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DERIVED CONES TO REACHABLE SETS OF
STURM-LIOUVILLE TYPE DIFFERENTIAL INCLUSIONS

AURELIAN CERNEA

Abstract. We consider a second-order differential inclusion and we prove that
the reachable set of a certain second-order variational inclusion is a derived cone
in the sense of Hestenes to the reachable set of the initial differential inclusion.
This result allows to obtain a sufficient condition for local controllability along
a reference trajectory.
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1. INTRODUCTION

The concept of derived cone to an arbitrary subset of a normed space has
been introduced by M. Hestenes in [12] and successfully used to obtain nec-
essary optimality conditions in Control Theory. Afterwards, this concept has
been largely ignored in favor of other concepts of tangents cones, that may in-
trinsically be associated to a point of a given set: the cone of interior directions,
the contingent, the quasitangent and, above all, Clarke’s tangent cone (e.g.,
[1]). Mirică ([13, 14]) obtained “an intersection property” of derived cones that
allowed a conceptually simple proof and significant extensions of the maximum
principle in optimal control; moreover, other properties of derived cones may
be used to obtain controllability and other results in the qualitative theory of
control systems. In our previous papers [2, 3, 4, 10] we identified derived cones
to the reachable sets of certain classes of discrete and differential inclusions in
terms of a variational inclusion associated to the initial discrete or differential
inclusion.

In the present note we consider second-order differential inclusions of the
form

(1) (p(t)x′(t))′ ∈ F (t, x(t)) a.e. ([0, T ]), x(0) ∈ X0, x′(0) ∈ X1,

where F : [0, T ] × X → P(X) is a set-valued map, X is a separable Banach
space, X0, X1 ⊂ X are closed sets and p(.) : [0, T ]→ (0,∞) is continuous. Our
aim is to prove that the reachable set of a certain second-order variational
inclusion is a derived cone in the sense of Hestenes to the reachable set of
the problem (1). In order to obtain the continuity property in the definition
of a derived cone we shall use a continuous version of Filippov’s theorem for
solutions of differential inclusions (1) obtained in [5]. As an application, when
X is finite dimensional, we obtain a sufficient condition for local controllability
along a reference trajectory.
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We note that existence results and qualitative properties of the solutions of
problem (1) may be found in [5, 6, 7, 8, 9, 11] etc.

The paper is organized as follows: in Section 2 we present the notations and
the preliminary results to be used in the sequel and in Section 3 we provide
our main results.

2. PRELIMINARIES

Since the reachable set to a control system is, generally, neither a differen-
tiable manifold, nor a convex set, its infinitesimal properties may be charac-
terized only by tangent cones in a generalized sense, extending the classical
concepts of tangent cones in Differential Geometry and Convex Analysis, re-
spectively. From the rather large number of “convex approximations”, “tents”,
“regular tangents cones”, etc. in the literature, we choose the concept of de-
rived cone introduced by M. Hestenes in [12].

Let (X, ||.||) be a normed space.

Definition 1 ([12]). A subset M ⊂ X is said to be a derived set to E ⊂ X
at x ∈ E if for any finite subset {v1, ..., vk} ⊂ M , there exist s0 > 0 and
a continuous mapping a(.) : [0, s0]

k → E such that a(0) = x and a(.) is
(conically) differentiable at s = 0 with the derivative col[v1, ..., vk] in the sense
that

lim
Rk
+3θ→0

||a(θ)− a(0)−
∑k

i=1 θivi||
||θ||

= 0.

We shall write in this case that the derivative of a(.) at s = 0 is given by

Da(0)θ =
k∑
i=1

θjvj ∀θ = (θ1, ..., θk) ∈ Rk+ := [0,∞)k.

A subset C ⊂ X is said to be a derived cone of E at x if it is a derived set
and also a convex cone.

For the basic properties of derived sets and cones we refer to M. Hestenes
[12]; we recall that if M is a derived set, then M

⋃
{0}, as well as the convex

cone cco(M) =
{∑k

i=1 λjvj ; λj ≥ 0, k ∈ N, vj ∈M, j = 1, ..., k
}

generated

by M is also a derived set, hence a derived cone.
The fact that the derived cone is a proper generalization of the classical

concepts in Differential Geometry and Convex Analysis is illustrated by the
following results [12]: if E ⊂ Rn is a differentiable manifold and TxE is the
tangent space in the sense of Differential Geometry to E at x, TxE = {v ∈
Rn; ∃ c : (−s, s) → X, of class C1, c(0) = x, c′(0) = v}, then TxE is a derived
cone; also, if E ⊂ Rn is a convex subset then the tangent cone in the sense
of Convex Analysis defined by TCxE = cl{t(y − x); t ≥ 0, y ∈ E} is
also a derived cone. Since any convex subcone of a derived cone is also a
derived cone, such an object may not be uniquely associated to a point x ∈ E;
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moreover, simple examples show that even a maximal with respect to set-
inclusion derived cone may not be uniquely defined: if the set E ⊂ R2 is
defined by E = C1

⋃
C2, C1 = {(x, x);x ≥ 0}, C2 = {(x,−x), x ≤ 0}, then

C1 and C2 are both maximal derived cones of E at the point (0, 0) ∈ E.
On the other hand, the up-to-date experience in Nonsmooth Analysis shows

that for some problems, the use of one of the intrinsic tangent cones may be
preferable. From the multitude of the intrinsic tangent cones in the literature
(e.g. [1]), the contingent, the quasitangent (intermediate) and Clarke’s tangent
cones, defined by, respectively,

KxE =

{
v ∈ X; ∃ sm → 0+, ∃xm → x, xm ∈ E :

xm − x
sm

→ v

}
,

QxE =

{
v ∈ X; ∀sm → 0+, ∃xm → x, xm ∈ E :

xm − x
sm

→ v

}
,

CxE =

{
v ∈ X; ∀ (xm, sm)→ (x, 0+), xm ∈ E,∃ ym ∈ E :

ym − xm
sm

→ v

}
seem to be among the most oftenly used in the study of different problems
involving nonsmooth sets and mappings.

An outstanding property of derived cone, obtained by Hestenes [12, Theo-
rem 4.7.4] is stated in the next lemma.

Lemma 2 ([12]). Let X = Rn. Then x ∈ int(E) if and only if C = Rn is a
derived cone at x ∈ E to E.

Corresponding to each type of tangent cone, say τxE one may introduce (e.g.
[1]) a set-valued directional derivative of a multifunctionG(.) : E ⊂ X → P(X)
(in particular of a single-valued mapping) at a point (x, y) ∈ Graph(G) as
follows τyG(x; v) = {w ∈ X; (v, w) ∈ τ(x,y)Graph(G)}, v ∈ τxE.

We recall that a set-valued map, A(.) : X → P(X) is said to be a convex
(respectively, closed convex) process if Graph(A(.)) ⊂ X × X is a convex
(respectively, closed convex) cone. For the basic properties of convex processes
we refer to [1], but we shall use here only the above definition.

Let denote by I the interval [0, T ] and let X be a real separable Banach space
with the norm ||.|| and with the corresponding metric d(., .). Denote by L(I)
the σ-algebra of all Lebesgue measurable subsets of I, by P(X) the family
of all nonempty subsets of X and by B(X) the family of all Borel subsets
of X. Recall that the Pompeiu-Hausdorff distance between the nonempty
closed subsets A,B ⊂ X is defined by dH(A,B) = max{d∗(A,B), d∗(B,A)},
d∗(A,B) = sup{d(a,B); a ∈ A}, where d(x,B) = infy∈B d(x, y).

As usual, we denote by C(I,X) the Banach space of all continuous functions
x(.) : I → X endowed with the norm ||x(.)||C = supt∈I ||x(t)|| and by L1(I,X)
the Banach space of all (Bochner) integrable functions x(.) : I → X endowed
with the norm ||x(.)||1 =

∫
I ||x(t)||dt.
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Consider F : I ×X → P(X) a set-valued map, x0, x1 ∈ X and p(.) : I →
(0,∞) a continuous mapping that defined the Cauchy problem

(2) (p(t)x′(t))′ ∈ F (t, x(t)) a.e. ([0, T ]), x(0) = x0, x′(0) = x1.

A continuous mapping x(.) ∈ C(I,X) is called a solution of problem (2) if
there exists a (Bochner) integrable function f(.) ∈ L1(I,X) such that:

(3) f(t) ∈ F (t, x(t)) a.e. (I),

(4) x(t) = x0 + p(0)x1

∫ t

0

1

p(s)
ds+

∫ t

0

1

p(s)

∫ s

0
f(u)duds ∀t ∈ I.

Note that, if we denote S(t, u) :=
∫ t
u

1
p(s)ds, t ∈ I, then (4) rewrites as

(5) x(t) = x0 + p(0)x1S(t, 0) +

∫ t

0
S(t, u)f(u)du ∀t ∈ I.

We call (x(.), f(.)) a trajectory-selection pair of (2) if (3) and (4) are satisfied.

Hypothesis 3. i) F (., .) : I ×X → P(X) has nonempty closed values and
is L(I)⊗ B(X) measurable.

ii) There exists L(.) ∈ L1(I,R+) such that, for any t ∈ I, F (t, .) is L(t)-
Lipschitz in the sense that dH(F (t, x1), F (t, x2)) ≤ L(t)||x1−x2||, ∀x1, x2 ∈ X.

The main tool in characterizing derived cones to reachable sets of semilinear
differential inclusions is a certain version of Filippov’s theorem for differential
inclusion (2).

Hypothesis 4. Let S be a separable metric space, X0, X1 ⊂ X are closed
sets, a0(.) : S → X0, a1(.) : S → X1 and c(.) : S → (0,∞) are given
continuous mappings. The continuous mappings g(.) : S → L1(I,X), y(.) :
S → C(I,X) are given such that

(p(t)(y(s))′(t))′ = g(s)(t), y(s)(0) ∈ X0, (y(s))′(0) ∈ X1.

There exists a continuous function q(.) : S → L1(I,R+) such that

d(g(s)(t), F (t, y(s)(t))) ≤ q(s)(t) a.e. (I), ∀ s ∈ S.

Theorem 5 ([5]). Assume that Hypotheses 3 and 4 are satisfied. Then there
exist M > 0 and the continuous functions x(.) : S → L1(I,X), h(.) : S →
C(I,X) such that for any s ∈ S (x(s)(.), h(s)(.)) is a trajectory-selection of
(1) satisfying for any (t, s) ∈ I × S
(6) x(s)(0) = a0(s), (x(s))′(0) = a1(s),

||x(s)(t)− y(s)(t)|| ≤M
[
c(s) + ||a0(s)− y(s)(0)||

+ ||a1(s)− (y(s))′(0)||+
∫ t

0
q(s)(u)du

]
.

(7)
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3. THE MAIN RESULT

Our object of study is the reachable set of (1) defined by RF (T,X0, X1) :=
{x(T ); x(.) is a solution of (1)}. We consider a certain variational second-
order differential inclusion and we shall prove that the reachable set of this
variational inclusion from derived cones C0 ⊂ X to X0 and C1 ⊂ X to X1 at
time T is a derived cone to the reachable set RF (T,X0, X1).

Throughout this section we assume

Hypothesis 6. i) Hypothesis 3 is satisfied and X0, X1 ⊂ X are closed sets.
ii) (z(.), f(.)) ∈ C(I,X)× L1(I,X) is a trajectory-selection pair of (1) and

a family P (t, .) : X → P(X), t ∈ I of convex processes satisfying the condition

(8) P (t, u) ⊂ Qf(t)F (t, .)(z(t);u) ∀u ∈ dom(P (t, .)), a.e. t ∈ I

is assumed to be given and defines the variational inclusion

(9) (p(t)v′(t))′ ∈ P (t, v(t)).

Remark. We note that for any set-valued map F (., .), one may find an
infinite number of families of convex process P (t, .), t ∈ I, satisfying con-
dition (8); in fact any family of closed convex subcones of the quasitangent
cones, P (t) ⊂ Q(z(t),f(t))Graph(F (t, .)), defines the family of closed convex

process P (t, u) = {v ∈ X; (u, v) ∈ P (t)}, u, v ∈ X, t ∈ I that satisfy condi-
tion (8). One is tempted, of course, to take as an “intrinsic” family of such
closed convex process, for example Clarke’s convex-valued directional deriva-
tives Cf(t)F (t, .)(z(t); .).

We recall (e.g. [1]) that, since F (t, .) is assumed to be Lipschitz a.e. on I,
the quasitangent directional derivative is given by

Qf(t)F (t, .)((z(t);u))

=

{
w ∈ X; lim

θ→0+

1

θ
d(f(t) + θw, F (t, z(t) + θu)) = 0

}
.

(10)

We are able now to prove the main result of this paper.

Theorem 7. Assume that Hypothesis 6 is satisfied, let C0 ⊂ X be a derived
cone to X0 at z(0) and C1 ⊂ X be a derived cone to X1 at z′(0). Then the
reachable set RP (T,C0, C1) of (9) is a derived cone to RF (T,X0, X1) at z(T ).

Proof. In view of Definition 1, let {v1, ..., vm} ⊂ RP (T,C0, C1), hence such
that there exist the trajectory-selection pairs (u1(.), g1(.)), ..., (um(.), gm(.)) of
the variational inclusion (9) such that

uj(T ) = vj , uj(0) ∈ C0, u′j(0) ∈ C1, j = 1, 2, ...,m.

Since C0 ⊂ X is a derived cone to X0 at z(0) and C1 ⊂ X is a derived cone
to X1 at z′(0), there exist the continuous mappings a0 : S = [0, θ0]

m → X0,
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a1 : S → X1 such that

a0(0) = z(0), Da0(0)s =

m∑
j=1

sjuj(0) ∀ s ∈ Rm+ ,

a1(0) = z′(0), Da1(0)s =

m∑
j=1

sju
′
j(0) ∀ s ∈ Rm+ .

(11)

Further on, for any s = (s1, ..., sm) ∈ S and t ∈ I we denote

y(s)(t) = z(t) +
m∑
j=1

sjuj(t),

g(s)(t) = f(t) +
m∑
j=1

sjgj(t),

q(s)(t) = d(g(s)(t), F (t, y(s)(t)))

(12)

and prove that y(.), q(.) satisfy the hypothesis of Theorem 5.
Using the lipschitzianity of F (t, ., .) we have that for any s ∈ S, the mea-

surable function q(s)(.) in (12) is also integrable:

q(s)(t) = d(g(s)(t), F (t, y(s)(t))) ≤
m∑
j=1

sj ||gj(t)||+ dH(F (t, z(t)),

F (t, y(s)(t))) ≤
m∑
j=1

sj ||gj(t)||+ L(t)
m∑
j=1

sj ||uj(t)||.

Moreover, the mapping s→ q(s)(.) ∈ L1(I,R+) is continuous (in fact Lips-
chitzian) since for any s, s′ ∈ S one may write succesively

||q(s)(.)− q(s′)(.)||1 =

∫ T

0
||q(s)(t)− q(s′)(t)||dt

≤
∫ T

0
[||g(s)(t)− g(s′)(t)||+ dH(F (t, y(s)(t)), F (t, y(s′)(t))))]dt

≤ ||s− s′||

 m∑
j=1

∫ T

0
[||gj(t)||+ +L(t)||uj(t)||]dt

 .

Let us define S1 := S\{(0, . . . , 0)} and c(.) : S1 → (0,∞), c(s) := ||s||2.
It follows from Theorem 5 the existence of a continuous function x(.) : S1 →
C(I,X) such that for any s ∈ S1, x(s)(.) is a solution of (1) with the properties
(6)-(7). For s = 0 we define x(0)(t) = y(0)(t) = z(t) ∀t ∈ I. Obviously,
x(.) : S → C(I,X) is also continuous. Finally, we define the function a(.) :
S → RF (T,X0, X1) by a(s) = x(s)(T ), ∀s ∈ S. Obviously, a(.) is continuous
on S and satisfies a(0) = z(T ).
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To end the proof we need to show that a(.) is differentiable at s0 = 0 ∈ S and
its derivative is given by Da(0)(s) =

∑m
j=1 sjvj ∀ s ∈ Rm+ which is equivalent

to the fact that:

lim
s→0

1

||s||

||a(s)− a(0)−
m∑
j=1

sjvj ||

 = 0.(13)

From (7) we obtain

1

||s||
||a(s)− a(0)−

m∑
j=1

sjvj || ≤
1

||s||
||x(s)(T )− y(s)(T )||

≤M ||s||+ M

||s||
||a0(s)− z(0)−

m∑
j=1

sjuj(0)||

+
M

||s||
||a1(s)− z′(0)−

m∑
j=1

sju
′
j(0)||+M

∫ T

0

q(s)(u)

||s||
du

and therefore in view of (11), relation (13) is implied by the following property
of the mapping q(.) in (12)

lim
s→0

q(s)(t)

||s||
= 0 a.e. (I).(14)

In order to prove the last property, we note that, since P (t, .) is a convex
process for any s ∈ S, one has

m∑
j=1

sj
||s||

gj(t) ∈ P

t, m∑
j=1

sj
||s||

uj(t)

 ⊂ Qf(t)F (t, .)(z(t);

m∑
j=1

sj
||s||

uj(t)) a.e. (I).

Hence by (10) we obtain

lim
h→0+

1

h
d

f(t) + h

m∑
j=1

sj
||s||

gj(t), F (t, z(t) + h

m∑
j=1

sj
||s||

uj(t))

 = 0.(15)

In order to prove that (15) implies (14) we consider the compact metric space
Sm−1+ = {σ ∈ Rm+ ; ||σ|| = 1} and the real function φt(., .) : (0, θ0]×Sm−1+ → R+

defined by

φt(h, σ) =
1

h
d

f(t) + h

m∑
j=1

σjgj(t), F (t, z(t) + h

m∑
j=1

σjuj(t))

 ,(16)

where σ = (σ1, ..., σm) and which according to (15) has the property

lim
θ→0+

φt(θ, σ) = 0 ∀σ ∈ Sm−1+ a.e. (I).(17)

Using the fact that φt(θ, .) is Lipschitzian and the fact that Sm−1+ is a com-
pact metric space, from (17) it follows easily (e.g. [10, Proposition 4.4]) that
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limθ→0+ maxσ∈Sm−1
+

φt(θ, σ) = 0, which implies that lims→0 φt(||s||, s
||s||) =

0 a.e. (I), and the proof is complete. �

An application of Theorem 7 concerns local controllability of the second-
order differential inclusion in (1) along a reference trajectory, z(.) at time T ,
in the sense that z(T ) ∈ int(RF (T,X0, X1)).

Theorem 8. Let X = Rn, z(.), F (., .) and P (., .) satisfy Hypothesis 6, let
C0 ⊂ X be a derived cone to X0 at z(0) and C1 ⊂ X be a derived cone to
X1 at z′(0). If, the variational second-order differential inclusion in (9) is
controllable at T , in the sense that RP (T,C0, C1) = Rn, then the differential
inclusion (1) is locally controllable along z(.) at time T .

Proof. This is a straightforward application of Lemma 2 and Theorem 7. �
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