SOME PROPERTIES OF CERTAIN CLASSES OF MEROMORPHICALLY *p*-VALENT FUNCTIONS INVOLVING EXTENDED MULTIPLIER TRANSFORMATIONS

R.M. EL-ASHWAH and M.K. AOUF

Abstract. The authors investigate interesting properties of certain subclasses of meromorphically multivalent functions which are defined by means of extended multiplier transformations.

MSC 2010. 34C40.

Key words. Analytic functions, meromorphic functions, multiplier transformations.

1. INTRODUCTION

Let \sum_{p} be the class of functions of the form

(1)
$$f(z) = z^{-p} + \sum_{k=1}^{\infty} a_{k-p} z^{k-p} \quad (p \in \mathbb{N} = \{1, 2, 3, \dots\}),$$

which are analytic and *p*-valent on the punctured unit disc $U^* = \{z \in \mathbb{C} : 0 < |z| < 1\} = U \setminus \{0\}$. For a function $f \in \sum_p$ given by (1) and a function $g \in \sum_p$ given by

(2)
$$g(z) = z^{-p} + \sum_{k=1}^{\infty} b_{k-p} z^{k-p} \quad (p \in \mathbb{N}),$$

one introduces the Hadamard product (or convolution) of f and g as the function f * g defined by

(3)
$$(f * g)(z) = z^{-p} + \sum_{k=1}^{\infty} a_{k-p} b_{k-p} z^{k-p} = (g * f)(z).$$

We define now a linear operator $I_p^m(\lambda, \ell)$ (where $\lambda \ge 0, \ \ell > 0, \ m \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}, \ \mathbb{N} = \{1, 2, 3, \cdots\}$) which acts as described below on a function $f \in \sum_p$ given by (1)

(4)
$$I_p^m(\lambda,\ell)f(z) = z^{-p} + \sum_{k=1}^{\infty} \left[\frac{\lambda k + \ell}{\ell}\right]^m a_{k-p} z^{k-p}.$$

We can write (4) also as

$$I_p^m(\lambda,\ell)f(z) = (\Phi_{\lambda,\ell}^{p,m} * f)(z),$$

where

(5)
$$\Phi_{\lambda,\ell}^{p,m}(z) = z^{-p} + \sum_{k=1}^{\infty} \left[\frac{\lambda k + \ell}{\ell}\right]^m z^{k-p}.$$

It follows easily from (4) that

(6)
$$\lambda z (I_p^m(\lambda, \ell) f(z))' = \ell I_p^{m+1}(\lambda, \ell) f(z) - (\lambda p + \ell) I_p^m(\lambda, \ell) f(z) \quad (\lambda > 0).$$

We also note that

$$I_p^0(\lambda,\ell)f(z) = f(z)$$

and

$$I_p^1(1,1)f(z) = \frac{(z^{p+1}f(z))'}{z^p} = (p+1)f(z) + zf'(z).$$

By specializing the parameters λ , ℓ , m, and p one obtains the following operators studied by various authors:

- (i) $I_p^m(1,1) = D_p^m$ (see Aouf and Hossen [1], Liu and Owa [7], Liu and Srivastava [8], and Srivastava and Patel [11]); (ii) $I_1^m(1,\ell) = D_\ell^m$ (see Cho et al. [4, 5]); (iii) $I_1^m(1,1) = I^m$ (see Uralegaddi and Somanatha [12]);

- (iv) $I_p^m(1,\ell) = I_p(m,\ell)$, where $I_p(m,\ell)$ is defined by

$$I_p(m,\ell)f(z) = z^{-p} + \sum_{k=1}^{\infty} \left[\frac{k+\ell}{\ell}\right]^m a_{k-p} z^{k-p};$$

(v)
$$I_p^m(\lambda, 1) = D_{p,\lambda}^m$$
, where $D_{p,\lambda}^m f(z)$ is defined by

(7)
$$D_{p,\lambda}^{m}f(z) = z^{-p} + \sum_{k=1}^{\infty} \left[\lambda k + 1\right]^{m} a_{k-p} z^{k-p}$$

We denote by $\sum_{p,\lambda,\ell}^{m}(\alpha,\delta,\mu,\gamma)$ the class of all functions $f \in \sum_{p}$ such that (8)

$$\operatorname{Re}\left\{ (1-\gamma) \left(\frac{I_p^m(\lambda,\ell)f(z)}{I_p^m(\lambda,\ell)g(z)} \right)^{\mu} + \gamma \frac{I_p^{m+1}(\lambda,\ell)f(z)}{I_p^{m+1}(\lambda,\ell)g(z)} \left(\frac{I_p^m(\lambda,\ell)f(z)}{I_p^m(\lambda,\ell)g(z)} \right)^{\mu-1} \right\} > \alpha,$$

where $g \in \sum_{p}$ satisfies the condition

(9)
$$\operatorname{Re}\left\{\frac{I_p^m(\lambda,\ell)g(z)}{I_p^{m+1}(\lambda,\ell)g(z)}\right\} > \delta \quad (0 \le \delta < 1, \ z \in U).$$

where α and μ are real numbers such that $0 \leq \alpha < 1, \mu > 0, p \in \mathbb{N}$, and $\gamma \in \mathbb{C}$ with $\operatorname{Re}\{\gamma\} > 0$.

We note that

(i) For $\lambda = 1$ we have that $\sum_{p,\ell}^m (\alpha, \delta, \mu, \gamma)$ is the class of functions $f \in \sum_p \beta$ satisfying the condition (10)

$$\operatorname{Re}\left\{ (1-\gamma) \left(\frac{I_p(m,\ell)f(z)}{I_p(m,\ell)g(z)} \right)^{\mu} + \gamma \frac{I_p(m+1,\ell)f(z)}{I_p(m+1,\ell)g(z)} \left(\frac{I_p(m,\ell)f(z)}{I_p(m,\ell)g(z)} \right)^{\mu-1} \right\} > \alpha,$$

where $g \in \sum_{p}$ is such that

(11)
$$\operatorname{Re}\left\{\frac{I_p(m,\ell)g(z)}{I_p(m+1,\ell)g(z)}\right\} > \delta \quad (0 \le \delta < 1, \ z \in U),$$

- with $0 \le \alpha < 1$, $\mu > 0$, and $\gamma \in \mathbb{C}$ with $\operatorname{Re}\{\gamma\} > 0$; (ii) For $\ell = 1$ we have that $\sum_{p,\lambda}^{m}(\alpha, \delta, \mu, \gamma)$ is the class of functions $f \in \sum_{p} f(\alpha, \beta, \mu, \gamma)$ satisfying the condition

(12)
$$\operatorname{Re}\left\{ (1-\gamma) \left(\frac{D_{p,\lambda}^m f(z)}{D_{p,\lambda}^m g(z)} \right)^{\mu} + \gamma \frac{D_p^{m+1} f(z)}{D_{p,\lambda}^{m+1} g(z)} \left(\frac{D_{p,\lambda}^m f(z)}{D_{p,\lambda}^m g(z)} \right)^{\mu-1} \right\} > \alpha,$$

where $g \in \sum_{p}$ is such that

(13)
$$\operatorname{Re}\left\{\frac{D_{p,\lambda}^{m}g(z)}{D_{p,\lambda}^{m+1}g(z)}\right\} > \delta \quad (0 \le \delta < 1, \ z \in U),$$

with $0 \leq \alpha < 1, \mu > 0, \lambda > 0, p \in \mathbb{N}, m \in \mathbb{N}_0$, and $\gamma \in \mathbb{C}$ with $\operatorname{Re}\{\gamma\} > 0;$

(iii) For $\lambda = \ell = 1$ we have that $\sum_{p=1}^{m} (\alpha, \delta, \mu, \gamma)$ is the class of functions $f \in \sum_{p}$ satisfying the condition

(14)
$$\operatorname{Re}\left\{ (1-\gamma) \left(\frac{D_p^m f(z)}{D_p^m g(z)} \right)^{\mu} + \gamma \frac{D_p^{m+1} f(z)}{D_p^{m+1} g(z)} \left(\frac{D_p^m f(z)}{D_p^m g(z)} \right)^{\mu-1} \right\} > \alpha,$$

where $g \in \sum_{p}$ is such that

(15)
$$\operatorname{Re}\left\{\frac{D_p^m g(z)}{D_p^{m+1} g(z)}\right\} > \delta \quad (0 \le \delta < 1, \ z \in U),$$

with $0 \leq \delta < 1$, $\mu > 0$, $p \in \mathbb{N}$, $m \in \mathbb{N}_0$, and $\gamma \in \mathbb{C}$ with $\operatorname{Re}\{\gamma\} > 0$. To establish our main results we need the following lemmas.

LEMMA 1. (see [9]) Let Ω be a set in the complex plane \mathbb{C} and let the function $\Psi \colon \mathbb{C}^2 \to \mathbb{C}$ satisfy the condition $\Psi(\mathrm{i}r_2, s_1) \notin \Omega$ for all reals $r_2, s_1 \leq -\frac{1+r_2^2}{2}$. If q is analytic on U with q(0) = 1 and if $\Psi(q(z), zq'(z)) \in \Omega$, for all $z \in U$, then $\operatorname{Re}\{q(z)\} > 0$ for all $z \in U$.

LEMMA 2. (see [10]) If q is analytic on U with q(0) = 1, and if $\lambda \in \mathbb{C}^* =$ $\mathbb{C}\setminus\{0\}$ satisfies $\operatorname{Re}\{\lambda\} \geq 0$, then $\operatorname{Re}\{q(z) + \lambda zq'(z)\} > \alpha \ (0 \leq \alpha < 1)$ implies $\operatorname{Re}\{q(z)\} > \alpha + (1 - \alpha)(2\gamma - 1),$

where γ is given by

$$\gamma = \gamma(\mathrm{Re}\lambda) = \int_{0}^{1} \left(1 + t^{\mathrm{Re}\{\lambda\}}\right)^{-1} \mathrm{d}t.$$

(Note that γ is an increasing function of $\operatorname{Re}\{\lambda\}$ satisfying $\frac{1}{2} \leq \gamma < 1$.) The estimate is sharp in the sense that the bound cannot be improved.

For real or complex numbers a, b, c ($c \notin \mathbb{Z}_0^-$), the Gauss hypergeometric function is defined by

$$_{2}F_{1}(a,b;c;z) = 1 + \frac{ab}{c} \cdot \frac{z}{1!} + \frac{a(a+1)b(b+1)}{c(c+1)} \cdot \frac{z^{2}}{2!} + \cdots$$

Note that the above series converges absolutely for $z \in U$ and hence represents an analytic function on the unit disc U (see [13, chapter 14] for details).

Each of the identities asserted by Lemma 3 below is fairly well known (for instance, cf. [13, chapter 14]).

LEMMA 3. Let a, b, c $(c \notin \mathbb{Z}_0^-)$ be real or complex parameters. Then the following equalities hold true

(16)
$$\int_{0}^{1} t^{b-1} (1-t)^{c-b-1} (1-tz)^{-a} dt = \frac{\Gamma(b)\Gamma(c-b)}{\Gamma(c)} {}_{2}F_{1}(a,b;c;z)$$

 $(if \operatorname{Re}(c) > \operatorname{Re}(b) > 0),$

(17)
$${}_{2}F_{1}(a,b;c;z) = {}_{2}F_{1}(b,a;c;z),$$

(18)
$$_{2}F_{1}(a,b;c;z) = (1-z)^{-a} _{2}F_{1}\left(a,c-b;c;\frac{z}{z-1}\right),$$

and

(19)
$${}_{2}F_{1}\left(1,1;2;\frac{1}{2}\right) = 2\ell n2.$$

The methods we will use to obtain our main results are similar to those of Kwon et al. [6], El-Ashwah [3], and Aouf and Mostafa [2].

2. MAIN RESULTS

We will assume throughout the paper that the powers are understood as principle values.

THEOREM 4. Let $f \in \sum_{p,\lambda,\ell}^{m} (\alpha, \delta, \mu, \gamma), \ \lambda, \ell > 0, \ p \in \mathbb{N}, \ m \in \mathbb{N}_0 \ and \ \gamma \geq 0.$ Then

(20)
$$\operatorname{Re}\left\{\left(\frac{I_p^m(\lambda,\ell)f(z)}{I_p^m(\lambda,\ell)g(z)}\right)^{\mu}\right\} > \frac{2\ell\alpha\mu + \delta\gamma\lambda}{2\ell\mu + \delta\gamma\lambda} \quad (0 \le \alpha < 1, \ \mu > 0, \ z \in U),$$

where the function $g \in \sum_{p}$ satisfies condition (9).

Proof. Let $\beta = \frac{2\ell\alpha\mu + \delta\gamma\lambda}{2\ell\mu + \delta\gamma\lambda}$ and define the function q by

(21)
$$q(z) = \frac{1}{(1-\beta)} \left\{ \left(\frac{I_p^m(\lambda,\ell)f(z)}{I_p^m(\lambda,\ell)g(z)} \right)^\mu - \beta \right\}.$$

The function q is analytic on U and q(0) = 1. If we set

(22)
$$h(z) = \frac{I_p^m(\lambda, \ell)g(z)}{I_p^{m+1}(\lambda, \ell)g(z)},$$

then, by hypothesis, $\operatorname{Re}\{h(z)\} > \delta$. Differentiating (21) and using the identity (6), we get

(1-
$$\gamma$$
) $\left(\frac{I_p^m(\lambda,\ell)f(z)}{I_p^m(\lambda,\ell)g(z)}\right)^{\mu} + \gamma \frac{I_p^{m+1}(\lambda,\ell)f(z)}{I_p^{m+1}(\lambda,\ell)g(z)} \left(\frac{I_p^m(\lambda,\ell)f(z)}{I_p^m(\lambda,\ell)g(z)}\right)^{\mu-1}$
(23) $= \left[\beta + (1-\beta)q(z)\right] + \frac{\lambda\gamma(1-\beta)}{\mu\ell}h(z)zq'(z).$

Define the function Ψ by

(24)
$$\Psi(r,s) = \beta + (1-\beta)r + \frac{\lambda\gamma(1-\beta)}{\mu\ell}h(z)s.$$

Using (24) and the fact that $f \in \sum_{p,\lambda,\ell}^{m} (\alpha, \delta, \mu, \gamma)$, we obtain

$$\left\{\Psi(q(z), zq'(z)) : z \in U\right\} \subset \Omega = \left\{w \in \mathbb{C} : \operatorname{Re}\{w\} > \alpha\right\}.$$

The following relations hold for all reals $r_2, s_1 \leq -\frac{1+r_2^2}{2}$

$$\operatorname{Re} \left\{ \Psi(\mathrm{i}r_2, s_1) \right\} = \beta + \frac{\lambda \gamma(1-\beta)s_1}{\mu \ell} \operatorname{Re} \left\{ h(z) \right\}$$
$$\leq \beta - \frac{\lambda \gamma(1-\beta)\delta(1+r_2^2)}{2\mu \ell}$$
$$\leq \beta - \frac{\lambda \gamma(1-\beta)\delta}{2\mu \ell} = \alpha.$$

Hence $\Psi(ir_2, s_1) \notin \Omega$ for each $z \in U$. Applying now Lemma 1, we get $\operatorname{Re}\{q(z)\} > 0$, for $z \in U$, hence

$$\operatorname{Re}\left\{\left(\frac{I_p^m(\lambda,\ell)f(z)}{I_p^m(\lambda,\ell)g(z)}\right)^{\mu}\right\} > \beta \quad (z \in U).$$

This finishes the proof.

For $\ell = 1$ in Theorem 4 we obtain the following result.

72

COROLLARY 5. Let $f \in \sum_{p,\lambda}^{m} (\alpha, \delta, \mu, \gamma), \lambda > 0, p \in \mathbb{N}, m \in \mathbb{N}_{0}, and \gamma \geq 0$. Then

$$\operatorname{Re}\left\{ \left(\frac{D_{p,\lambda}^{m} f(z) f(z)}{D_{p,\lambda}^{m} f(z) g(z)} \right)^{\mu} \right\} > \frac{2\alpha\mu + \delta\gamma\lambda}{2\mu + \delta\gamma\lambda} \quad (0 \le \alpha < 1, \ \mu > 0, \ z \in U),$$

where the function $g \in \sum_{p}$ satisfies condition (9) with $\ell = 1$.

COROLLARY 6. Let the functions f and g be in \sum_p and let g satisfy condition (9). If $\lambda, \ell > 0, \gamma \geq 1, p \in \mathbb{N}, m \in \mathbb{N}_0$, and

(25)
$$\operatorname{Re}\left\{ (1-\gamma) \left(\frac{I_p^m(\lambda,\ell)f(z)}{I_p^m(\lambda,\ell)g(z)} \right) + \gamma \frac{I_p^{m+1}(\lambda,\ell)f(z)}{I_p^{m+1}(\lambda,\ell)g(z)} \right\} > \alpha$$
$$(0 \le \alpha < 1, \ p \in \mathbb{N}, \ m \in \mathbb{N}_0, \ z \in U),$$

then

(26)
$$\operatorname{Re}\left\{\frac{I_p^{m+1}(\lambda,\ell)f(z)}{I_p^{m+1}(\lambda,\ell)g(z)}\right\} > \beta = \frac{\alpha(2\ell+\delta\lambda)+\delta\lambda(\gamma-1)}{2\ell+\delta\gamma\lambda} \quad (z\in U).$$

Proof. We have

$$\begin{split} \gamma \frac{I_p^{m+1}(\lambda,\ell)f(z)}{I_p^{m+1}(\lambda,\ell)g(z)} &= \left\{ (1-\gamma) \left(\frac{I_p^m(\lambda,\ell)f(z)}{I_p^m(\lambda,\ell)g(z)} \right) + \gamma \frac{I_p^{m+1}(\lambda,\ell)f(z)}{I_p^{m+1}(\lambda,\ell)g(z)} \right\} \\ &+ (\gamma-1) \frac{I_p^m(\lambda,\ell)f(z)}{I_p^m(\lambda,\ell)g(z)} \quad (z \in U). \end{split}$$

Since $\gamma \geq 1$, using (25) and (20) (for $\mu = 1$), we deduce that

$$\operatorname{Re}\left\{\frac{I_p^{m+1}(\lambda,\ell)f(z)}{I_p^{m+1}(\lambda,\ell)g(z)}\right\} > \beta = \frac{\alpha(2\ell+\delta\lambda)+\delta\lambda(\gamma-1)}{2\ell+\delta\gamma\lambda}.$$

COROLLARY 7. Let $\gamma \in \mathbb{C}^*$ with $\operatorname{Re}\{\gamma\} \ge 0$ and $\lambda, \ell > 0$. If $f \in \sum_p$ satisfies the following condition

$$\operatorname{Re}\left\{(1-\gamma)(z^{p}I_{p}^{m}(\lambda,\ell)f(z))^{\mu}+\gamma z^{p}I_{p}^{m+1}(\lambda,\ell)f(z)(z^{p}I_{p}^{m}(\lambda,\ell)f(z))^{\mu-1}\right\}>\alpha$$
$$(0\leq\alpha<1,\ \mu>0,\ p\in\mathbb{N},\ m\in\mathbb{N}_{0},\ z\in U),$$

then

(27)
$$\operatorname{Re}\left\{\left(z^{p}I_{p}^{m}(\lambda,\ell)f(z)\right)^{\mu}\right\} > \frac{2\alpha\ell\mu + \lambda\operatorname{Re}(\gamma)}{2\ell\mu + \lambda\operatorname{Re}(\gamma)} \quad (z \in U).$$

Moreover, if $\gamma \geq 1$, $\lambda, \ell > 0$, and $f \in \sum_p \text{ satisfy}$

$$\operatorname{Re}\left\{(1-\gamma)z^{p}I_{p}^{m}(\lambda,\ell)f(z)+\gamma z^{p}I_{p}^{m+1}(\lambda,\ell)f(z)\right\}>\alpha\quad(z\in U),$$

then

(28)
$$\operatorname{Re}\left\{z^{p}I_{p}^{m+1}(\lambda,\ell)f(z)\right\} > \frac{\alpha(2\ell+\lambda)+\lambda(\gamma-1)}{2\ell+\gamma\lambda}$$

$$(0 \le \alpha < 1, \ p \in \mathbb{N}, \ m \in \mathbb{N}_0, \ z \in U).$$

Proof. The relations (27) and (28) follow by considering $g(z) = \frac{1}{z^p}$ in Theorem 4 and Corollary 6, respectively.

REMARK 8. Choosing γ , δ , ℓ , μ , λ , and m appropriately in Corollary 7, we obtain the following results.

(i) For $\gamma = \lambda = \ell = 1$ and m = 0 in Corollary 7, we have that

(29)
$$\operatorname{Re}\left\{\left(1+p+\frac{zf'(z)}{f(z)}\right)(z^{p}f(z))^{\mu}\right\} > \alpha$$
$$(0 \le \alpha < 1, \ \mu > 0, \ p \in \mathbb{N}, \ z \in U)$$

implies

Re {
$$(z^p f(z))^{\mu}$$
} > $\frac{2\mu\alpha + 1}{2\mu + 1}$ ($z \in U$).

(ii) For $\gamma \in \mathbb{C}^*$ with $\operatorname{Re}\{\gamma\} \ge 0$, $\mu = \lambda = \ell = 1$, and m = 0 in Corollary 7, we have that

$$\operatorname{Re}\left\{ (1+\gamma p)z^{p}f(z) + \gamma z^{p+1}f'(z) \right\} > \alpha$$
$$(0 \le \alpha < 1, \ \mu > 0, \ p \in \mathbb{N}, \ z \in U)$$

implies

$$\operatorname{Re}\{z^p f(z)\} > \frac{2\alpha + \operatorname{Re}\{\gamma\}}{2 + \operatorname{Re}\{\gamma\}} \quad (z \in U).$$

(iii) Replacing f(z) by $-\frac{zf'(z)}{p}$ in (ii), we have that

$$-\operatorname{Re}\left\{ (1+\gamma+\gamma p) \, \frac{z^{p+1}f'(z)}{p} + \frac{\gamma}{p} z^{p+2} f''(z) \right\} > \alpha$$
$$(0 \le \alpha < 1, \ p \in \mathbb{N}, \ z \in U)$$

implies

$$-\operatorname{Re}\left\{\frac{z^{p+1}}{p}f'(z)\right\} > \frac{2\alpha + \operatorname{Re}\{\gamma\}}{2 + \operatorname{Re}\{\gamma\}} \quad (z \in U).$$

(iv) For $\gamma \in \mathbb{R}$ with $\gamma \ge 1$, $\mu = \lambda = \ell = 1$, and m = 0 in Corollary 7, we have that

$$\operatorname{Re}\left\{ (1+\gamma p)z^{p}f(z) + \gamma z^{p+1}f'(z) \right\} > \alpha$$
$$(0 \le \alpha < 1, \ p \in \mathbb{N}, \ z \in U)$$

implies

$$\operatorname{Re}\left\{z^{p}f(z)\right\} > \frac{3\alpha + \gamma - 1}{2 + \gamma} \quad (z \in U).$$

(v) For
$$\gamma = \lambda = 1$$
 in Corollary 7 we have that

$$\operatorname{Re}\left\{z^{p}I_{p}(m+1,\ell)f(z)(z^{p}I_{p}(m,\ell)f(z))^{\mu-1}\right\} > \alpha$$

$$(0 \le \alpha < 1, \ \mu > 0, \ p \in \mathbb{N}, \ m \in \mathbb{N}_0, \ z \in U)$$

implies

Re {
$$(z^p I_p(m,\ell)f(z))^{\mu}$$
} > $\frac{2\ell\mu\alpha + 1}{2\ell\mu + 1}$ $(z \in U)$.

(vi) For $\gamma \in \mathbb{C}^*$ with $\operatorname{Re}\{\gamma\} \ge 0$, $\mu = \lambda = 1$ in Corollary 7, we have that $\operatorname{Re}\{(1-\gamma)z^p I_p(m,\ell)f(z) + \gamma z^p I_p(m+1,\ell)f(z)\} > \alpha$ $(0 \le \alpha < 1, \ p \in \mathbb{N}, \ m \in \mathbb{N}_0, \ z \in U)$

implies

$$\operatorname{Re}\left\{z^{p}I_{p}(m,\ell)f(z)\right\} > \frac{2\ell\alpha + \operatorname{Re}\{\gamma\}}{2\ell + \operatorname{Re}\{\gamma\}} \quad (z \in U).$$

(vii) For $\gamma = \lambda = \ell = 1$, in Corollary 7 we have that

$$\operatorname{Re}\left\{z^{p}D_{p}^{m+1}f(z)(z^{p}D_{p}^{m}f(z))^{\mu-1}\right\} > \alpha$$

(0 \le \alpha < 1, \mu > 0, \nu \in \mathbb{N}, \nu \in \mathbb{N}_{0}, \nu \in U)

implies

Re
$$\{(z^p D_p^m f(z))^{\mu}\}$$
 > $\frac{2\mu\alpha + 1}{2\mu + 1}$ $(z \in U).$

(viii) For $\mu = \lambda = \ell = 1$, in Corollary 7 we have that

$$\operatorname{Re}\left\{(1-\gamma)(z^p D_p^m f(z)) + \gamma z^p D_p^{m+1} f(z)\right\} > \alpha$$
$$(0 \le \alpha < 1, \ p \in \mathbb{N}, \ m \in \mathbb{N}_0, \ z \in U)$$

implies

$$\operatorname{Re}\left\{z^{p}D_{p}^{m}f(z)\right\} > \frac{2\alpha + \operatorname{Re}\{\gamma\}}{2 + \operatorname{Re}\{\gamma\}} \quad (z \in U).$$

THEOREM 9. Let $\gamma \in \mathbb{C}$ with $\operatorname{Re}\{\gamma\} > 0$ and $\lambda, \ell > 0$. Assume that $f \in \sum_p$ satisfies the following condition (30)

$$\operatorname{Re}\left\{(1-\gamma)(z^{p}I_{p}^{m}(\lambda,\ell)f(z))^{\mu}+\gamma z^{p}I_{p}^{m+1}(\lambda,\ell)f(z)(z^{p}I_{p}^{m}(\lambda,\ell)f(z))^{\mu-1}\right\}>\alpha$$

$$(0\leq\alpha<1,\ \mu>0,\ p\in\mathbb{N},\ m\in\mathbb{N}_{0},\ z\in U).$$

Then

(31)
$$\operatorname{Re}\left\{(z^{p}I_{p}^{m}(\lambda,\ell)f(z))^{\mu}\right\} > \alpha + (1-\alpha)(2\rho-1),$$

where

(32)
$$\rho = \frac{1}{2} {}_{2}F_{1}\left(1, 1; \frac{\mu\ell}{\lambda \text{Re}\{\gamma\}} + 1; \frac{1}{2}\right).$$

Proof. Let

(33)
$$q(z) = (z^p I_p^m(\lambda, \ell) f(z))^\mu$$

Then q is analytic on U and q(0) = 1. Differentiating (33) with respect to z and using relation (6), we obtain

$$(1-\gamma)(z^p I_p^m(\lambda,\ell)f(z))^{\mu} + \gamma z^p I_p^{m+1}(\lambda,\ell)f(z)(z^p I_p^m(\lambda,\ell)f(z))^{\mu-1}$$

= $q(z) + \frac{\gamma \lambda z q'(z)}{\ell \mu}.$

Hence (30) yields

$$\operatorname{Re}\left\{q(z) + \frac{\gamma\lambda z q'(z)}{\ell\mu}\right\} > \alpha \quad (z \in U).$$

In view of Lemma 2 this implies that

$$\operatorname{Re}\{q(z)\} > \alpha + (1 - \alpha)(2\rho - 1),$$

where

$$\rho = \rho(\operatorname{Re}\{\gamma\}) = \int_{0}^{1} \left(1 + t^{\frac{\lambda \operatorname{Re}\{\gamma\}}{\ell\mu}}\right)^{-1} \mathrm{d}t.$$

Putting $\operatorname{Re}\{\gamma\} = \gamma_1 > 0$, we have

$$\rho = \int_{0}^{1} \left(1 + t^{\frac{\lambda \gamma_1}{\ell \mu}} \right)^{-1} \mathrm{d}t = \frac{\ell \mu}{\lambda \gamma_1} \int_{0}^{1} u^{\frac{\ell \mu}{\lambda \gamma_1} - 1} (1+u)^{-1} \mathrm{d}u.$$

Using (16), (17), (18), and (19), we obtain

$$\rho = {}_{2}F_{1}(1, \frac{\ell\mu}{\lambda\gamma_{1}}; \frac{\ell\mu}{\lambda\gamma_{1}} + 1; -1)$$

= $\frac{1}{2} {}_{2}F_{1}(1, 1; \frac{\ell\mu}{\lambda\gamma_{1}} + 1; \frac{1}{2}).$

This finishes the proof.

Choosing $\ell = 1$ in Theorem 9, we obtain the next result.

COROLLARY 10. Let $\gamma \in \mathbb{C}$ with $\operatorname{Re}\{\gamma\} > 0$ and $\lambda > 0$. Assume that $f \in \sum_p$ satisfies the condition

$$\operatorname{Re}\left\{(1-\gamma)(z^{p}D_{p,\lambda}^{m}f(z))^{\mu}+\gamma z^{p}D_{p,\lambda}^{m}f(z)(z^{p}D_{p,\lambda}^{m}f(z))^{\mu-1}\right\}>\alpha$$
$$(0\leq\alpha<1,\ \mu>0,\ p\in\mathbb{N},\ m\in\mathbb{N}_{0},\ z\in U).$$

Then

$$\operatorname{Re}\left\{z^{p}D_{p,\lambda}^{m}f(z)f(z)\right\}^{\mu} > \alpha + (1-\alpha)(2\rho-1),$$
$$\rho = \frac{1}{2} \ _{2}F_{1}\left(1,1;\frac{\mu}{\lambda\operatorname{Re}\{\gamma\}}+1;\frac{1}{2}\right).$$

where

COROLLARY 11. Let
$$\gamma \in \mathbb{R}$$
 with $\gamma \ge 1$. If $f \in \sum_{p}$ satisfies
(34) Re $\{(1-\gamma)z^{p}I_{n}^{m}(\lambda,\ell)f(z) + \gamma z^{p}I_{n}^{m+1}(\lambda,\ell)f(z)\} > \alpha$

34)
$$\operatorname{Re}\left\{ (1-\gamma)z^{p}I_{p}^{m}(\lambda,\ell)f(z) + \gamma z^{p}I_{p}^{m+1}(\lambda,\ell)f(z) \right\} > \alpha$$
$$(0 \le \alpha < 1, \ \lambda, \ \ell > 0, \ p \in \mathbb{N}, \ m \in \mathbb{N}_{0}, \ z \in U),$$

then

$$\operatorname{Re}\{z^{p}I_{p}^{m+1}(\lambda,\ell)f(z)\} > \alpha + (1-\alpha)(2\rho^{*}-1)(1-\gamma^{-1}) \quad (z \in U),$$

where

$$\rho^* = \frac{1}{2} {}_2F_1\left(1, 1; \frac{\ell}{\gamma\lambda} + 1; \frac{1}{2}\right).$$

Proof. The assertion follows by using the identity

(35)
$$\gamma z^p I_p^{m+1}(\lambda, \ell) f(z) = \left[(1 - \gamma) z^p I_p^m(\lambda, \ell) f(z) + \gamma z^p I_p^{m+1}(\lambda, \ell) f(z) \right] \\ + (\gamma - 1) z^p I_p^m(\lambda, \ell) f(z).$$

REMARK 12. (i) Note that if $\gamma = \mu > 0$, $\lambda = \ell = 1$, and m = 0 in Corollary 7, that is,

(36)
$$\operatorname{Re}\left\{ (1+\gamma p)(z^{p}f(z))^{\gamma} + \gamma z^{p+1}f'(z)(z^{p}f(z))^{\gamma-1} \right\} > \alpha$$
$$(0 \le \alpha < 1, \ p \in \mathbb{N}, \ z \in U),$$

then (27) implies that

(37)
$$\operatorname{Re}\left\{(z^p f(z))^{\gamma}\right\} > \frac{2\alpha + 1}{3} \quad (z \in U).$$

On the other hand, if $f\in \sum_p$ satisfies condition (36) then, by Theorem 9, we get

Re
$$\{(z^p f(z))^{\gamma}\}$$
 > 2(1 - $\ell n 2$) α + (2 $\ell n 2$ - 1) ($z \in U$),
efter than (37)

which is better than (37).

(ii) We observe that if $\gamma \in \mathbb{R}$ satisfies $\gamma > 0$ and

$$k(z) = \frac{I_p^{m+1}(\lambda,\ell)f(z)}{I_p^{m+1}(\lambda,\ell)g(z)} + \left(\frac{1}{\gamma} - 1\right)\frac{I_p^m(\lambda,\ell)f(z)}{I_p^m(\lambda,\ell)g(z)} \quad (z \in U),$$

then Theorem 4, applied for $\mu = 1$, yields that

$$\operatorname{Re}\{k(z)\} > \frac{\alpha}{\gamma}$$

implies

(38)
$$\operatorname{Re}\left\{\frac{I_p^m(\lambda,\ell)f(z)}{I_p^m(\lambda,\ell)g(z)}\right\} > \frac{2\ell\alpha + \delta\gamma\lambda}{2\ell + \delta\gamma\lambda},$$

whenever

$$\operatorname{Re}\left\{\frac{I_p^m(\lambda,\ell)g(z)}{I_p^{m+1}(\lambda,\ell)g(z)}\right\} > \delta \quad (0 \le \delta < 1, \ p \in \mathbb{N}, \ m \in \mathbb{N}_0, z \in U).$$

$$\operatorname{Re}\{k(z)\} \ge 0 \ (z \in U)$$

implies

$$\operatorname{Re}\left\{\frac{I_p^m(\lambda,\ell)f(z)}{I_p^m(\lambda,\ell)g(z)}\right\} \ge 1 \ (z \in U),$$

whenever

$$\operatorname{Re}\left\{\frac{I_p^m(\lambda,\ell)g(z)}{I_p^{m+1}(\lambda,\ell)g(z)}\right\} > \delta \quad (0 \le \delta < 1, \ p \in \mathbb{N}, \ m \in \mathbb{N}_0, \ z \in U).$$

We will extend in the following theorem the above results.

THEOREM 13. Suppose that the functions f and g are in \sum_p and suppose that g satisfies condition (9). If

(39)
$$\operatorname{Re}\left\{\frac{I_p^{m+1}(\lambda,\ell)f(z)}{I_p^{m+1}(\lambda,\ell)g(z)} - \frac{I_p^m(\lambda,\ell)f(z)}{I_p^m(\lambda,\ell)g(z)}\right\} > -\frac{(1-\alpha)\delta\lambda}{2\ell}$$

$$(0 \le \alpha < 1, \ 0 \le \delta < 1, \ \lambda, \ell > 0, \ p \in \mathbb{N}, \ m \in \mathbb{N}_0, \ z \in U),$$

then

(40)
$$\operatorname{Re}\left\{\frac{I_p^m(\lambda,\ell)f(z)}{I_p^m(\lambda,\ell)g(z)}\right\} > \alpha \quad (z \in U)$$

and

(41)
$$\operatorname{Re}\left\{\frac{I_p^{m+1}(\lambda,\ell)f(z)}{I_p^{m+1}(\lambda,\ell)g(z)}\right\} > \frac{(2\ell+\lambda\delta)\alpha - \lambda\delta}{2\ell}$$

$$(0 \le \alpha < 1, \ 0 \le \delta < 1, \ \lambda, \ell > 0, \ p \in \mathbb{N}, \ m \in \mathbb{N}_0, \ z \in U).$$

Proof. Let

(42)
$$q(z) = \frac{1}{(1-\alpha)} \left\{ \frac{I_p^m(\lambda,\ell)f(z)}{I_p^m(\lambda,\ell)g(z)} - \alpha \right\}.$$

Then q is analytic on U and q(0) = 1. For

(43)
$$\phi(z) = \frac{I_p^m(\lambda, \ell)g(z)}{I_p^{m+1}(\lambda, \ell)g(z)} \quad (z \in U)$$

we observe that, by hypothesis, ${\rm Re}\{\phi(z)\}>\delta$ ($0\leq\delta<1)$ for $z\in U.$ A simple computation shows that

$$\frac{\lambda(1-\alpha)zq'(z)\phi(z)}{\ell} = \frac{I_p^{m+1}(\lambda,\ell)f(z)}{I_p^{m+1}(\lambda,\ell)g(z)} - \frac{I_p^m(\lambda,\ell)f(z)}{I_p^m(\lambda,\ell)g(z)}$$
$$= \Psi(q(z),zq'(z)),$$

where

$$\Psi(r,s) = \frac{\lambda(1-\alpha)\phi(z)s}{\ell} \quad (\ell \in \mathbb{R} \setminus \{0\}).$$

Using (39), we obtain

$$\left\{\Psi(q(z), zq'(z); z \in U\right\} \subset \Omega = \left\{w \in \mathbb{C} : \operatorname{Re}\{w\} > -\frac{\lambda\delta(1-\alpha)}{2\ell}\right\}.$$

For all reals $r_2, s_1 \leq -\frac{(1+r_2^2)}{2}$ we have that

$$\operatorname{Re} \left\{ \Psi(\operatorname{i} r_2, s_1) \right\} = \frac{\lambda s_1(1-\alpha) \operatorname{Re} \left\{ \phi(z) \right\}}{\ell} \le -\frac{\lambda \delta(1-\alpha)(1+r_2^2)}{2\ell} \le -\frac{\lambda \delta(1-\alpha)}{2\ell}.$$

This shows that $\Psi(ir_2, s_1) \notin \Omega$ for each $z \in U$. Hence, by Lemma 1, we conclude that $\operatorname{Re}\{q(z)\} > 0$ $(z \in U)$. This proves (40). The proof of (41) follows by using (40) and (41) in the identity

$$\operatorname{Re}\left\{\frac{I_p^{m+1}(\lambda,\ell)f(z)}{I_p^{m+1}(\lambda,\ell)g(z)}\right\} = \operatorname{Re}\left\{\frac{I_p^{m+1}(\lambda,\ell)f(z)}{I_p^{m+1}(\lambda,\ell)g(z)} - \frac{I_p^m(\lambda,\ell)f(z)}{I_p^m(\lambda,\ell)g(z)}\right\} + \operatorname{Re}\left\{\frac{I_p^m(\lambda,\ell)f(z)}{I_p^m(\lambda,\ell)g(z)}\right\}.$$

This finishes the proof.

Putting $\ell = 1$ in Theorem 13, we obtain the next result.

COROLLARY 14. Suppose that the functions f and g are in \sum_p and suppose that g satisfies condition (9) with $\ell = 1$. If

$$\operatorname{Re}\left\{\frac{D_{p,\lambda}^{m+1}f(z)}{D_{p,\lambda}^{m+1}g(z)} - \frac{D_{p,\lambda}^{m}f(z)}{D_{p,\lambda}^{m}g(z)}\right\} > -\frac{(1-\alpha)\delta\lambda}{2}$$
$$(0 \le \alpha < 1, \ 0 \le \delta < 1, \ \lambda > 0, \ p \in \mathbb{N}, \ m \in \mathbb{N}_{0}, \ z \in U),$$

then

$$\operatorname{Re}\left\{\frac{D_{p,\lambda}^{m}f(z)}{D_{p,\lambda}^{m}g(z)}\right\} > \alpha \quad (z \in U)$$

and

$$\operatorname{Re}\left\{\frac{D_{p,\lambda}^{m+1}f(z)}{D_{p,\lambda}^{m+1}g(z)}\right\} > \frac{(2+\lambda\delta)\alpha - \lambda\delta}{2}$$
$$(0 \le \alpha < 1, \ 0 \le \delta < 1, \ \lambda > 0, \ p \in \mathbb{N}, \ m \in \mathbb{N}_0, \ z \in U).$$

For $\lambda = 1$ in Theorem 13 we get the following result.

COROLLARY 15. Suppose that the functions f and g are in \sum_p and suppose that g satisfies

$$\operatorname{Re}\left\{\frac{I_p(m,\ell)g(z)}{I_p(m+1,\ell)g(z)}\right\} > \delta \quad (0 \le \delta < 1, \ z \in U).$$

80

$$\operatorname{Re}\left\{\frac{I_p(m+1,\ell)g(z)}{I_p(m+1,\ell)g(z)} - \frac{I_p(m,\ell)f(z)}{I_p(m,\ell)g(z)}\right\} > -\frac{(1-\alpha)\delta}{2\ell}$$

$$(0 \le \alpha < 1, \ 0 \le \delta < 1, \ \ell > 0, \ p \in \mathbb{N}, \ m \in \mathbb{N}_0, \ z \in U)$$

then

$$\operatorname{Re}\left\{\frac{I_p(m,\ell)f(z)}{I_p(m,\ell)g(z)}\right\} > \alpha \quad (z \in U)$$

and

$$\operatorname{Re}\left\{\frac{I_p(m+1,\ell)f(z)}{I_p(m+1,\ell)g(z)}\right\} > \frac{(2\ell+\delta)\alpha-\delta}{2\ell}$$
$$(0 \le \alpha <, \ 0 \le \delta < 1, \ \ell > 0, \ p \in \mathbb{N}, \ m \in \mathbb{N}_0, \ z \in U).$$

REMARK 16. For $\delta = \lambda = \ell = 1$, m = 0, and $g(z) = \frac{1}{z^p}$ in Theorem 13 we get that

$$\operatorname{Re}\left\{z^{p}f(z) + \frac{z^{p+1}}{p}f'(z)\right\} > -\frac{(1-\alpha)}{2p} \quad (0 \le \alpha < 1, \ p \in \mathbb{N}, \ z \in U)$$

implies

$$\operatorname{Re}\{z^p f(z)\} > \alpha \quad (0 \le \alpha < 1, \ p \in \mathbb{N}, \ z \in U)$$

and

$$\operatorname{Re}\{(1+p)z^{p}f(z) + z^{p+1}f'(z)\} > \frac{3\alpha - 1}{2} \quad (0 \le \alpha < 1, \ p \in \mathbb{N}, \ z \in U).$$

REFERENCES

- AOUF, M.K. and HOSSEN, H.M., New criteria for meromorphic p-valent starlike functions, Tsukuba J. Math., 17 (1993), 481–486.
- [2] AOUF, M.K. and MOSTAFA, A.O., Certain subclasses of meromorphically p-valent functions involving certain operator, J. Inequal. Pure Appl. Math., 9 (2) (2008), Article 45.
- [3] EL-ASHWAH, R.M., Some properties of certain subclasses of meromorphically multivalent functions, Appl. Math. Comput., 20 (2008), 824–832.
- [4] CHO, N.E., KWON, O.S. and SRIVASTAVA, H.M., Inclusion and argument properties for certain subclasses of meromorphic functions associated with a family of multiplier transformations, J. Math. Anal. Appl., **300** (2004), 505–520.
- [5] CHO, N.E., KWON, O.S. and SRIVASTAVA, H.M., Inclusion relationships for certain subclasses of meromorphic functions associated with a family of multiplier transformations, Integral Transforms Spec. Funct., 16 (18) (2005), 647–659.
- [6] KWON, O.S., KIM, J.A., CHO, N.E. and OWA, S., Certain subclasses of meromorphically multivalent functions, J. Bihar Math. Soc., 17 (1996), 1–8.
- [7] LIU, J.-L. and OWA, S., On certain meromorphic p-valent functions, Taiwanese J. Math., 2 (1) (1998), 107–110.
- [8] LIU, J.-L. and SRIVASTAVA, H.M., Subclasses of meromorphically multivalent functions associated with certain linear operator, Math. Comput. Modelling, 39 (1) (2004), 35–44.
- [9] MILLER, S.S. and MOCANU, P.T., Second order differential inequalities in the complex plane, J. Math. Anal. Appl., 65 (1978), 289–305.
- [10] PONNUSAMY, S., Differential subordination and Bazilevic functions, Proc. Indian Acad. Sci. Math. Sci., 105 (1995), 169–186.

- [11] SRIVASTAVA, H.M. and PATEL, J., Applications of differential subordination to certain classes of meromorphically multivalent functions, J. Inequal. Pure Appl. Math., 6 (3) (2005).
- [12] URALEGADDI, B.A. and SOMANATHA, C., New criteria for meromorphic starlike univalent functions, Bull. Austral. Math. Soc., 43 (1991), 137–140.
- [13] WHITTAKER, E.T. and WATSON, G.N., A course on modern analysis: an introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions, 4th edition, Cambridge University Press, Cambridge, 1927.

Mansoura University Department of Mathematics 35516 Mansoura, Egypt E-mail: r_elashwah@yahoo.com E-mail: mkaouf127@yahoo.com