ON BLOCKS AND CLIFFORD EXTENSIONS

TIBERIU COCONEŢ

Abstract

We give a short proof of a result of E.C. Dade, as stated in [1, Theorem 9] on Clifford extensions for blocks of group algebras (see also [2, Corollary 12.6], avoiding the machinery developed in [2], but making use of the Brauer homomorphism. Moreover, we do not assume that the ground field k is algebraically closed.

MSC 2010. 20C20, 16S35, 20C05.
Key words. Group algebra, blocks, group graded algebra, Brauer homomorphism, Brauer correspondence.

1. INTRODUCTION AND PRELIMINARIES

The Clifford extension of a block was introduced by E.C. Dade in [1], where he also stated that this extension can be computed from local data. This result was proved in [2, Corollary 12.6]. The paper [2] is quite long and technical, and our aim here is to give a short proof of [1, Theorem 9$]$. We start by introducing the setting and recalling the definitions. The reader is referred to [7] for block theory, and to [3] for notions and results on group graded algebras.

Let p be a prime number, and let \mathcal{O} be a complete discrete valuation ring with residue field k of characteristic p. Note that the situation $\mathcal{O}=k$ is allowed, and we do not make any assumption on the size of \mathcal{O} and k. Let K be a normal subgroup of the finite group H, and denote $G=H / K$. Consider the group algebra $\mathcal{O} H$. This is a strongly G-graded algebra, where for each $\sigma \in G, \mathcal{O} H_{\sigma}=\mathcal{O} \sigma$.

Let b a block of $\mathcal{O} K$; this primitive central idempotent remains central in the G-graded algebra

$$
C_{\mathcal{O} H}(\mathcal{O} K)=(\mathcal{O} H)^{K}=\bigoplus_{\sigma \in G}(\mathcal{O} H)_{\sigma}^{K}
$$

where $(\mathcal{O} H)_{\sigma}^{K}=(\mathcal{O})^{K}$ for all $\sigma \in G$. Since K is normal in H, the group H acts by conjugation on $(\mathcal{O} H)^{K}$, and this action induces an action of G on $(\mathcal{O} H)^{K}$. Let G_{b} denote the stabilizer of b in G. Then

$$
b \circlearrowleft H b=\bigoplus_{\sigma \in G_{b}} b \mathcal{O}=b \mathcal{O} H_{b}
$$

is a strongly G_{b}-graded algebra.
This research has been supported by the Romanian PN-II-IDEI-PCE-2007-1 Project ID_532, contract no. 29/01.10.2007.

Define

$$
G[b]=\left\{\sigma \in G \mid b(\mathcal{O} H)_{\sigma}^{K} \cdot b(\mathcal{O} H)_{\sigma^{-1}}^{K}=b(\circlearrowleft H)_{1}^{K}\right\}
$$

It is easy to see that $G[b]$ is a normal subgroup of G_{b}, and that

$$
A:=\bigoplus_{\sigma \in G[b]} b(O H)_{\sigma}^{K}
$$

is a strongly $G[b]$-graded G_{b}-acted subalgebra of $b \mathcal{O} H b$.
Because $A_{1}=b(\mathcal{O})^{K}=b Z(\mathcal{O})$ is a local ring, $\hat{k}_{1}:=A_{1} / J\left(A_{1}\right)$ is a finite extension of the field k. Consider the strongly $G[b]$-graded algebra $\bar{A}:=$ $A / A J\left(A_{1}\right)$; for all $\sigma \in G[b]$, we have $\bar{A}_{\sigma}=A_{\sigma} / A_{\sigma} J\left(A_{1}\right)$. By definition, the Clifford extension of the block b is the group extension

$$
\begin{equation*}
1 \rightarrow \hat{k}_{1}^{*} \rightarrow h U(\bar{A}) \rightarrow G[b] \rightarrow 1 \tag{1}
\end{equation*}
$$

associated to the crossed product \bar{A} of \hat{k}_{1} and $G[b]$.

2. THE BRAUER HOMOMORPHISM

In order to define the second extension associated to the block b, we consider the Brauer homomorphism

$$
\operatorname{Br}_{D}:(O H)^{D} \rightarrow k C_{H}(D)
$$

associated to a p-subgroup D of H, and we denote it in the same way when restricted to $(\mathcal{O} K)^{D}$. Note that $N_{H}(D)$ acts by conjugation on both $(\mathcal{O} K)^{D}$ and $k C_{H}(D)$, and the Brauer homomorphism Br_{D} is a homomorphism of $N_{H}(D)$ algebras.

Now choose a defect pointed group D_{γ} of b in K, so γ is a local point of $(\mathcal{O} K)^{D}$ determining the maximal Brauer pair (D, e). The idempotent e is primitive in the center of $k C_{K}(D)$, and $\operatorname{Br}_{D}(b) e=e$. Also denote $\bar{b}:=$ $\operatorname{Br}_{D}(b)$ the Brauer correspondent of b which is a primitive idempotent of $k C_{K}(D)^{N_{K}(D)}$.

The group algebra $k C_{H}(D)$ is a $N_{H}(D)$-algebra by conjugation and it is also $C_{H}(D) / C_{K}(D)$-graded. Denote by $C_{H}(D)_{\bar{b}} / C_{K}(D)$ the stabilizer of \bar{b}.

Let $k C_{H}(D)^{N_{K}(D)}$ be the subalgebra of $k C_{H}(D)$ consisting of elements fixed by the action of $N_{K}(D)$. Consider the centralizer

$$
C_{k C_{H}(D)^{N_{K}(D)}}\left(k C_{K}(D)^{N_{K}(D)}\right)=k C_{H}(D)^{N_{K}(D)}
$$

where for each $\tau \in C_{H}(D) / C_{K}(D)$ the component τ is

$$
C_{k C_{H}(D)^{N_{K}(D)}}\left(k C_{K}(D)^{N_{K}(D)}\right) \cap k \tau=(k \tau)^{N_{K}(D)}
$$

This centralizer is a $C_{H}(D) / C_{K}(D)$-graded algebra that contains the idempotent \bar{b} in its center. As above

$$
\bar{b} k C_{H}(D) \bar{b}=\bigoplus_{\tau \in C_{H}(D)_{\bar{b}} / C_{K}(D)} \bar{b} k \tau=\bar{b} k C_{H}(D)_{\bar{b}}
$$

is a strongly $C_{H}(D)_{\bar{b}} / C_{K}(D)$-graded algebra. Its subalgebra

$$
\left(\bar{b} k C_{H}(D)_{\bar{b}}\right)^{N_{K}(D)}=\bigoplus_{\tau \in C_{H}(D)_{\bar{b}} / C_{K}(D)}(\bar{b} k \tau)^{N_{K}(D)}
$$

needs to be strongly graded.
So we now introduce the following normal subgroup of $C_{H}(D)_{\bar{b}} / C_{K}(D)$:

$$
\begin{aligned}
& C_{H}(D)_{0} / C_{K}(D) \\
& =\left\{\tau \in C_{H}(D) / C_{K}(D) \mid \bar{b}(k \tau)^{N_{K}(D)} \cdot \bar{b}\left(k \tau^{-1}\right)^{N_{K}(D)}=\bar{b}\left(k C_{K}(D)\right)^{N_{K}(D)}\right\} .
\end{aligned}
$$

Then

$$
B:=\bigoplus_{\tau \in C_{H}(D)_{0} / C_{K}(D)} \bar{b}(k \tau)^{N_{K}(D)}=\bar{b} k C_{H}(D)_{0}^{N_{K}(D)}
$$

is a strongly $C_{H}(D)_{0} / C_{K}(D)$-graded algebra, and so is $\bar{B}=B / B J\left(B_{1}\right)$, where $B_{1}=\bar{b} k C_{K}(D)^{N_{K}(D)}$. Clearly we have $B_{\tau}=\bar{b}(k \tau)^{N_{K}(D)}, \overline{B_{\tau}}=B_{\tau} / B_{\tau} J\left(B_{1}\right)$ for all $\tau \in C_{H}(D)_{0} / C_{K}(D)$.

Moreover, B_{1} is a local ring, hence $\hat{k}_{2}:=B_{1} / J\left(B_{1}\right)$ is a finite extension of k. Then \bar{B} is a crossed product of \hat{k}_{2} and $C_{H}(D)_{0} / C_{K}(D)$, acted upon by $N_{H}(D)_{\bar{b}}$, and it corresponds to the Clifford extension of \bar{b}, that is

$$
\begin{equation*}
1 \rightarrow \hat{k}_{2}^{*} \rightarrow h U(\bar{B}) \rightarrow C_{H}(D)_{0} / C_{K}(D) \rightarrow 1 . \tag{2}
\end{equation*}
$$

Note that $N_{K}(D)_{\bar{b}}:=N_{H}(D)_{\bar{b}} \cap K$ acts trivially on both \bar{A} and \bar{B}. Finally, relying on the inclusions

$$
\begin{aligned}
& k C_{K}(D)^{N_{K}(D)} \subseteq Z\left(k C_{K}(D)\right), \\
& C_{k C_{H}(D)^{N_{K}(D)}}\left(k C_{K}(D)^{N_{K}(D)}\right)=k C_{H}(D)^{N_{K}(D)} \subseteq C_{k C_{H}(D)}\left(k C_{K}(D)\right),
\end{aligned}
$$

we can replace \bar{b} with the block e and still have that $e \bar{B}=e B / e B J\left(e B_{1}\right)$ is a crossed product of \hat{k}_{2} by $C_{H}(D)_{0} / C_{K}(D)$. Of course this last factor algebra is acted upon by $N_{H}(D)_{e}$.

3. ISOMORPHISM OF THE CLIFFORD EXTENSIONS

We are now ready to give an alternative proof of [2, Corollary 12.6].
Theorem 1. With the above notations, the following statements hold:

1) G_{b} equals $N_{H}(D)_{e} K / K$.
2) The group $G[b]$ equals $C_{H}(D)_{0} K / K$.
3) The extensions (1) and (2) are isomorphic.
4) The isomorphism between the extensions (1) and (2) is compatible with the natural isomorphism

$$
G[b] \rightarrow C_{H}(D)_{0} / C_{K}(D), \quad \sigma \mapsto \sigma \cap C_{H}(D)_{0},
$$

and preserves the conjugation action of the subgroup $N_{H}(D)_{e} / N_{K}(D)_{e}$ of $G_{b} \simeq N_{H}(D)_{e} / N_{K}(D)_{e}$ on the two extensions.

Proof. Since H acts on the inclusion relation between pointed groups, it follows that H_{b} acts on $D_{\gamma} \leq K_{\{b\}}$, so it generates the class $\left\{\left(D_{\gamma}\right)^{h} \mid h \in H_{b}\right\}$ of defect pointed groups of b. Since $K_{\{b\}}$ is projective relative to $\left(D_{\gamma}\right)^{h}$ for some $h \in H_{b}$, by [7, Lemma 18.2] it follows that there is $g \in K$ satisfying $\left(D_{\gamma}\right)^{g} \leq$ $\left(D_{\gamma}\right)^{h}$. Equivalently, we have $D_{\gamma} \leq\left(D_{\gamma}\right)^{h g^{-1}}$, and using the maximality of D_{γ}, the last inclusion is actually an equality, hence $h g^{-1} \in N_{H_{b}}(D)$. Together with $N_{H_{b}}(D)=N_{H}(D)_{b}$, we obtain $H_{b} \subseteq N_{H}(D)_{b} K$. Since the other inclusion is trivial, we conclude that $H_{b}=N_{H}(D)_{b} K$. Clearly, $N_{H}(D)_{b}=N_{H}(D)_{e} N_{K}(D)$, and this implies the equality $G_{b}=N_{H}(D)_{e} K / K$.

For the remaining statements we argue as follows.
By [5, Lemma 3.4], we know that A_{1} maps onto $\operatorname{Br}_{D}(b) k C_{K}(D)^{N_{K}(D)}$. Multiplying by e, we obtain an epimorphism of algebras from A_{1} onto

$$
e B_{1}=Z\left(e k C_{K}(D)^{N_{K}(D)}\right)=e k C_{K}(D)^{N_{K}(D)} .
$$

Moreover, the composition

$$
f: b \mathcal{O} H_{b}^{K} \rightarrow \bar{b} k C_{H}(D)_{b}^{N_{K}(D)}=\bar{b} k C_{H}(D)_{\bar{b}}^{N_{K}(D)} \rightarrow e k C_{H}(D)_{\bar{b}}^{N_{K}(D)}
$$

is an epimorphism of $N_{H}(D)_{e}$-algebras. This can easily be shown using the same [5, Lemma 3.4] taking into consideration that $b \in \mathcal{O} K_{D}^{K} \subseteq\left(\mathcal{O} H_{b}\right)_{D}^{K}$. Also it is quite clear that this morphism carries the surjection componentwise, i.e. if $\sigma \in G_{g}$ and $\tau=\sigma \cap C_{H}(D)_{\bar{b}}$ then $b(O \sigma)^{K} \rightarrow e(k \tau)^{N_{K}(D)}$. Of course, $A \subseteq b \mathcal{O} H_{b}^{K}$ and $e B \subseteq e k C_{H}(D)_{\bar{b}}^{N_{K}(D)}$, and choosing $\sigma \in G[b]$ we have

$$
e B_{1}=f\left(A_{1}\right)=f\left(A_{\sigma} \cdot A_{\sigma^{-1}}\right)=f\left(A_{\sigma}\right) \cdot f\left(A_{\sigma^{-1}}\right)=e B_{\tau} \cdot e B_{\tau^{-1}} .
$$

So the restriction of f sends A to $e B$. Now if $\tau \in C_{H}(D)_{0} / C_{K}(D)$ then using [6, Lemma 1.1] there is an invertible element $\bar{d} \in e B_{\tau} \cap(e B)^{*}$ such that $e B_{\tau}=\bar{d}\left(e B_{1}\right)=\left(e B_{1}\right) \bar{d}$ which lifts to an invertible element $d \in A_{\sigma} \cap A^{*}$ where $\sigma \cap C_{H}(D)_{0}=\tau$. Then

$$
A_{1}=A_{\sigma} \cdot A_{\sigma^{-1}},
$$

hence $\sigma \in G[b]$. This means that the restriction to A of the homomorphism f remains surjective onto $e B$.

The inclusion $\left.f\left(J\left(A_{1}\right)\right)\right) \subseteq J\left(e B_{1}\right)$ allows us to consider the $G[b]$-graded algebra homomorphism

$$
\bar{f}: \bar{A} \rightarrow \overline{e B}, \quad \bar{a} \mapsto \overline{f(a)} .
$$

Also, the same inclusion, together with the fact that A_{1} and $e B_{1}$ are local rings, applying [4, Proposition 3.23], we obtain

$$
A_{1} / J\left(A_{1}\right) \simeq e B_{1} / J\left(e B_{1}\right),
$$

that is, $\hat{k}_{1} \simeq \hat{k}_{2}$ as extensions of k.
If $\tau \in C_{H}(D)_{0} / C_{K}(D)$ we have $e B_{\tau} \cdot e B_{\tau^{-1}}=e B_{1}$, since $e B_{1}$ is local. Then

$$
f^{-1}\left(e B_{\tau}\right) \cdot f^{-1}\left(e B_{\tau^{-1}}\right) \nsubseteq J\left(A_{1}\right),
$$

because otherwise

$$
e B_{\tau} \cdot e B_{\tau^{-1}}=f\left(f^{-1}\left(e B_{\tau}\right) \cdot f^{-1}\left(e B_{\tau^{-1}}\right)\right) \subseteq f\left(J\left(A_{1}\right)\right) \subseteq J\left(e B_{1}\right)
$$

which is false. We have

$$
J\left(A_{1}\right)+f^{-1}\left(e B_{\tau}\right) \cdot f^{-1}\left(e B_{\tau^{-1}}\right)=A_{1}
$$

and since

$$
f^{-1}\left(e B_{\tau}\right) \cdot f^{-1}\left(e B_{\tau^{-1}}\right)=A_{\tau K} \cdot A_{\tau^{-1} K} \subseteq A_{1}
$$

it follows that for $\sigma=\tau K$ we obtain

$$
J\left(A_{1}\right)+A_{\sigma} \cdot A_{\sigma^{-1}}=A_{1} .
$$

Consequently, $\sigma \in G[b]$, and this proves the inclusion $C_{H}(D)_{0} K / K \leq G[b]$.
Conversely, if $\sigma \in G[b]$ then the equality

$$
\bar{f}\left(\bar{A}_{\sigma}\right) \cdot \bar{f}\left(\bar{A}_{\sigma^{-1}}\right)=\hat{k}_{2}
$$

forces $\bar{f}\left(\bar{A}_{\sigma}\right) \neq 0$. Consequently, $(\mathcal{O} \sigma)^{K} \nsubseteq(\mathcal{O} \sigma)^{K} J(b Z(\mathcal{O} K))$, and even more, $\sigma \cap C_{H}(D)_{0} \neq \emptyset$. Hence $\sigma \in C_{H}(D)_{0} K / K$.

Finally, the conjugation action of $N_{K}(D)_{e}$ on \hat{k}_{1} on \hat{k}_{2}, as well as on the two crossed product algebras corresponding to the extensions (1) and (2) is trivial, and use also that the Brauer homomorphism is a map of $N_{H}(D)_{e}$-algebras.

REFERENCES

[1] Dade, E.C., A Clifford Theory for Blocks, Representation Theory of Finite Groups and Related Topics, Proc. Sympos. Pure Math., 21, Univ. Wisconsin, Madison, Wisconsin 1970, pp. 33-36.
[2] Dade, E.C., Block extensions, Illinois J. Math., 17 (1973), 198-272.
[3] Marcus, A., Representation Theory of Group Graded Algebras, Nova Science Publishers, Commack, New York, 1999.
[4] Puig, L., Blocks of Finite Groups. The Hyperfocal Subalgebra of a Block, Springer, Berlin, 2002.
[5] Kessar, R., Introduction to Block Theory, Group Representation Theory, EPFL Press, Lausanne, 2007, pp. 47-77.
[6] Schimd, P., Clifford theory of simple modules, J. Algebra, 119 (1988), 185-212.
[7] Thévenaz, J., G-Algebras and Modular Representation Theory, Clarendon Press, Oxford 1995.

Received July 26, 2010
Accepted September 24, 2010
"Babeş-Bolyai" University
Faculty of Mathematics and Computer Science
Str. Mihail Kogălniceanu nr. 1
400084 Cluj-Napoca, Romania
E-mail: tiberiu.coconet@math.ubbcluj.ro

