SOME APPLICATIONS OF THE GENERALIZED BERNARDI-LIBERA-LIVINGSTON INTEGRAL OPERATOR ON UNIVALENT FUNCTIONS

SHAHRAM NAJAFZADEH and PARISA HARIRI

Abstract

Using the generalized Bernardi-Libera-Livingston integral operator, we introduce and study some new subclasses of univalent functions. We also investigate the relations between these classes and the classes which are studied by Jin-Lin Liu.

MSC 2010. 30C45, 30C50.
Key words. Starlike, convex, close-to-convex, quasi-convex, strongly starlike, strongly convex functions.

1. INTRODUCTION

Let A be the class of functions of the form $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ which are analytic on the unit disk $U=\{z:|z|<1\}$, also let S denote the subclass of A consisting of all univalent functions on U. Suppose that λ is a real number with $0 \leq \lambda<1$. A function $f \in S$ is said to be starlike of order λ if

$$
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\lambda, \text { for all } z \in U
$$

A function $f \in S$ is said to be convex of order λ if

$$
\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\lambda, \text { for all } z \in U
$$

We denote by $S^{*}(\lambda)$ and $C(\lambda)$ the classes of starlike, respectively, of convex functions of order λ. It is well known that $f \in C(\lambda)$ if and only if $z f^{\prime} \in S^{*}(\lambda)$. Let $f \in A$ and $0 \leq \beta<1$. The function f is called a close-to-convex function of order β and type λ if there exists a function $g \in S^{*}(\lambda)$ such that

$$
\operatorname{Re} \frac{z f^{\prime}(z)}{g(z)}>\beta, \text { for all } z \in U
$$

We denote by $K(\beta, \lambda)$ the class of close-to-convex functions of order β and type λ. A function $f \in A$ is called quasi-convex of order β and type λ if there exists a function $g \in C(\lambda)$ such that

$$
\operatorname{Re}\left\{\frac{\left(z f^{\prime}(z)\right)^{\prime}}{g^{\prime}(z)}\right\}>\beta, \text { for all } z \in U
$$

We denote this class by $K^{*}(\beta, \lambda)$ (see [11]). It is easy to see that $f \in K^{*}(\beta, \gamma)$ if and only if $z f^{\prime} \in K(\beta, \gamma)$ (cf. [10]). Let $f \in A$. If for some $\lambda(0 \leq \lambda<1)$
and $\eta(0<\eta \leq 1)$ we have

$$
\begin{equation*}
\left|\arg \left(\frac{z f^{\prime}(z)}{f(z)}-\lambda\right)\right|<\frac{\pi}{2} \eta, \text { for all } z \in U, \tag{1}
\end{equation*}
$$

then f is said to be strongly starlike of order η and type λ in U. The class of these functions is denoted by $S^{*}(\eta, \lambda)$. If $f \in A$ satisfies the condition

$$
\begin{equation*}
\left|\arg \left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\lambda\right)\right|<\frac{\pi}{2} \eta, \text { for all } z \in U \tag{2}
\end{equation*}
$$

for some λ and η as above, then we say that f is strongly convex of order η and type λ in U. The class of these functions is denoted by $C(\eta, \lambda)$. Clearly, $f \in C(\eta, \lambda)$ if and only if $z f^{\prime} \in S^{*}(\eta, \lambda)$. Also, $S^{*}(1, \lambda)=S^{*}(\lambda)$ and $C(1, \lambda)=$ $C(\lambda)$.

For $c>-1$ and $f \in A$, the generalized Bernardi-Libera-Livingston integral operator $\mathrm{L}_{c} f$ is defined as follows

$$
\begin{equation*}
\mathrm{L}_{c} f(z)=\frac{c+1}{z^{c}} \int_{0}^{z} t^{c-1} f(t) \mathrm{d} t \tag{3}
\end{equation*}
$$

This operator was studied for $c \in \mathbb{N}=\{1,2,3, \cdots\}$ by Bernardi in [1], and for $c=1$ by Libera in [5] (see also [9]). The classes $S T_{c}(\eta, \lambda)$ and $C V_{c}(\eta, \lambda)$ have been introduced by Liu in [8] as follows

$$
\begin{aligned}
S T_{c}(\eta, \lambda) & =\left\{f \in A: \mathrm{L}_{c} f \in S^{*}(\eta, \lambda), \frac{z\left(\mathrm{~L}_{c} f(z)\right)^{\prime}}{\mathrm{L}_{c} f(z)} \neq \lambda, z \in U\right\} \\
C V_{c}(\eta, \lambda) & =\left\{f \in A: \mathrm{L}_{c} f \in C(\eta, \lambda), \frac{\left(z\left(\mathrm{~L}_{c} f(z)\right)^{\prime}\right)^{\prime}}{\left(\mathrm{L}_{c} f(z)\right)^{\prime}} \neq \lambda, z \in U\right\}
\end{aligned}
$$

Using the operator given by (3), we introduce now the following classes

$$
\begin{aligned}
& S_{c}^{*}(\lambda)=\left\{f \in A: \mathrm{L}_{c} f \in S^{*}(\lambda)\right\}, \\
& C_{c}(\lambda)=\left\{f \in A: \mathrm{L}_{c} f \in C(\lambda)\right\} .
\end{aligned}
$$

Obviously, $f \in C V_{c}(\eta, \lambda)$ if and only if $z f^{\prime} \in S T_{c}(\eta, \lambda)$. In [6] and [7], J. L. Liu introduced and investigated the classes $S_{\sigma}^{*}(\lambda), C_{\sigma}(\lambda), K_{\sigma}(\beta, \lambda), K_{\sigma}^{*}(\beta, \lambda)$, $S T_{\sigma}(\eta, \lambda)$, and $C V_{\sigma}(\eta, \lambda)$, by making use of the integral operator I^{σ} given by

$$
\begin{equation*}
\mathrm{I}^{\sigma} f(z)=\frac{2^{\sigma}}{z \Gamma(\sigma)} \int_{0}^{z}\left(\log \frac{z}{t}\right)^{\sigma-1} f(t) \mathrm{d} t, \quad \sigma>0, f \in A . \tag{4}
\end{equation*}
$$

The operator I^{σ} was introduced by Jung, Kim and Srivastava in [3], and then it was investigated by Uralogaddi and Somanatha in [14], Li in [4], and Liu in [6]. The following relations can be easily verified for the integral operators given by (3) and (4).

$$
\begin{equation*}
\mathrm{I}^{\sigma} f(z)=z+\sum_{n=2}^{\infty}\left(\frac{2}{n+1}\right)^{\sigma} a_{n} z^{n} \tag{5}
\end{equation*}
$$

$$
\begin{gather*}
\mathrm{L}_{c} f(z)=z+\sum_{n=2}^{\infty} \frac{c+1}{n+c} a_{n} z^{n} \tag{6}\\
z\left(\mathrm{I}^{\sigma} \mathrm{L}_{c} f(z)\right)^{\prime}=(c+1) \mathrm{I}^{\sigma} f(z)-c \mathrm{I}^{\sigma} \mathrm{L}_{c} f(z) \tag{7}\\
z\left(\mathrm{~L}_{c} \mathrm{I}^{\sigma} f(z)\right)^{\prime}=(c+1) \mathrm{I}^{\sigma} f(z)-c \mathrm{~L}_{c} \mathrm{I}^{\sigma} f(z) \tag{8}
\end{gather*}
$$

It follows from (5) that one can define the operator I^{σ} for any real number σ. In this paper we investigate the properties of the classes $S_{c}^{*}(\lambda), C_{c}(\lambda), K_{c}(\beta, \lambda)$, $K_{c}^{*}(\beta, \lambda), S T_{c}(\eta, \lambda)$, and $C V_{c}(\eta, \lambda)$. We also study the relations between these classes and the classes introduced by Liu in [6] and [7]. For our purposes we need the following lemmas.

LEMMA 1. ([10]) Let $u=u_{1}+\mathrm{i} u_{2}, v=v_{1}+\mathrm{i} v_{2}$, and let ψ be a complex function $\psi: D \subset \mathbb{C} \times \mathbb{C} \rightarrow \mathbb{C}$. Suppose that ψ satisfies the following conditions
(i) ψ is continuous on D,
(ii) $(1,0) \in D$ and $\operatorname{Re}\{\psi(1,0)\}>0$,
(iii) $\operatorname{Re}\left\{\psi\left(\mathrm{i} u_{2}, v_{1}\right)\right\} \leq 0$ for all $\left(\mathrm{i} u_{2}, v_{1}\right) \in D$ with $v_{1} \leq-\frac{1+u_{2}^{2}}{2}$.

Let $p(z)=1+\sum_{n=2}^{\infty} c_{n} z^{n}$ be analytic on U so that $\left(p(z), z p^{\prime}(z)\right) \in D$ for all $z \in U$. If

$$
\operatorname{Re}\left\{\psi\left(p(z), z p^{\prime}(z)\right)\right\}>0, \text { for all } z \in U
$$

then $\operatorname{Re}\{p(z)\}>0$, for all $z \in U$.
Lemma 2. ([12]) Assume that the function $p(z)=1+\sum_{n=1}^{\infty} c_{n} z^{n}$ is analytic on U and that $p(z) \neq 0$, for all $z \in U$. Let $0<\eta \leq 1$. If there exists a point $z_{0} \in U$ such that $\left|\arg p\left(z_{0}\right)\right|=\frac{\pi}{2} \eta$ and

$$
|\arg (p(z))|<\frac{\pi}{2} \eta \text { for }|z|<\left|z_{0}\right|
$$

then $\frac{z_{0} p^{\prime}\left(z_{0}\right)}{p\left(z_{0}\right)}=\mathrm{i} k \eta$ with $k \geq \frac{1}{2}\left(r+\frac{1}{r}\right)$ when $\arg p\left(z_{0}\right)=\frac{\pi}{2} \eta$, and with $k \leq$ $\frac{-1}{2}\left(r+\frac{1}{r}\right)$ when $\arg p\left(z_{0}\right)=\frac{-\pi}{2} \eta$, where $p\left(z_{0}\right)^{1 / \eta}= \pm \mathrm{i} r(r>0)$.

2. MAIN RESULTS

In this section we obtain some inclusion theorems, using the methods developed in [13].

Theorem 3. For $f \in A$ the following hold hold true.
(i) If $\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}-\frac{z\left(\mathrm{~L}_{c} f(z)\right)^{\prime}}{\mathrm{L}_{c} f(z)}\right\}>0$, then $S_{c}^{*}(\lambda) \subset S_{c+1}^{*}(\lambda)$.
(ii) If $\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}-\frac{z\left(\mathrm{~L}_{c+1} f(z)\right)^{\prime}}{\mathrm{L}_{c+1} f(z)}\right\}>0$, then $S_{c+1}^{*}(\lambda) \subset S_{c}^{*}(\lambda)$.

Proof. (i) Suppose that $f \in S_{c}^{*}(\lambda)$ and set

$$
\begin{equation*}
\frac{z\left(\mathrm{~L}_{c+1} f(z)\right)^{\prime}}{\mathrm{L}_{c+1} f(z)}-\lambda=(1-\lambda) p(z) \tag{9}
\end{equation*}
$$

where $p(z)=1+\sum_{n=2}^{\infty} c_{n} z^{n}$. An easy calculation shows that

$$
\begin{equation*}
\frac{\frac{z\left(\mathrm{~L}_{c+1} f(z)\right)^{\prime}}{\mathrm{L}_{c+1} f(z)}\left[2+c+\frac{z\left(\mathrm{~L}_{c+1} f(z)\right)^{\prime \prime}}{\left(\mathrm{L}_{c+1} f(z)\right)^{\prime}}\right]}{\frac{z\left(\mathrm{~L}_{c+1} f(z)\right)^{\prime}}{\mathrm{L}_{c+1} f(z)}+c+1}=\frac{z f^{\prime}(z)}{f(z)} . \tag{10}
\end{equation*}
$$

Setting $H(z)=\frac{z\left(\mathrm{~L}_{c+1} f(z)\right)^{\prime}}{\mathrm{L}_{c+1} f(z)}$, we get

$$
\begin{equation*}
1+\frac{z\left(\mathrm{~L}_{c+1} f(z)\right)^{\prime \prime}}{\left(\mathrm{L}_{c+1} f(z)\right)^{\prime}}=H(z)+\frac{z H^{\prime}(z)}{H(z)} \tag{11}
\end{equation*}
$$

Since $H(z)=\lambda+(1-\lambda) p(z)$, by (10) and (11), we obtain

$$
\begin{equation*}
(1-\lambda) p(z)+\frac{(1-\lambda) z p^{\prime}(z)}{\lambda+c+1+(1-\lambda) p(z)}=\frac{z f^{\prime}(z)}{f(z)}-\lambda \tag{12}
\end{equation*}
$$

Let

$$
\psi(u, v)=(1-\lambda) u+\frac{(1-\lambda) v}{\lambda+c+1+(1-\lambda) u}
$$

Then ψ is a continuous function on $D=\left(\mathbb{C} \backslash\left\{\frac{\lambda+c+1}{\lambda-1}\right\}\right) \times \mathbb{C}$ and $(1,0) \in D$. Also, $\psi(1,0)>0$ and for all $\left(\mathrm{i} u_{2}, v_{1}\right) \in D$ with $v_{1} \leq-\frac{1+u_{2}^{2}}{2}$ we have
$\operatorname{Re} \psi\left(\mathrm{i} u_{2}, v_{1}\right)=\frac{(1-\lambda)(\lambda+c+1) v_{1}}{(1-\lambda)^{2} u_{2}^{2}+(\lambda+c+1)^{2}} \leq \frac{-(1-\lambda)(\lambda+c+1)\left(1+u_{2}^{2}\right)}{2\left[(1-\lambda)^{2} u_{2}^{2}+(\lambda+c+1)^{2}\right]}<0$.
Therefore the function ψ satisfies the conditions of Lemma 1. Taking into account the hypothesis and (12), we have $\operatorname{Re}\left\{\psi\left(p(z), z p^{\prime}(z)\right)\right\}>0$, hence Lemma 1 implies that $\operatorname{Re} p(z)>0$, for $z \in U$, which finishes the proof.
(ii) This assertion can be proved by the same method as (i), using the formula obtained by replacing $c+1$ with c in (10).

Theorem 4. For $f \in A$ the following assertions hold true.
(i) If $\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}-\frac{z\left(\mathrm{~L}_{c} f(z)\right)^{\prime}}{\mathrm{L}_{c} f(z)}\right\}>0$, then $C_{c}(\lambda) \subset C_{c+1}(\lambda)$.
(ii) If $\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}-\frac{z\left(\mathrm{~L}_{c+1} f(z)\right)^{\prime}}{\mathrm{L}_{c+1} f(z)}\right\}>0$, then $C_{c+1}(\lambda) \subset C_{c}(\lambda)$.

Proof. (i) In view of assertion (i) of Theorem 3 we have the following chain of equivalent relations $f \in C_{c}(\lambda) \Leftrightarrow \mathrm{L}_{c} f \in C(\lambda) \Leftrightarrow z\left(\mathrm{~L}_{c} f\right)^{\prime} \in S^{*}(\lambda) \Leftrightarrow \mathrm{L}_{c} z f^{\prime} \in$ $S^{*}(\lambda) \Leftrightarrow z f^{\prime} \in S_{c}^{*}(\lambda) \rightarrow z f^{\prime} \in S_{c+1}^{*}(\lambda) \Leftrightarrow \mathrm{L}_{c+1} z f^{\prime} \in S^{*}(\lambda) \Leftrightarrow z\left(\mathrm{~L}_{c+1} f\right)^{\prime} \in$ $S^{*}(\lambda) \Leftrightarrow \mathrm{L}_{c+1} f \in C(\lambda) \Leftrightarrow f \in C_{c+1}(\lambda)$.

Assertion (ii) can be proved using a similar method.
Theorem 5. If $c \geq-\lambda$, then $f \in S^{*}(\lambda)$ implies $f \in S_{c}^{*}(\lambda)$.

Proof. Differentiating logarithmically both sides of (3) with respect to z, we obtain

$$
\begin{equation*}
\frac{z\left(\mathrm{~L}_{c} f(z)\right)^{\prime}}{\mathrm{L}_{c} f(z)}+c=\frac{(c+1) f(z)}{\mathrm{L}_{c} f(z)} \tag{13}
\end{equation*}
$$

Differentiating logarithmically both sides of (13), we have

$$
\begin{equation*}
p(z)+\frac{z p^{\prime}(z)}{c+\lambda+p(z)}=\frac{z f^{\prime}(z)}{f(z)}-\lambda \tag{14}
\end{equation*}
$$

where $p(z)=\frac{z\left(\mathrm{~L}_{c} f(z)\right)^{\prime}}{\mathrm{L}_{c} f(z)}-\lambda$. Let

$$
\psi(u, v)=u+\frac{v}{u+c+\lambda}
$$

Then ψ is a continuous function on $D=(\mathbb{C} \backslash\{-c-\lambda\}) \times \mathbb{C}$ and $(1,0) \in D$. Also, $\operatorname{Re} \psi(1,0)>0$. If $\left(\mathrm{i} u_{2}, v_{1}\right) \in D$ with $v_{1} \leq-\frac{1+u_{2}^{2}}{2}$, then

$$
\operatorname{Re} \psi\left(\mathrm{i} u_{2}, v_{1}\right)=\frac{v_{1}(c+\lambda)}{u_{2}^{2}+(c+\lambda)^{2}} \leq 0
$$

Since $f \in S^{*}(\lambda)$, relation (16) yields

$$
\operatorname{Re}\left(\psi\left(p(z), z p^{\prime}(z)\right)\right)=\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}-\lambda\right\}>0
$$

We conclude from Lemma 1 that $\operatorname{Re}\{p(z)\}>0$.
Corollary 6. If $c \geq \lambda$, then $f \in C(\lambda)$ implies $f \in C_{c}(\lambda)$.
Proof. We have $f \in C(\lambda) \Leftrightarrow z f^{\prime} \in S^{*}(\lambda) \Longrightarrow z f^{\prime} \in S_{c}^{*}(\lambda) \Leftrightarrow \mathrm{L}_{c} z f^{\prime} \in$ $S^{*}(\lambda) \Leftrightarrow z\left(\mathrm{~L}_{c} f\right)^{\prime} \in S^{*}(\lambda) \Leftrightarrow \mathrm{L}_{c} f \in C(\lambda) \Leftrightarrow f \in C_{c}(\lambda)$.

Theorem 7. For $f \in A$ the following assertions hold true.
(i) If

$$
\left|\arg \left(\frac{z f^{\prime}(z)}{f(z)}-\lambda\right)\right| \leq\left|\arg \left(\frac{z\left(\mathrm{~L}_{c} f(z)\right)^{\prime}}{\mathrm{L}_{c} f(z)}-\lambda\right)\right|, \text { for } z \in U
$$

then $S T_{c}(\eta, \lambda) \subset S T_{c+1}(\eta, \lambda)$, where $c>-1$.
(ii) If

$$
\left|\arg \left(\frac{z f^{\prime}(z)}{f(z)}-\lambda\right)\right| \leq\left|\arg \left(\frac{z\left(\mathrm{~L}_{c+1} f(z)\right)^{\prime}}{\mathrm{L}_{c+1} f(z)}-\lambda\right)\right|, \text { for } z \in U,
$$

then $S T_{c+1}(\eta, \lambda) \subset S T_{c}(\eta, \lambda)$, where $c>-1$.
Proof. (i) Let $f \in S T_{c}(\eta, \lambda)$ and put

$$
\begin{equation*}
\frac{z\left(\mathrm{~L}_{c+1} f(z)\right)^{\prime}}{\mathrm{L}_{c+1} f(z)}=\lambda+(1-\lambda) p(z) \tag{15}
\end{equation*}
$$

where $p(z)=1+\sum_{n=1}^{\infty} c_{n} z^{n}$ is analytic on U with $p(z) \neq 0$, for $z \in U$. It is easy to see that

$$
\begin{equation*}
z\left(\mathrm{~L}_{c+1} f(z)\right)^{\prime}+(c+1) \mathrm{L}_{c+1} f(z)=(c+2) f(z) \tag{16}
\end{equation*}
$$

Differentiating logarithmically with respect to z both sides of (16), we obtain

$$
\begin{equation*}
\frac{z\left(\frac{z\left(\mathrm{~L}_{c+1} f(z)\right)^{\prime}}{\mathrm{L}_{c+1} f(z)}\right)^{\prime}}{\frac{z\left(\mathrm{~L}_{c+1} f(z)\right)^{\prime}}{\mathrm{L}_{c+1} f(z)}+c+1}+\frac{z\left(\mathrm{~L}_{c+1} f(z)\right)^{\prime}}{\mathrm{L}_{c+1} f(z)}=\frac{z f^{\prime}(z)}{f(z)} \tag{17}
\end{equation*}
$$

Using (15) and (17), we get

$$
\begin{equation*}
\frac{(1-\lambda) z p^{\prime}(z)}{\lambda+c+1+(1-\lambda) p(z)}+(1-\lambda) p(z)=\frac{z f^{\prime}(z)}{f(z)}-\lambda \tag{18}
\end{equation*}
$$

Suppose that there exists $z_{0} \in U$ such that $|\arg (p(z))|<\frac{\pi}{2} \eta$ for $|z|<\left|z_{0}\right|$ and $\left|\arg \left(p\left(z_{0}\right)\right)\right|=\frac{\pi}{2} \eta$. Lemma 2 implies then that $\frac{z_{0} p^{\prime}\left(z_{0}\right)}{p\left(z_{0}\right)}=\mathrm{i} k \eta$ and $p\left(z_{0}\right)^{1 / \eta}=$ $\pm \operatorname{ir}(r>0)$, where $k \geq \frac{1}{2}\left(r+\frac{1}{r}\right)$, when $\arg \left(p\left(z_{0}\right)\right)=\frac{\pi}{2} \eta$, and $k \leq \frac{-1}{2}\left(r+\frac{1}{r}\right)$ when $\arg \left(p\left(z_{0}\right)\right)=\frac{-\pi}{2} \eta$. If $p\left(z_{0}\right)^{1 / \eta}=\mathrm{i} r$, then $\arg \left(p\left(z_{0}\right)\right)=\frac{\pi}{2} \eta$, hence by considering (18), we have

$$
\begin{aligned}
& \left|\arg \left(\frac{z_{0}\left(\mathrm{~L}_{c} f\left(z_{0}\right)\right)^{\prime}}{\mathrm{L}_{c} f\left(z_{0}\right)}-\lambda\right)\right| \geq \arg \left(\frac{z_{0} f^{\prime}\left(z_{0}\right)}{f\left(z_{0}\right)}-\lambda\right) \\
& =\arg \left\{(1 - \lambda) p (z _ { 0 }) \left[1+\frac{i k \eta}{\left.\left.\lambda+c+1+(1-\lambda) r^{\eta} \mathrm{e}^{\mathrm{i} \frac{\pi}{2} \eta}\right]\right\}}\right.\right. \\
& \left.=\frac{\pi}{2} \eta+\tan ^{-1}\left\{\frac{P}{Q}\right\} \geq \frac{\pi}{2} \eta \quad \text { (because } k \geq \frac{1}{2}\left(r+\frac{1}{r}\right) \geq 1\right),
\end{aligned}
$$

where

$$
\begin{equation*}
P=k \eta\left[\lambda+c+1+r^{\eta}(1-\lambda) \cos \frac{\pi}{2} \eta\right] \tag{19}
\end{equation*}
$$

and

$$
\begin{aligned}
Q & =(\lambda+c+1)^{2}+r^{2 \eta}(1-\lambda)^{2}+(1-\lambda)(\lambda+c+1) \cos \frac{\pi}{2} \eta \\
& +k \eta r^{\eta}(1-\lambda) \sin \frac{\pi}{2} \eta
\end{aligned}
$$

This contradicts the fact that $f(z) \in S T_{c}(\eta, \lambda)$.
Now suppose that $p\left(z_{0}\right)^{1 / \eta}=-\mathrm{i} r$. Then $\arg \left(p\left(z_{0}\right)\right)=\frac{-\pi}{2} \eta$ and we get

$$
\begin{aligned}
& -\left|\arg \left(\frac{z_{0}\left(\mathrm{~L}_{c} f\left(z_{0}\right)\right)^{\prime}}{\mathrm{L}_{c} f\left(z_{0}\right)}-\lambda\right)\right| \leq \arg \left(\frac{z_{0} f^{\prime}\left(z_{0}\right)}{f\left(z_{0}\right)}-\lambda\right) \\
& =\frac{-\pi}{2} \eta+\arg \left\{1+\frac{i k \eta}{\left.\lambda+c+1+(1-\lambda) r^{\eta} \mathrm{e}^{-\mathrm{i} \frac{\pi}{2} \eta}\right\}}\right. \\
& \left.=\frac{-\pi}{2} \eta+\tan ^{-1}\left\{\frac{P}{R}\right\} \leq \frac{-\pi}{2} \eta \quad \text { (because } k \leq \frac{-1}{2}\left(r+\frac{1}{r}\right) \leq-1\right),
\end{aligned}
$$

where P is given by (19) and

$$
\begin{aligned}
R & =(\lambda+c+1)^{2}+r^{2 \eta}(1-\lambda)^{2}+2 r^{\eta}(1-\lambda)(\lambda+c+1) \cos \frac{\pi}{2} \eta \\
& -k \eta r^{\eta}(1-\lambda) \sin \frac{\pi}{2} \eta
\end{aligned}
$$

This contradicts our assumption that $f \in S T_{c}(\eta, \lambda)$, therefore $|\arg (p(z))|<\frac{\pi}{2}$, for $z \in U$. Finally we get

$$
\left|\arg \left(\frac{z\left(\mathrm{~L}_{c+1} f(z)\right)^{\prime}}{\mathrm{L}_{c+1} f(z)}-\lambda\right)\right|<\frac{\pi}{2} \eta, \text { for } z \in U
$$

Since for every $\lambda(0 \leq \lambda<1)$ we have

$$
\frac{z\left(\mathrm{~L}_{c+1} f(z)\right)^{\prime}}{\mathrm{L}_{c+1} f(z)} \neq \lambda
$$

we conclude that $f \in S T_{c+1}(\eta, \lambda)$.
The proof of (ii) is similar to the proof of (i), therefore we omit it.
Corollary 8. For $f \in A$ the following assertions hold true.
(i) If

$$
\left|\arg \left(\frac{z f^{\prime}(z)}{f(z)}-\lambda\right)\right| \leq\left|\arg \left(\frac{z\left(\mathrm{~L}_{c} f(z)\right)^{\prime}}{\mathrm{L}_{c} f(z)}-\lambda\right)\right| \text { for } z \in U
$$

then $C V_{c}(\eta, \lambda) \subset C V_{c+1}(\eta, \lambda)$.
(i) If

$$
\left|\arg \left(\frac{z f^{\prime}(z)}{f(z)}-\lambda\right)\right| \leq\left|\arg \left(\frac{z\left(\mathrm{~L}_{c+1} f(z)\right)^{\prime}}{\mathrm{L}_{c+1} f(z)}-\lambda\right)\right|, \text { for } z \in U
$$

then $C V_{c+1}(\eta, \lambda) \subset C V_{c}(\eta, \lambda)$.
Proof. We give only the proof of part (i) and for this we have $f \in C V_{c}(\eta, \lambda) \Leftrightarrow$ $\mathrm{L}_{c} f \in C(\eta, \lambda) \Leftrightarrow z\left(\mathrm{~L}_{c} f\right)^{\prime} \in S^{*}(\eta, \lambda) \Leftrightarrow \mathrm{L}_{c} z f^{\prime} \in S^{*}(\eta, \lambda) \Leftrightarrow z f^{\prime} \in S T_{c}(\eta, \lambda) \Longrightarrow$ $z f^{\prime} \in S T_{c+1}(\eta, \lambda) \Leftrightarrow \mathrm{L}_{c+1} z f^{\prime} \in S^{*}(\eta, \lambda) \Leftrightarrow z\left(\mathrm{~L}_{c+1} f\right)^{\prime} \in S^{*}(\eta, \lambda) \Leftrightarrow \mathrm{L}_{c+1} f \in$ $C(\eta, \lambda) \Leftrightarrow f \in C V_{c+1}(\eta, \lambda)$.

REFERENCES

[1] Bernardi, S.D., Convex and starlike univalent functions, Trans. Amer. Math. Soc., 135 (1969), 429-446.
[2] Ebadian, A., Shams, S. and Najafzadeh, Sh., Certain inequalities for p-valent meromorphic functions with alternating coefficients based on integral operator, Aust. J. Math. Anal. Appl., 5 (1) (2008), Art. 10.
[3] Jung, I.B., Kim Y.C. and Srivastava, H.M., The Hardy space of analytic functions associated with certain one-parameter families of integral operators, J. Math. Anal. Appl., 176 (1993), 138-147.
[4] Li, J.L., Some properties of two integral operators, Soochow. J. Math., 25 (1999), 91-96.
[5] Libera, R.J., Some classes of regular functions, Proc. Amer. Math. Soc., 16 (1965), 755-758.
[6] Liv, J.L., A linear operator and strongly starlike functions, J. Math. Soc. Japan, 54 (4) (2002), 975-981.
[7] Liu, J.L., Some applications of certain integral operator, Kyungpook Math. J., 43 (2003), 21-219.
[8] Liu, J.L., Certain integral operator and strongly starlike functions, Int. J. Math. Math. Sci., 30 (9) (2002), 569-574.
[9] Livingston, A.E., On the radius of univalence of certain analytic functions, Proc. Amer. Math. Soc., 17 (1996), 352-357.
[10] Miller, S.S. and Mocanu, P.T., Second order differential inequalities in the complex plane, J. Math. Anal. Appl., 65 (1978), 289-305.
[11] Noor, K.I., On quasi-convex functions and related topics, Internat. J. Math. Math. Sci., 10 (1987), 241-258.
[12] Nunokawa, M., Owa, S., Saitoh, H., Ikeda A. and Koike, N., Some results for strongly starlike functions, J. Math. Anal. Appl., 212 (1997), 98-106.
[13] SokóL, J., A linear operator and associated class of multivalent analytic functions, Demonstratio Math., 40 (3) (2007), 559-566.
[14] Uralegaddi, B.A. and Somanatha, C., Certain integral operators for starlike functions, J. Math. Res. Exposition, 15 (1995), 14-16.

University of Maragheh
Faculty of Basic Science Department of Mathematics
Maragheh, Iran
E-mail: najafzadeh1234@yahoo.ie

