_{1}-1\right)+\cdots+f_{k}\left(a_{k}-1\right)$. Observe that $y=x-f_{1}\left(a_{1}-1\right)-\cdots-f_{k}\left(a_{k}-1\right) \in V\left(R G_{0}\right)$ since $y=$ $r_{1} g_{1}+\cdots+r_{s} g_{s}+f_{1}+\cdots+f_{k} \in R G_{0}, \operatorname{aug}(y)=1, x \in V(R G)$ is a unit and $f_{1}\left(a_{1}-1\right)-\cdots-f_{k}\left(a_{k}-1\right) \in I(N(R) G ; G)$ is a nilpotent. Finally, writing $x=y\left(1+f_{1} y^{-1}\left(a_{1}-1\right)+\cdots+f_{k} y^{-1}\left(a_{k}-1\right)\right)$, we have that $x \in$ $V\left(R G_{0}\right)(1+I(N(R) G ; G))$, as required.
W. May has shown in [10] that if $\operatorname{id}(R)=\{0,1\}$ and $\operatorname{supp}(G) \cap \operatorname{inv}(R)=\emptyset$, then $V(R G)=G V\left(R G_{0}+N(R G)\right)$. Later on, the present author generalizes this decomposition in ([4, Proposition 3]), by dropping off the restriction on R that it is indecomposable. In fact, if $\operatorname{supp}(G) \cap \operatorname{inv}(K)=\emptyset$ for every indecomposable subring K of R, then $V(R G)=I d(R G) V\left(R G_{0}+N(R G)\right)$.

So, we are able to prove the following:
Proposition 9. If G is a group and R is a ring such that supp $(G) \cap$ $(\operatorname{inv}(K) \cup n p(R))=\emptyset$ for each indecomposable subring K of R, then

$$
V(R G)=I d(R G) V\left(R G_{0}\right)(1+I(N(R) G ; G)) .
$$

Proof. First of all, since $\operatorname{supp}(G) \cap n p(R)=\operatorname{supp}(G) \cap z d(R / N(R))=\emptyset$, we employ [10] to infer that $N((R / N(R)) G)=0$. Therefore, Corollary 4 assures that $N(R G)=N(R) G$. Consequently, a simple combination of the previously mentioned result from [2] with Proposition 8 gives the desired equality.

Remark 10. It is worthwhile noticing that when $G_{0}=1$ we will deduce the result due to Karpilovsky [6, 7], which is in the focus of our investigation. In fact, if $G_{0}=1$, then since $\operatorname{supp}(G)=\emptyset$, one may derive from Proposition 9 that $V(R G)=I d(R G)(1+I(N(R) G ; G))$, which is precisely the aforementioned result of Karpilovsky, because obviously $I d(R G) \cap(1+I(N(R) G ; G))=1$.

Now, for the sake of completeness and and for the readers' convenience we now pause to quote the following result from [2].

Theorem 11. Let R be a commutative unital ring of prime characteristic and let G be a non-identity abelian group. Then $V(R G)=\operatorname{Id}(R G) \times(1+$ $I(N(R) G ; G))$ if and only if at most one of the following conditions holds:
(a) $G_{t}=1$;
(b) $|G|=2, \forall r \in R: 2 r-1 \in U(R) \Longleftrightarrow r^{2}-r \in N(R)$;
(c) $|G|=3, \forall r, f \in R: 1+3 r^{2}+3 f^{2}+3 r f-3 r-3 f \in U(R) \Longleftrightarrow$ $r^{2}-r \in N(R), f^{2}-f \in N(R)$ and $r f \in N(R)$.

Next, we proceed by proving the following result which somewhat improves [4, Theorem 5].

Theorem 12. Suppose G is a group and R is a ring. Then $V(R G)=$ $I d(R G) \times(1+I(N(R) G ; G))$ if and only if we have $V\left(R G_{0}\right)=I d\left(R G_{0}\right) \times$ $\left(1+I\left(N(R) G_{0} ; G_{0}\right)\right)$ and precisely one of the following points is valid:
(1) $G=G_{0}$;
(2) $G \neq G_{0}, \operatorname{supp}(G) \cap(\operatorname{inv}(K) \cup n p(R))=\emptyset$ for all indecomposable subrings K of R.

Proof. For the necessity, in view of Proposition 5, we have $V((R / N(R)) G)=$ $I d((R / N(R)) G)$. Note that for any commutative unital ring P and its subring L (even when it does not contain the same identity element as that of P) the equality $V(P G)=I d(P G)$ forces that $V(L G)=I d(L G)$. Furthermore, by [4, Theorem 5] we deduce that $V\left((R / N(R)) G_{0}\right)=\operatorname{Id}\left((R / N(R)) G_{0}\right)$, so that again an appeal to Proposition 5 insures the desired decomposition for $V\left(R G_{0}\right)$. Moreover, the same result applies to infer that either G is torsion, or G is not torsion and $\operatorname{supp}(G) \cap(\operatorname{inv}(K / N(K)) \cup z d(R / N(R)))=\emptyset$. We next apply [5, Lemmas 2 and 3] (together with Corollary 7) to conclude that $\operatorname{supp}(G) \cap(\operatorname{inv}(K) \cup n p(R))=\emptyset$ whenever G contains an element of infinite order.

For the sufficiency, if $G=G_{0}$, then there is nothing to prove. So, let G contain an element of infinite order and the intersection $\operatorname{supp}(G) \cap(\operatorname{inv}(K) \cup$ $n p(R)$) is empty for an arbitrary indecomposable subring K of R. We therefore can apply Proposition 9 to deduce that $V(R G)=I d(R G) V\left(R G_{0}\right)(1+$
$I(N(R) G ; G))$. But substituting $V\left(R G_{0}\right)$ in the last formula by $\operatorname{Id}\left(R G_{0}\right) \times$ $\left(1+I\left(N(R) G_{0} ; G_{0}\right)\right)$, we obtain the desired equality.

We have now at all disposal all the information needed to prove our chief result, which somewhat enlarges Theorem 11 presented above.

Theorem 13. Suppose R is a ring and G is a group such that supp $(G) \cap$ $\operatorname{inv}(R) \neq \emptyset$ or $\operatorname{supp}(G)=\emptyset$. Then $V(R G)=I d(R G) \times(1+I(N(R) G ; G))$ if and only if at most one of the following is true:
(a) $G_{0}=1$;
(b) $|G|=2, \forall r \in R: 2 r-1 \in U(R) \Longleftrightarrow r \in i d(R)+N(R) \Longleftrightarrow$ $r^{2}-r \in N(R)$;
(c) $|G|=3, \forall r, f \in R: 1+3 r^{2}+3 f^{2}+3 r f-3 r-3 f \in U(R) \Longleftrightarrow$ $r, f \in i d(R)+N(R), r f \in N(R)$.

Proof. \Rightarrow. Referring to Proposition 5, we may write $V((R / N(R)) G)=$ $\operatorname{Id}((R / N(R)) G)$. We next use [4] to infer that either G is torsion-free or G is finite of order 2 or 3 . Observe that $G_{0}=1$ exactly when $\operatorname{supp}(G)=\emptyset$.

Case 1: $|G|=2$ and $G=\langle g\rangle=\{1, g\}$ with $g^{2}=1$.
For any $x \in V(R G)$ we have $x=r g+1-r$ uniquely when $2 r-1 \in U(R)$, for each $r \in R$ (see, e.g., [4]). Hence we can write $r g+1-r=\left(e_{1} g_{1}+\cdots+\right.$ $\left.e_{s} g_{s}\right)\left(1+f+\sum_{g \in G \backslash\{1\}} f_{g} g\right)$ where $f, f_{g} \in N(R)$ and $f+\sum_{g \in G \backslash\{1\}} f_{g}=0$.

It is obviously seen that $r=e^{\prime}+f^{\prime}$ for some $e^{\prime} \in i d(R)$ and $f^{\prime} \in N(R)$ because the ring coefficients in the right hand-side are combinations of sums of orthogonal idempotents and nilpotents. Thus $r \in i d(R)+N(R)$, as expected.

Conversely, $r \in i d(R)+N(R)$ ensures that $r^{2}-r \in N(R)$, so that $(2 r-1)^{2}=$ $4 r^{2}-4 r+1=4\left(r^{2}-r\right)+1 \in 1+N(R) \subseteq U(R)$ whence $2 r-1 \in U(R)$ as stated.

Case 2: $|G|=3$ and $G=\langle g\rangle=\left\{1, g, g^{2}\right\}$ with $g^{3}=1$.
For every $y \in V(R G)$ we have $y=1-r-f+r g+f g^{2}$ exactly when $1+3 r^{2}+3 f^{2}+3 r f-3 r-3 f \in U(R)$ for all $r, f \in R$ (see, for instance, [4]). Consequently, we write $1-r-f+r g+f g^{2}=\left(e_{1} g_{1}+\cdots+e_{s} g_{s}\right)(1+d+$ $\left.\sum_{a \in G \backslash\{1\}} d_{a} a\right)$ where $d, d_{a} \in N(R)$ and $d+\sum_{a \in G \backslash\{1\}} d_{a}=0$. It is readily seen that $r=e^{\prime}+d^{\prime}$ and $f=e^{\prime \prime}+d^{\prime \prime}$ for some $e^{\prime}, e^{\prime \prime} \in i d(R)$ and $d^{\prime}, d^{\prime \prime} \in N(R)$ because the ring coefficients in the right hand-side are combinations of sums of orthogonal idempotents and nilpotents.

Conversely, if $r, f \in i d(R)+N(R)$ and $r f=0$ it is an easy technical exercise to check that $r^{2}-r \in N(R)$ and $f^{2}-f \in N(R)$, whence $1+3 r^{2}+3 f^{2}+3 r f-$ $3 r-3 f=1+3\left(r^{2}-r\right)+3\left(f^{2}-f\right)+3 r f \in 1+N(R) \subseteq U(R)$, as wanted.
\Leftarrow. If $G_{0}=1$, then we apply [6] or [7].
Case 1: $|G|=2$ and $G=\langle g\rangle=\left\{1, g \mid g^{2}=1\right\}$.
Suppose $v \in V(R G)$, whence $v=1-r+r g$ for some $r \in R$. Thus $2 r-1 \in$ $U(R)$ and hence by assumption $r=e+f$ where $e \in i d(R)$ and $f \in N(R)$. Furthermore, since $1-e+e g$ is obviously a unit, especially $1-e+e g \in I d(R G)$, one can write $1-e-f+(e+f) g=1-e+e g-f+f g=(1-e+e g)(1+(1-$
$e+e g)^{-1}(-f+f g)=(1-e+e g)\left(1+\left(1-e+e g^{-1}(-f+f g)=(1-e+e g)[1-\right.\right.$ $\left.f+f g+e f-e f g-e f g^{-1}+e f\right]=(1-e+e g)[1-f+2 e f+(f-2 e f) g] \in$ $I d(R G)(1+I(N(R) G ; G))$, as expected.

Case 2: $|G|=3$ and $G=\langle g\rangle=\left\{1, g, g^{2} \mid g^{3}=1\right\}$.
Letting $u \in V(R G)$, we write $u=1-r-f+r g+f g^{2}$ for some $r, f \in R$. Thus $1+3 r^{2}+3 f^{2}+3 r f-3 r-3 f \in U(R)$ follows as in [4], whence $r, f \in i d(R)+N(R)$ with $r f \in N(R)$. Furthermore, we write $r=e+a$ and $f=t+b$ where $e, t \in$ $i d(R)$ with $e t=0$ and $a, b \in N(R)$. Hence $u=1-e-t-a-b+e g+a g+t g^{2}+b g^{2}$ and because $1-e+e g-t+t g^{2}=1-e-t+e g+t g^{2} \in I d(R G) \subseteq V(R G)$ with the inverse $1-e-t+e g^{-1}+t g^{-2}$, one can write $u=\left(1-e-t+e g+t g^{2}\right)[1+$ $\left.\left(1-e-t+e g^{-1}+t g^{-2}\right)\left(-a-b+a g+b g^{2}\right)\right] \in I d(R G) \times(1+I(N(R) G ; G))$, as required.

Finally, for any $r \in R$, we find the following equivalence: $r^{2}-r \in N(R)$ $\Longleftrightarrow \quad r \in i d(R)+N(R)$. In fact, the sufficiency is self-evident. As for the necessity, observe that $r+N(R) \in i d(R / N(R))$. Hence, via our previous comments on lifting idempotents, there is $e \in i d(R)$ with $r+N(R)=e+N(R)$. Thus $r \in i d(R)+N(R)$, and we are done.

Remark 14. It is worth noting that the preceding theorem can also be obtained directly by Proposition 5 and by the corresponding result from [4]. However, the present proof gives another strategy to attack results of this type.

As a valuable consequence, we yield the listed above Theorem 11 of [2].
Corollary 15. Suppose R is of prime characteristic p and $G \neq 1$. Then $V(R G)=I d(R G) \times(1+I(N(R) G ; G))$ if and only if exactly one of the following holds:
(i) $G_{0}=1$;
(ii) $|G|=2, \forall r \in R: 2 r-1 \in U(R) \Longleftrightarrow r^{2}-r \in N(R)$;
(iii) $|G|=3, \forall r, f \in R: 1+3 r^{2}+3 f^{2}+3 r f-3 r-3 f \in U(R) \Longleftrightarrow$ $r^{2}-r \in N(R), f^{2}-f \in N(R)$ and $r f \in N(R)$.

Proof. Since $\operatorname{char}(R)=p$ is a prime, $\operatorname{inv}(R)$ contains of all primes but p. If $G_{0} \neq G_{p}$, we derive that $\operatorname{supp}(G) \cap \operatorname{inv}(R) \neq \emptyset$ and so we can apply Theorem 13 to finish the proof. Otherwise, if $G_{0}=G_{p}$, then one can derive that $V(R G)=I d(R G) V_{p}(R G)$ (see, for example, [1]). Hereafter, we can proceed as in [2] by considering the case $G=G_{0}$, which leads to $|G|=p=2$ and $R=\{0,1\}+N(R)$ that is contained in point (ii), and the case $G \neq G_{0}$ which is impossible.

Before stating and proving our next statement, we need one more technicality (cf. [1]).

Lemma 16. If $\operatorname{char}(R)=p$ is prime, then the following equivalence holds:

$$
V(R G)=\operatorname{Id}(R G) V_{p}(R G) \Longleftrightarrow V\left(R\left(G / G_{p}\right)\right)=\operatorname{Id}\left(R\left(G / G_{p}\right)\right) V_{p}\left(R\left(G / G_{p}\right)\right) .
$$

Proof. Consider the natural map $\psi: G \rightarrow G / G_{p}$. It can be linearly extended in a usual way to the map $\Psi: R G \rightarrow R\left(G / G_{p}\right)$. It is easy to see that Ψ is actually an epimorphism (= a surjective homomorphism) with kernel equals the relative augmentation ideal $I\left(R G ; G_{p}\right)$ of $R G$ with respect to G_{p}. Since $I\left(R G ; G_{p}\right)$ is obviously a nil-ideal, it is not hard to verify that the restrictions $\Psi: V(R G) \rightarrow V\left(R\left(G / G_{p}\right)\right)$ and $\Psi: V_{p}(R G) \rightarrow V_{p}\left(R\left(G / G_{p}\right)\right)$ are also surjections. Moreover, it follows directly also that $\Psi: \operatorname{Id}(R G) \rightarrow \operatorname{Id}\left(R\left(G / G_{p}\right)\right)$ is a surjection.

And so, concerning the necessity, it follows by what we have shown above under taking in both sides the homomorphism Ψ.

Dealing now with the sufficiency, $\Psi(V(R G))=\Psi(I d(R G)) \Psi\left(V_{p}(R G)\right)=$ $\Psi\left(I d(R G) V_{p}(R G)\right)$. Since ker $\Psi_{V(R G)}=1+I\left(R G ; G_{p}\right)$ is a p-group that is $1+I\left(R G ; G_{p}\right) \subseteq V_{p}(R G)$, it follows at once that $V(R G)=\operatorname{Id}(R G) V_{p}(R G)$, as stated.

Another interesting consequence is that of [1]:
Corollary 17. Suppose char $(R)=p$ is a prime and $G \neq 1$. Then $V(R G)=I d(R G) V_{p}(R G)$ if and only if precisely one of the following clauses is valid:
(a) $G_{0}=G_{p}$;
(b) $G=G_{p} \times G_{2},\left|G_{2}\right|=2$ and for all $r \in R: 2 r-1 \in U(R) \Longleftrightarrow$ $r^{2}-r \in N(R)$;
(c) $G=G_{p} \times G_{3},\left|G_{3}\right|=3$ and for all $r, f \in R: 1+3 r^{2}+3 f^{2}+3 r f-3 r-3 f \in$ $U(R) \Longleftrightarrow r^{2}-r \in N(R), f^{2}-f \in N(R)$ and $r f \in N(R)$.

Proof. By virtue of Lemma 16, we may assume that $G_{p}=1$. Since it is plainly checked that $V_{p}(R G)=1+I(N(R) G ; G)$, we can write that $V(R G)=$ $I d(R G) \times(1+I(N(R) G ; G))$. Henceforth, we employ Theorem 11 or Corollary 15.

Remark 18. In [2, Theorem 5 (c) and Corollary 6 (c)], the condition $r^{2}=r$ should be written and read as $r^{2}-r \in N(R)$. Note also that if $p=2$, then $2 r-1=-1 \in U(R)$ is always fulfilled for every $r \in R$ and thus in [2, p. 24, Theorem] the condition (3) implies condition (2), so that (2) being decidable from (3) is unnecessary and is listed only for completeness (see also [2, p. 27, Remark]. Compare also with Theorem 11 stated above. Moreover, in [4, Proposition 3 and Theorem 5], $\operatorname{inv}(R)$ should be written and read as $\operatorname{inv}(K)$ where K is any indecomposable subring of R.

On the other hand, Mollov and Nachev established in [11] the above corollary when $\operatorname{Id}(R G)=G$. However, there is no part of novelty in their ideas and they duplicated these from [1] and some other previous author's papers, so that their article is at all redundant.

Finally, we shall demonstrate that some of the conditions in results from [2] can be equivalently stated in other suitable forms. This is substantiated via the following:

Proposition 19. Let R be a commutative unital ring of prime characteristic p.
(1) Suppose $p=2$. Then $R=i d(R)+N(R)$ if and only if $\forall r \in R$: $2 r-1 \in U(R) \Longleftrightarrow r^{2}-r \in N(R)$.
(2) Suppose $p \neq 2$ and id $(R)=\{0,1\}$. Then $U(R)= \pm 1+N(R)$ if and only if $\forall r \in R: 2 r-1 \in U(R) \Longleftrightarrow r^{2}-r \in N(R)$.

Proof. (1) Since $2 r-1=-1 \in U(R)$ is ever fulfilled for each $r \in R$, the assertion is equivalent to $R=i d(R)+N(R)$ precisely when $r^{2}-r \in N(R)$ for any $r \in R$. The necessity is straightforward. As for the sufficiency, $r^{2}-r \in$ $N(R)$ forces that $\left(r^{2}-r\right)^{2^{n}}=r^{2 \cdot 2^{n}}-r^{2^{n}}=0$, i.e., $\left(r^{2^{n}}\right)^{2}=r^{2^{n}}$ for some natural n. Thus $r^{2^{n}}=e$ is an idempotent. But $(r-e)^{2^{n}}=r^{2^{n}}-e=0$ and hence $r-e \in N(R)$ with $r=e+\alpha \in i d(R)+N(R)$ for some $\alpha \in N(R)$, as required.
(2) First, let $U(R)= \pm 1+N(R)$, and choose $2 r-1 \in U(R)$. Hence $2 r-1=1+\alpha_{1}$ or $2 r-1=-1+\alpha_{2}$ where $\alpha_{1}, \alpha_{2} \in N(R)$. Thus $2(r-1)=\alpha_{1}$ or $2 r=\alpha_{2}$. Since $(2, p)=1$ it follows that $2 u+p v=1$ for some integers u, v. Furthermore, $2(r-1) u+p(r-1) v=r-1$ that is $\alpha_{1} u=r-1$, i.e., $r=1+\alpha_{1} u$, or $2 r u+p r v=r$ that is $\alpha_{2} u=r$. In the first case $r=1+\alpha_{1} u$ and $r^{2}=1+2 \alpha_{1} u+\alpha_{1}^{2} u^{2}$, whence $r^{2}-r=\alpha_{1} u+\alpha_{1}^{2} u^{2} \in N(R)$, whereas in the second case $r^{2}-r=\alpha_{2}^{2} u^{2}-\alpha_{2} u \in N(R)$, as asserted.

Second, let the equivalence " $\Longleftrightarrow "$ hold. Since $(2, p)=1$, it follows that $2 \in U(R)$. If $p \geq 5$, we observe that $2 \cdot \frac{3}{2}-1=2 \in U(R)$ and hence $\left(\frac{3}{2}\right)^{2}-\frac{3}{2}=$ $\frac{9}{4}-\frac{3}{2}=\frac{3}{4} \in N(R)$. Thus $3 \cdot 2^{2} \in N(R)$, i.e., $3 \in N(R)$. Moreover, $(3, p)=1$ whence $3 \in U(R)$. Finally, $1 \in N(R)$ which leads to $1=0$, a contradiction. If now $p=3$, for any $\alpha \in U(R)$ we have that $2(\alpha-1)-1=2 \alpha \in U(R)$ because $2 \in U(R)$. Therefore, $(\alpha-1)^{2}-(\alpha-1) \in N(R)$ which means that $(\alpha-1)^{2 \cdot 3^{n}}=(\alpha-1)^{3^{n}}$ for some natural n. This ensures that $(\alpha-1)^{3^{n}}$ is an idempotent. Consequently, $(\alpha-1)^{3^{n}}=0$ or $(\alpha-1)^{3^{n}}=1$. The first equality assures that $\alpha-1 \in N(R)$, i.e., $\alpha \in 1+N(R)$, while the second equality insures that $(\alpha-1)^{3^{n}}-1=(\alpha-1-1)^{3^{n}}=(\alpha-2)^{3^{n}}=(\alpha+1)^{3^{n}}=0$, i.e., we finally obtain $\alpha+1 \in N(R)$ and $\alpha \in-1+N(R)$, as claimed.

Remark 20. Actually, in (2) we should have $p=3$.
As an immediate consequence we have the following:
Corollary 21. Let R be a commutative unital ring of prime characteristic p.
(1) Suppose $p=2$. Then $|R|=2$ if and only if $\forall r \in R: 2 r-1 \in U(R)$ $\Longleftrightarrow r \in\{0,1\}$.
(2) Suppose $p \neq 2$ and $i d(R)=\{0,1\}$. Then $|U(R)|=2$ if and only if \forall $r \in R: 2 r-1 \in U(R) \Longleftrightarrow r \in\{0,1\}$.

We close the work with a left-open challenging problem.

Problem 22. Suppose $\operatorname{supp}(G) \cap \operatorname{inv}(R)=\emptyset$. Find a necessary and sufficient condition whenever the following direct decomposition holds:

$$
V(R G)=I d(R G) \times(1+I(N(R) G ; G))
$$

REFERENCES

[1] Danchev, P., On idempotent units in commutative group rings, An. Univ. Bucureşti Mat., 58 (2009), 17-22.
[2] Danchev, P., Idempotent-nilpotent units in commutative group rings, Bull. Greek Math. Soc., 56 (2009), 21-28.
[3] Danchev, P., Trivial units in abelian group algebras, Extracta Math., 24 (2009), 47-53.
[4] Danchev, P., Idempotent units of commutative group rings, Comm. Algebra, 38 (2010), 4649-4654.
[5] Danchev, P., G-nilpotent units of commutative group rings, Comment. Math. Univ. Carolin., 53 (2012).
[6] Karpilovsky, G., On units in commutative group rings, Arch. Math. (Basel), 38 (1982), 420-422.
[7] Karpilovsky, G., On finite generation of unit groups of commutative group rings, Arch. Math. (Basel), 40 (1983), 503-508.
[8] Karpilovsky, G., Unit Groups of Group Rings, Longman Sci. and Techn., Harlow, 1989.
[9] Karpilovsky, G., Units of commutative group algebras, Expo. Math., 8 (1990), 247287.
[10] May, W., Group algebras over finitely generated rings, J. Algebra, 39 (1976), 483-511.
[11] Mollov, T. and Nachev, N., Group of normalized units of commutative modular group rings, Ann. Sci. Math. Québec, 33 (2009), 83-92.

Received December 03, 2010
Accepted March 22, 2011

Plovdiv State University
Department of Mathematics
Plovdiv 4000, Bulgaria
E-mail: pvdanchev@yahoo.com

[^0]: The author would like to thank the referee for the careful reading of the manuscript.

