SOME APPLICATIONS OF THE GENERALIZED BERNARDI-LIBERA-LIVINGSTON INTEGRAL OPERATOR ON UNIVALENT FUNCTIONS

SHAHRAM NAJAFZADEH and PARISA HARIRI

Abstract. Using the generalized Bernardi-Libera-Livingston integral operator, we introduce and study some new subclasses of univalent functions. We also investigate the relations between these classes and the classes which are studied by Jin-Lin Liu.

MSC 2010. 30C45, 30C50.

Key words. Starlike, convex, close-to-convex, quasi-convex, strongly starlike, strongly convex functions.

1. INTRODUCTION

Let A be the class of functions of the form $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ which are analytic on the unit disk $U = \{z : |z| < 1\}$, also let S denote the subclass of A consisting of all univalent functions on U. Suppose that λ is a real number with $0 \le \lambda < 1$. A function $f \in S$ is said to be *starlike of order* λ if

$$\operatorname{Re}\left\{\frac{zf'(z)}{f(z)}\right\} > \lambda, \text{ for all } z \in U.$$

A function $f \in S$ is said to be *convex of order* λ if

$$\operatorname{Re}\left\{1 + \frac{zf''(z)}{f'(z)}\right\} > \lambda, \text{ for all } z \in U.$$

We denote by $S^*(\lambda)$ and $C(\lambda)$ the classes of starlike, respectively, of convex functions of order λ . It is well known that $f \in C(\lambda)$ if and only if $zf' \in S^*(\lambda)$. Let $f \in A$ and $0 \leq \beta < 1$. The function f is called a *close-to-convex function* of order β and type λ if there exists a function $g \in S^*(\lambda)$ such that

$$\operatorname{Re} \frac{zf'(z)}{g(z)} > \beta$$
, for all $z \in U$.

We denote by $K(\beta, \lambda)$ the class of close-to-convex functions of order β and type λ . A function $f \in A$ is called *quasi-convex of order* β and type λ if there exists a function $g \in C(\lambda)$ such that

Re
$$\left\{ \frac{(zf'(z))'}{g'(z)} \right\} > \beta$$
, for all $z \in U$.

We denote this class by $K^*(\beta, \lambda)$ (see [11]). It is easy to see that $f \in K^*(\beta, \gamma)$ if and only if $zf' \in K(\beta, \gamma)$ (cf. [10]). Let $f \in A$. If for some λ ($0 \le \lambda < 1$)

and $\eta \ (0 < \eta \leq 1)$ we have

(1)
$$\left| \arg\left(\frac{zf'(z)}{f(z)} - \lambda\right) \right| < \frac{\pi}{2}\eta, \text{ for all } z \in U,$$

then f is said to be strongly starlike of order η and type λ in U. The class of these functions is denoted by $S^*(\eta, \lambda)$. If $f \in A$ satisfies the condition

(2)
$$\left| \arg \left(1 + \frac{z f''(z)}{f'(z)} - \lambda \right) \right| < \frac{\pi}{2} \eta, \text{ for all } z \in U,$$

for some λ and η as above, then we say that f is strongly convex of order η and type λ in U. The class of these functions is denoted by $C(\eta, \lambda)$. Clearly, $f \in C(\eta, \lambda)$ if and only if $zf' \in S^*(\eta, \lambda)$. Also, $S^*(1, \lambda) = S^*(\lambda)$ and $C(1, \lambda) = C(\lambda)$.

For c > -1 and $f \in A$, the generalized Bernardi-Libera-Livingston integral operator $L_c f$ is defined as follows

(3)
$$\mathbf{L}_{c}f(z) = \frac{c+1}{z^{c}} \int_{0}^{z} t^{c-1}f(t) \mathrm{d}t.$$

This operator was studied for $c \in \mathbb{N} = \{1, 2, 3, \dots\}$ by Bernardi in [1], and for c = 1 by Libera in [5] (see also [9]). The classes $ST_c(\eta, \lambda)$ and $CV_c(\eta, \lambda)$ have been introduced by Liu in [8] as follows

$$ST_{c}(\eta,\lambda) = \left\{ f \in A : \mathcal{L}_{c}f \in S^{*}(\eta,\lambda), \ \frac{z(\mathcal{L}_{c}f(z))'}{\mathcal{L}_{c}f(z)} \neq \lambda, \ z \in U \right\},$$
$$CV_{c}(\eta,\lambda) = \left\{ f \in A : \mathcal{L}_{c}f \in C(\eta,\lambda), \ \frac{(z(\mathcal{L}_{c}f(z))')'}{(\mathcal{L}_{c}f(z))'} \neq \lambda, \ z \in U \right\}.$$

Using the operator given by (3), we introduce now the following classes

$$\begin{aligned} S_c^*(\lambda) &= \{ f \in A : \mathcal{L}_c f \in S^*(\lambda) \}, \\ C_c(\lambda) &= \{ f \in A : \mathcal{L}_c f \in C(\lambda) \}. \end{aligned}$$

Obviously, $f \in CV_c(\eta, \lambda)$ if and only if $zf' \in ST_c(\eta, \lambda)$. In [6] and [7], J. L. Liu introduced and investigated the classes $S^*_{\sigma}(\lambda)$, $C_{\sigma}(\lambda)$, $K_{\sigma}(\beta, \lambda)$, $K^*_{\sigma}(\beta, \lambda)$, $ST_{\sigma}(\eta, \lambda)$, and $CV_{\sigma}(\eta, \lambda)$, by making use of the integral operator I^{σ} given by

(4)
$$\mathbf{I}^{\sigma}f(z) = \frac{2^{\sigma}}{z\Gamma(\sigma)} \int_{0}^{z} \left(\log\frac{z}{t}\right)^{\sigma-1} f(t) \mathrm{d}t, \quad \sigma > 0, \ f \in A.$$

The operator I^{σ} was introduced by Jung, Kim and Srivastava in [3], and then it was investigated by Uralogaddi and Somanatha in [14], Li in [4], and Liu in [6]. The following relations can be easily verified for the integral operators given by (3) and (4).

(5)
$$I^{\sigma}f(z) = z + \sum_{n=2}^{\infty} \left(\frac{2}{n+1}\right)^{\sigma} a_n z^n,$$

(6)
$$\mathbf{L}_c f(z) = z + \sum_{n=2}^{\infty} \frac{c+1}{n+c} a_n z^n,$$

(7)
$$z(\mathbf{I}^{\sigma}\mathbf{L}_{c}f(z))' = (c+1)\mathbf{I}^{\sigma}f(z) - c\mathbf{I}^{\sigma}\mathbf{L}_{c}f(z),$$

(8)
$$z(\mathbf{L}_c\mathbf{I}^{\sigma}f(z))' = (c+1)\mathbf{I}^{\sigma}f(z) - c\mathbf{L}_c\mathbf{I}^{\sigma}f(z).$$

It follows from (5) that one can define the operator I^{σ} for any real number σ . In this paper we investigate the properties of the classes $S_c^*(\lambda)$, $C_c(\lambda)$, $K_c(\beta, \lambda)$, $K_c^*(\beta, \lambda)$, $ST_c(\eta, \lambda)$, and $CV_c(\eta, \lambda)$. We also study the relations between these classes and the classes introduced by Liu in [6] and [7]. For our purposes we need the following lemmas.

LEMMA 1. ([10]) Let $u = u_1 + iu_2$, $v = v_1 + iv_2$, and let ψ be a complex function $\psi : D \subset \mathbb{C} \times \mathbb{C} \to \mathbb{C}$. Suppose that ψ satisfies the following conditions

- (i) ψ is continuous on D,
- (ii) $(1,0) \in D$ and $\operatorname{Re}\{\psi(1,0)\} > 0$,
- (iii) $\operatorname{Re}\{\psi(iu_2, v_1)\} \le 0 \text{ for all } (iu_2, v_1) \in D \text{ with } v_1 \le -\frac{1+u_2^2}{2}.$

Let $p(z) = 1 + \sum_{n=2}^{\infty} c_n z^n$ be analytic on U so that $(p(z), zp'(z)) \in D$ for all $z \in U$. If

$$\operatorname{Re}\{\psi(p(z), zp'(z))\} > 0, \text{ for all } z \in U,$$

then $\operatorname{Re}\{p(z)\} > 0$, for all $z \in U$.

LEMMA 2. ([12]) Assume that the function $p(z) = 1 + \sum_{n=1}^{\infty} c_n z^n$ is analytic on U and that $p(z) \neq 0$, for all $z \in U$. Let $0 < \eta \leq 1$. If there exists a point $z_0 \in U$ such that $|\arg p(z_0)| = \frac{\pi}{2}\eta$ and

$$|\arg(p(z))| < \frac{\pi}{2}\eta \ for \ |z| < |z_0|,$$

then $\frac{z_0 p'(z_0)}{p(z_0)} = ik\eta$ with $k \ge \frac{1}{2}(r+\frac{1}{r})$ when arg $p(z_0) = \frac{\pi}{2}\eta$, and with $k \le \frac{-1}{2}(r+\frac{1}{r})$ when arg $p(z_0) = \frac{-\pi}{2}\eta$, where $p(z_0)^{1/\eta} = \pm ir \ (r > 0)$.

2. MAIN RESULTS

In this section we obtain some inclusion theorems, using the methods developed in [13].

THEOREM 3. For
$$f \in A$$
 the following hold hold true.
(i) If $\operatorname{Re}\left\{\frac{zf'(z)}{f(z)} - \frac{z(\operatorname{L}_c f(z))'}{\operatorname{L}_c f(z)}\right\} > 0$, then $S_c^*(\lambda) \subset S_{c+1}^*(\lambda)$.
(ii) If $\operatorname{Re}\left\{\frac{zf'(z)}{f(z)} - \frac{z(\operatorname{L}_{c+1} f(z))'}{\operatorname{L}_{c+1} f(z)}\right\} > 0$, then $S_{c+1}^*(\lambda) \subset S_c^*(\lambda)$

Proof. (i) Suppose that $f \in S_c^*(\lambda)$ and set

(9)
$$\frac{z(\mathbf{L}_{c+1}f(z))'}{\mathbf{L}_{c+1}f(z)} - \lambda = (1-\lambda)p(z),$$

where $p(z) = 1 + \sum_{n=2}^{\infty} c_n z^n$. An easy calculation shows that

(10)
$$\frac{\frac{z(L_{c+1}f(z))'}{L_{c+1}f(z)} \left[2+c+\frac{z(L_{c+1}f(z))''}{(L_{c+1}f(z))'}\right]}{\frac{z(L_{c+1}f(z))'}{L_{c+1}f(z)}+c+1} = \frac{zf'(z)}{f(z)}.$$

Setting $H(z) = \frac{z(L_{c+1}f(z))'}{L_{c+1}f(z)}$, we get

(11)
$$1 + \frac{z(\mathbf{L}_{c+1}f(z))''}{(\mathbf{L}_{c+1}f(z))'} = H(z) + \frac{zH'(z)}{H(z)}.$$

Since $H(z) = \lambda + (1 - \lambda)p(z)$, by (10) and (11), we obtain

(12)
$$(1-\lambda)p(z) + \frac{(1-\lambda)zp'(z)}{\lambda + c + 1 + (1-\lambda)p(z)} = \frac{zf'(z)}{f(z)} - \lambda$$

Let

$$\psi(u,v) = (1-\lambda)u + \frac{(1-\lambda)v}{\lambda + c + 1 + (1-\lambda)u}$$

Then ψ is a continuous function on $D = \left(\mathbb{C} \setminus \{\frac{\lambda + c + 1}{\lambda - 1}\}\right) \times \mathbb{C}$ and $(1, 0) \in D$. Also, $\psi(1, 0) > 0$ and for all $(iu_2, v_1) \in D$ with $v_1 \leq -\frac{1 + u_2^2}{2}$ we have

$$\operatorname{Re}\psi(\mathrm{i}u_2, v_1) = \frac{(1-\lambda)(\lambda+c+1)v_1}{(1-\lambda)^2 u_2^2 + (\lambda+c+1)^2} \le \frac{-(1-\lambda)(\lambda+c+1)(1+u_2^2)}{2[(1-\lambda)^2 u_2^2 + (\lambda+c+1)^2]} < 0.$$

Therefore the function ψ satisfies the conditions of Lemma 1. Taking into account the hypothesis and (12), we have $\operatorname{Re}\{\psi(p(z), zp'(z))\} > 0$, hence Lemma 1 implies that $\operatorname{Re}p(z) > 0$, for $z \in U$, which finishes the proof.

(ii) This assertion can be proved by the same method as (i), using the formula obtained by replacing c + 1 with c in (10).

THEOREM 4. For $f \in A$ the following assertions hold true.

(i) If Re
$$\left\{ \frac{zf'(z)}{f(z)} - \frac{z(L_c f(z))'}{L_c f(z)} \right\} > 0$$
, then $C_c(\lambda) \subset C_{c+1}(\lambda)$.
(ii) If Re $\left\{ \frac{zf'(z)}{f(z)} - \frac{z(L_{c+1}f(z))'}{L_{c+1}f(z)} \right\} > 0$, then $C_{c+1}(\lambda) \subset C_c(\lambda)$.

Proof. (i) In view of assertion (i) of Theorem 3 we have the following chain of equivalent relations $f \in C_c(\lambda) \Leftrightarrow \mathcal{L}_c f \in C(\lambda) \Leftrightarrow z(\mathcal{L}_c f)' \in S^*(\lambda) \Leftrightarrow \mathcal{L}_c z f' \in$ $S^*(\lambda) \Leftrightarrow z f' \in S^*_c(\lambda) \to z f' \in S^*_{c+1}(\lambda) \Leftrightarrow \mathcal{L}_{c+1} z f' \in S^*(\lambda) \Leftrightarrow z(\mathcal{L}_{c+1} f)' \in$ $S^*(\lambda) \Leftrightarrow \mathcal{L}_{c+1} f \in C(\lambda) \Leftrightarrow f \in C_{c+1}(\lambda).$

Assertion (ii) can be proved using a similar method.

THEOREM 5. If $c \geq -\lambda$, then $f \in S^*(\lambda)$ implies $f \in S^*_c(\lambda)$.

Proof. Differentiating logarithmically both sides of (3) with respect to z, we obtain

(13)
$$\frac{z(L_c f(z))'}{L_c f(z)} + c = \frac{(c+1)f(z)}{L_c f(z)}.$$

Differentiating logarithmically both sides of (13), we have

(14)
$$p(z) + \frac{zp'(z)}{c+\lambda+p(z)} = \frac{zf'(z)}{f(z)} - \lambda$$

where $p(z) = \frac{z(L_c f(z))'}{L_c f(z)} - \lambda$. Let

$$\psi(u,v) = u + \frac{v}{u+c+\lambda}.$$

Then ψ is a continuous function on $D = (\mathbb{C} \setminus \{-c - \lambda\}) \times \mathbb{C}$ and $(1,0) \in D$. Also, Re $\psi(1,0) > 0$. If $(iu_2, v_1) \in D$ with $v_1 \leq -\frac{1+u_2^2}{2}$, then

Re
$$\psi(iu_2, v_1) = \frac{v_1(c+\lambda)}{u_2^2 + (c+\lambda)^2} \le 0.$$

Since $f \in S^*(\lambda)$, relation (16) yields

$$\operatorname{Re}(\psi(p(z), zp'(z))) = \operatorname{Re}\left\{\frac{zf'(z)}{f(z)} - \lambda\right\} > 0.$$

We conclude from Lemma 1 that $\operatorname{Re}\{p(z)\} > 0$.

COROLLARY 6. If $c \geq \lambda$, then $f \in C(\lambda)$ implies $f \in C_c(\lambda)$.

Proof. We have $f \in C(\lambda) \Leftrightarrow zf' \in S^*(\lambda) \Longrightarrow zf' \in S^*_c(\lambda) \Leftrightarrow L_c zf' \in S^*(\lambda) \Leftrightarrow z(L_c f)' \in S^*(\lambda) \Leftrightarrow L_c f \in C(\lambda) \Leftrightarrow f \in C_c(\lambda).$

THEOREM 7. For $f \in A$ the following assertions hold true. (i) If

$$\left| \arg\left(\frac{zf'(z)}{f(z)} - \lambda\right) \right| \le \left| \arg\left(\frac{z(\mathcal{L}_c f(z))'}{\mathcal{L}_c f(z)} - \lambda\right) \right|, \text{ for } z \in U,$$

then $ST_c(\eta, \lambda) \subset ST_{c+1}(\eta, \lambda)$, where c > -1. (ii) If

$$\left| \arg\left(\frac{zf'(z)}{f(z)} - \lambda\right) \right| \le \left| \arg\left(\frac{z(\mathcal{L}_{c+1}f(z))'}{\mathcal{L}_{c+1}f(z)} - \lambda\right) \right|, \text{ for } z \in U,$$

then $ST_{c+1}(\eta, \lambda) \subset ST_c(\eta, \lambda)$, where c > -1.

Proof. (i) Let $f \in ST_c(\eta, \lambda)$ and put

(15)
$$\frac{z(\mathcal{L}_{c+1}f(z))'}{\mathcal{L}_{c+1}f(z)} = \lambda + (1-\lambda)p(z),$$

where $p(z) = 1 + \sum_{n=1}^{\infty} c_n z^n$ is analytic on U with $p(z) \neq 0$, for $z \in U$. It is easy to see that

(16)
$$z(\mathbf{L}_{c+1}f(z))' + (c+1)\mathbf{L}_{c+1}f(z) = (c+2)f(z).$$

Differentiating logarithmically with respect to z both sides of (16), we obtain

(17)
$$\frac{z\left(\frac{z(\mathcal{L}_{c+1}f(z))'}{\mathcal{L}_{c+1}f(z)}\right)'}{\frac{z(\mathcal{L}_{c+1}f(z))'}{\mathcal{L}_{c+1}f(z)} + c + 1} + \frac{z(\mathcal{L}_{c+1}f(z))'}{\mathcal{L}_{c+1}f(z)} = \frac{zf'(z)}{f(z)}.$$

Using (15) and (17), we get

(18)
$$\frac{(1-\lambda)zp'(z)}{\lambda+c+1+(1-\lambda)p(z)} + (1-\lambda)p(z) = \frac{zf'(z)}{f(z)} - \lambda$$

Suppose that there exists $z_0 \in U$ such that $|\arg(p(z))| < \frac{\pi}{2}\eta$ for $|z| < |z_0|$ and $|\arg(p(z_0))| = \frac{\pi}{2}\eta$. Lemma 2 implies then that $\frac{z_0p'(z_0)}{p(z_0)} = ik\eta$ and $p(z_0)^{1/\eta} = \pm ir(r > 0)$, where $k \ge \frac{1}{2}(r + \frac{1}{r})$, when $\arg(p(z_0)) = \frac{\pi}{2}\eta$, and $k \le \frac{-1}{2}(r + \frac{1}{r})$ when $\arg(p(z_0)) = \frac{-\pi}{2}\eta$. If $p(z_0)^{1/\eta} = ir$, then $\arg(p(z_0)) = \frac{\pi}{2}\eta$, hence by considering (18), we have

$$\left| \arg\left(\frac{z_0(\mathcal{L}_c f(z_0))'}{\mathcal{L}_c f(z_0)} - \lambda\right) \right| \ge \arg\left(\frac{z_0 f'(z_0)}{f(z_0)} - \lambda\right)$$
$$= \arg\left\{ (1 - \lambda)p(z_0) \left[1 + \frac{ik\eta}{\lambda + c + 1 + (1 - \lambda)r^{\eta}e^{i\frac{\pi}{2}\eta}} \right] \right\}$$
$$= \frac{\pi}{2}\eta + \tan^{-1}\left\{\frac{P}{Q}\right\} \ge \frac{\pi}{2}\eta \quad (\text{because } k \ge \frac{1}{2}(r + \frac{1}{r}) \ge 1)$$

where

(19)
$$P = k\eta \left[\lambda + c + 1 + r^{\eta}(1-\lambda)\cos\frac{\pi}{2}\eta\right]$$

and

$$Q = (\lambda + c + 1)^2 + r^{2\eta} (1 - \lambda)^2 + (1 - \lambda)(\lambda + c + 1) \cos \frac{\pi}{2} \eta + k\eta r^{\eta} (1 - \lambda) \sin \frac{\pi}{2} \eta.$$

This contradicts the fact that $f(z) \in ST_c(\eta, \lambda)$. Now suppose that $p(z_0)^{1/\eta} = -ir$. Then $\arg(p(z_0)) = \frac{-\pi}{2}\eta$ and we get

$$-\left|\arg\left(\frac{z_0(\mathcal{L}_c f(z_0))'}{\mathcal{L}_c f(z_0)} - \lambda\right)\right| \le \arg\left(\frac{z_0 f'(z_0)}{f(z_0)} - \lambda\right)$$
$$= \frac{-\pi}{2}\eta + \arg\left\{1 + \frac{ik\eta}{\lambda + c + 1 + (1 - \lambda)r^{\eta}e^{-i\frac{\pi}{2}\eta}}\right\}$$
$$= \frac{-\pi}{2}\eta + \tan^{-1}\left\{\frac{P}{R}\right\} \le \frac{-\pi}{2}\eta \quad (\text{because } k \le \frac{-1}{2}(r + \frac{1}{r}) \le -1),$$

where P is given by (19) and

$$R = (\lambda + c + 1)^2 + r^{2\eta} (1 - \lambda)^2 + 2r^{\eta} (1 - \lambda)(\lambda + c + 1) \cos \frac{\pi}{2} \eta$$
$$- k\eta r^{\eta} (1 - \lambda) \sin \frac{\pi}{2} \eta.$$

This contradicts our assumption that $f \in ST_c(\eta, \lambda)$, therefore $|\arg(p(z))| < \frac{\pi}{2}$, for $z \in U$. Finally we get

$$\left|\arg\left(\frac{z(\mathbf{L}_{c+1}f(z))'}{\mathbf{L}_{c+1}f(z)} - \lambda\right)\right| < \frac{\pi}{2}\eta, \text{ for } z \in U.$$

Since for every λ $(0 \le \lambda < 1)$ we have

$$\frac{z(\mathcal{L}_{c+1}f(z))'}{\mathcal{L}_{c+1}f(z)} \neq \lambda,$$

we conclude that $f \in ST_{c+1}(\eta, \lambda)$.

COROLLARY 8. For $f \in A$ the following assertions hold true. (i) If

$$\left| \arg\left(\frac{zf'(z)}{f(z)} - \lambda\right) \right| \le \left| \arg\left(\frac{z(\mathcal{L}_c f(z))'}{\mathcal{L}_c f(z)} - \lambda\right) \right| \text{ for } z \in U,$$

then $CV_c(\eta, \lambda) \subset CV_{c+1}(\eta, \lambda)$. (i) If

$$\left| \arg\left(\frac{zf'(z)}{f(z)} - \lambda\right) \right| \le \left| \arg\left(\frac{z(\mathcal{L}_{c+1}f(z))'}{\mathcal{L}_{c+1}f(z)} - \lambda\right) \right|, \text{ for } z \in U,$$

then $CV_{c+1}(\eta, \lambda) \subset CV_c(\eta, \lambda).$

Proof. We give only the proof of part (i) and for this we have $f \in CV_c(\eta, \lambda) \Leftrightarrow$ $L_c f \in C(\eta, \lambda) \Leftrightarrow z(L_c f)' \in S^*(\eta, \lambda) \Leftrightarrow L_c z f' \in S^*(\eta, \lambda) \Leftrightarrow z f' \in ST_c(\eta, \lambda) \Longrightarrow$ $z f' \in ST_{c+1}(\eta, \lambda) \Leftrightarrow L_{c+1} z f' \in S^*(\eta, \lambda) \Leftrightarrow z(L_{c+1} f)' \in S^*(\eta, \lambda) \Leftrightarrow L_{c+1} f \in$ $C(\eta, \lambda) \Leftrightarrow f \in CV_{c+1}(\eta, \lambda).$

REFERENCES

- BERNARDI, S.D., Convex and starlike univalent functions, Trans. Amer. Math. Soc., 135 (1969), 429–446.
- [2] EBADIAN, A., SHAMS, S. and NAJAFZADEH, SH., Certain inequalities for p-valent meromorphic functions with alternating coefficients based on integral operator, Aust. J. Math. Anal. Appl., 5 (1) (2008), Art. 10.
- [3] JUNG, I.B., KIM Y.C. and SRIVASTAVA, H.M., The Hardy space of analytic functions associated with certain one-parameter families of integral operators, J. Math. Anal. Appl., 176 (1993), 138–147.
- [4] LI, J.L., Some properties of two integral operators, Soochow. J. Math., 25 (1999), 91–96.
- [5] LIBERA, R.J., Some classes of regular functions, Proc. Amer. Math. Soc., 16 (1965), 755-758.
- [6] LIU, J.L., A linear operator and strongly starlike functions, J. Math. Soc. Japan, 54 (4) (2002), 975–981.

7

- [7] LIU, J.L., Some applications of certain integral operator, Kyungpook Math. J., 43 (2003), 21–219.
- [8] LIU, J.L., Certain integral operator and strongly starlike functions, Int. J. Math. Math. Sci., 30 (9) (2002), 569–574.
- [9] LIVINGSTON, A.E., On the radius of univalence of certain analytic functions, Proc. Amer. Math. Soc., 17 (1996), 352–357.
- [10] MILLER, S.S. and MOCANU, P.T., Second order differential inequalities in the complex plane, J. Math. Anal. Appl., 65 (1978), 289–305.
- [11] NOOR, K.I., On quasi-convex functions and related topics, Internat. J. Math. Math. Sci., 10 (1987), 241–258.
- [12] NUNOKAWA, M., OWA, S., SAITOH, H., IKEDA A. and KOIKE, N., Some results for strongly starlike functions, J. Math. Anal. Appl., 212 (1997), 98–106.
- [13] SOKÓL, J., A linear operator and associated class of multivalent analytic functions, Demonstratio Math., 40 (3) (2007), 559–566.
- [14] URALEGADDI, B.A. and SOMANATHA, C., Certain integral operators for starlike functions, J. Math. Res. Exposition, 15 (1995), 14–16.

University of Maragheh Faculty of Basic Science Department of Mathematics Maragheh, Iran E-mail: najafzadeh1234@yahoo.ie