ON SOME NONZERO RINGEL-HALL NUMBERS IN TAME CASES

CSABA SZÁNTÓ

Abstract

Let k be a finite field and consider the finite dimensional path algebra $k Q$ where Q is a quiver of tame type i.e. of type $\tilde{A}_{n}, \tilde{D}_{n}, \tilde{E}_{6}, \tilde{E}_{7}, \tilde{E}_{8}$. Let $\mathcal{H}(k Q)$ be the corresponding Ringel-Hall algebra. We are going to study the Ringel-Hall numbers of the form $F_{X P}^{P^{\prime}}$ with P, P^{\prime} preprojective indecomposables of defect -1 and $F_{I X}^{I^{\prime}}$ with I, I^{\prime} preinjective indecomposables of defect 1 . More precisely we will give necessary conditions for the module X such that these Ringel-Hall numbers are nonzero.

MSC 2010. 16G20.
Key words. Tame hereditary algebra, Ringel-Hall algebra, Ringel-Hall numbers.

1. FACTS ON TAME HEREDITARY ALGEBRAS AND RINGEL-HALL ALGEBRAS

For a detailed description of the forthcoming notions we refer to [1],[2], [3], [4].
Let k be a finite field and consider the path algebra $k Q$ where Q is a quiver of tame type i.e. of type $\tilde{A}_{n}, \tilde{D}_{n}, \tilde{E}_{6}, \tilde{E}_{7}, \tilde{E}_{8}$. When Q is of type \tilde{A}_{n} we exclude the cyclic orientation. So $k Q$ is a finite dimensional tame hereditary algebra with the category of finite dimensional (hence finite) right modules denoted by mod $-k Q$. Let $[M]$ be the isomorphism class of $M \in \bmod -k Q$. The category mod- $k Q$ can and will be identified with the category rep- $k Q$ of the finite dimensional k-representations of the quiver $Q=\left(Q_{0}=\{1,2, \ldots, n\}, Q_{1}\right)$. Here $Q_{0}=\{1,2, \ldots, n\}$ denotes the set of vertices of the quiver, Q_{1} the set of arrows and for an arrow α we denote by $s(\alpha)$ the starting point of the arrow and by $e(\alpha)$ its endpoint. Recall that a k-representation of Q is defined as a set of finite dimensional k-spaces $\left\{V_{i} \mid i=\overline{1, n}\right\}$ corresponding to the vertices together with k-linear maps $V_{\alpha}: V_{s(\alpha)} \rightarrow V_{e(\alpha)}$ corresponding to the arrows. The dimension of a module $M=\left(V_{i}, V_{\alpha}\right) \in \bmod -k Q=\operatorname{rep}-k Q$ is then $\underline{\operatorname{dim}} M=$ $\left(\operatorname{dim}_{k} V_{i}\right)_{i=\overline{1, n}} \in \mathbb{Z}^{n}$. For $a=\left(a_{i}\right), b=\left(b_{i}\right) \in \mathbb{Z}^{n}$ we say that $a \leq b$ iff $b_{i}-a_{i} \geq 0$ for all i.

Let $P(i)$ and $I(i)$ be the projective and injective indecomposable corresponding to the vertex i and consider the Cartan matrix C_{Q} with the j -
 $\langle a, b\rangle=a C_{Q}^{-t} b^{t}$. Then for two modules $X, Y \in \bmod -k Q$ we have

$$
\langle\underline{\operatorname{dim}} X, \underline{\operatorname{dim}} Y\rangle=\operatorname{dim}_{k} \operatorname{Hom}(X, Y)-\operatorname{dim}_{k} \operatorname{Ext}^{1}(X, Y) .
$$

[^0]We denote by q the quadratic form defined by $q(a)=\langle a, a\rangle$. Then q is positive semi-definite with radical $\mathbb{Z} \delta$, that is $\left\{a \in \mathbb{Z}^{n} \mid q(a)=0\right\}=\mathbb{Z} \delta$. Here δ is known for each type $\tilde{A}_{n}, \tilde{D}_{n}, \tilde{E}_{6}, \tilde{E}_{7}, \tilde{E}_{8}$ (see [3]). The defect of a module M is $\partial M=$ $\langle\delta, \underline{\operatorname{dim}} M\rangle=-\langle\underline{\operatorname{dim}} M, \delta\rangle$. For a short exact sequence $0 \rightarrow X \rightarrow Y \rightarrow Z \rightarrow 0$ we have that $\partial Y=\partial X+\partial Z$.

Consider the Auslander-Reiten translates $\tau=D \operatorname{Ext}^{1}(-, k Q)$ and $\tau^{-1}=$ $\operatorname{Ext}^{1}(D(k Q),-)$, where $D=\operatorname{Hom}_{k}(-, k)$. An indecomposable module M is preprojective (preinjective) if exists a positive integer m such that $\tau^{m}(M)=0$ $\left(\tau^{-m}(M)=0\right)$. Otherwise M is said to be regular. A module is preprojective (preinjective, regular) if every indecomposable component is preprojective (preinjective, regular). Note that an indecomposable module M is preprojective (preinjective, regular) iff $\partial M<0(\partial M>0, \partial M=0)$.

The Auslander-Reiten quiver of $k Q$ has as vertices the isomorphism classes of indecomposables and arrows corresponding to so called irreducible maps. It will have a preprojective component (with all the isoclasses of preprojective indecomposables), a preinjective component (with all the isoclasses of preinjective indecomposables). All the other components (containing the isoclasses of regular indecomposables) are "tubes" of the form $\mathbb{Z} A_{\infty} / m$, where m is the rank of the tube. The tubes are indexed by the points of the scheme \mathbb{P}_{k}^{1}, the degree of a point $x \in \mathbb{P}_{k}^{1}$ being denoted by $\operatorname{deg} x$. A tube of rank 1 is called homogeneous, otherwise is called non-homogeneous. We have at most 3 nonhomogeneous tubes indexed by points x of degree $\operatorname{deg} x=1$. All the other tubes are homogeneous. Indecomposables from different tubes have no nonzero homomorphisms and no non-trivial extensions. So the regulars from a single tube form an extension-closed abelian subcategory of $\bmod k Q$, the simple objects in this subcategory being called quasi-simple regulars. An indecomposable regular module is regular uniserial and hence is uniquely determined by its quasi-top and quasi-length. In case of a homogeneous tube τ_{x} we have a single quasi-simple regular denoted by $R_{x}[1]$ with $\underline{\operatorname{dim}} R_{x}[1]=(\operatorname{deg} x) \delta$, which lies on the "mouth" of the tube. In case of a non-homogeneous tube τ_{x} of rank m on the mouth of the tube we have m quasi-simples denoted by $R_{x}^{i}[1]$ $i=\overline{1, m}$ such that $\sum_{i=1}^{m} \underline{\operatorname{dim}} R_{x}^{i}[1]=\delta$.

The following lemma is well known.
Lemma 1.1. a) For P preprojective, I preinjective, R regular modules we have

$$
\begin{aligned}
& \operatorname{Hom}(R, P)=\operatorname{Hom}(I, P)=\operatorname{Hom}(I, R)=0 \\
& \operatorname{Ext}^{1}(P, R)=\operatorname{Ext}^{1}(P, I)=\operatorname{Ext}^{1}(R, I)=0
\end{aligned}
$$

b) If $x \neq x^{\prime}$ and $R_{x}\left(R_{x^{\prime}}\right)$ is a regular with components from the tube τ_{x} $\left(\tau_{x^{\prime}}\right)$, then $\operatorname{Hom}\left(R_{x}, R_{x^{\prime}}\right)=\operatorname{Ext}^{1}\left(R_{x}, R_{x^{\prime}}\right)=0$.
c) For τ_{x} homogeneous, $R_{x}[t]$ an indecomposable from τ_{x} and $R_{x}[1]$ the quasi-simple on the mouth of τ_{x} we have $\operatorname{dim}_{k} \operatorname{Hom}\left(R_{x}[t], R_{x}[1]\right)=\operatorname{deg} x$.

We consider now the rational Ringel-Hall algebra $\mathcal{H}(k Q)$ of the algebra $k Q$. Its \mathbb{Q}-basis is formed by the isomorphism classes $[M]$ from mod- $k Q$ and the multiplication is defined by

$$
\left[N_{1}\right]\left[N_{2}\right]=\sum_{[M]} F_{N_{1} N_{2}}^{M}[M] .
$$

The structure constants $F_{N_{1} N_{2}}^{M}=\left|\left\{M \supseteq U \mid U \cong N_{2}, M / U \cong N_{1}\right\}\right|$ are called Ringel-Hall numbers.

2. SOME NONZERO RINGEL-HALL NUMBERS

Consider the Ringel-Hall numbers of the form $F_{X P}^{P^{\prime}}$ with P, P^{\prime} preprojetive indecomposables of defect -1 and $F_{I X}^{I^{\prime}}$ with I, I^{\prime} preinjective indecomposables of defect 1 . We are going to give necessary conditions for the module X such that these Ringel-Hall numbers are nonzero.

We start with the preprojective case by formulating some lemmas. (The first lemma can be also found in [5]).

Lemma 2.1. Let P be a preprojective indecomposable with defect $\partial P=-1$, P^{\prime} a preprojective module and R a regular indecomposable. Then we have
a) Every nonzero morphism $f: P \rightarrow P^{\prime}$ is a monomorphism.
b) For every nonzero morphism $f: P \rightarrow R, f$ is either a monomorphism or $\operatorname{Im} f$ is regular. In particular if R is quasi-simple and $\operatorname{Im} f$ is regular then f is an epimorphism.

Proof. a) Consider the short exact sequence $0 \rightarrow \operatorname{Ker} f \rightarrow P \rightarrow \operatorname{Im} f \rightarrow 0$. Since $\operatorname{Ker} f \subseteq P$ and $\operatorname{Im} f \subseteq P^{\prime}$ we have that $\operatorname{Ker} f$ and $\operatorname{Im} f$ are preprojective (so with negative defect) or 0 . Moreover we have that $\partial \operatorname{Ker} f+\partial \operatorname{Im} f=\partial P=$ -1 and we know that $\operatorname{Im} f \neq 0$ (since f is nonzero). It follows that $\operatorname{Ker} f=0$
b) Consider the short exact sequence $0 \rightarrow \operatorname{Ker} f \rightarrow P \rightarrow \operatorname{Im} f \rightarrow 0$. Since $\operatorname{Ker} f \subseteq P$ we have that $\operatorname{Ker} f$ is preprojective (so with negative defect) or 0 . On the other hand $\operatorname{Im} f \subseteq R$ implies that $\operatorname{Im} f$ can contain preprojectives and regulars as direct summands (and it is nonzero since f is nonzero). The equality $\partial \operatorname{Ker} f+\partial \operatorname{Im} f=\partial P=-1$ gives us two cases. When $\partial \operatorname{Ker} f=0$ then $\operatorname{Ker} f$ is 0 so f is monomorphism. In the second case, when $\partial \operatorname{Ker} f=-1$ then $\partial \operatorname{Im} f=0$, so $\operatorname{Im} f$ can contain just regular direct summands.

Lemma 2.2. Let P be a preprojective indecomposable with defect $\partial P=-1$.
a) Suppose that $\operatorname{dim} P>\delta$. Then P projects to the quasi-simple regular $R_{x}[1]$ from each homogeneous tube τ_{x} with $(\operatorname{deg} x) \delta<\operatorname{dim} P$. Also P projects to a unique quasi-simple regular from the mouth of each non-homogeneous tube τ_{x}. We will denote these quasi-simple regulars by $R_{x}^{P}[1]$ where for τ_{x} homogeneous with $(\operatorname{deg} x) \delta<\operatorname{dim} P$ we have $R_{x}^{P}[1]=R_{x}[1]$.
b) Suppose that $\operatorname{dim} P \ngtr \delta$. Then P projects at most to a single quasi-simple regular from each non-homogeneous tube τ_{x} denoted by $R_{x}^{P}[1]$.

Proof. a) Suppose that $R_{x}[1]$ denotes the quasi-simple regular from the mouth of the homogeneous tube τ_{x} with $\underline{\operatorname{dim}} R_{x}[1]=(\operatorname{deg} x) \delta<\underline{\operatorname{dim}} P$. Then we have $\operatorname{Ext}^{1}\left(P, R_{x}[1]\right)=0$ (see Lemma 1.1.) so

$$
\begin{aligned}
\operatorname{dim}_{k} \operatorname{Hom}\left(P, R_{x}[1]\right) & =\left\langle\underline{\operatorname{dim}} P, \underline{\operatorname{dim}} R_{x}[1]\right\rangle=\langle\underline{\operatorname{dim}} P,(\operatorname{deg} x) \delta\rangle \\
& =(\operatorname{deg} x)(-\partial P)=\operatorname{deg} x \neq 0 .
\end{aligned}
$$

This means that we have a nonzero morphism $f: P \rightarrow R_{x}[1]$ with $\underline{\operatorname{dim} P>}$ $\underline{\operatorname{dim}} R_{x}[1]$. Using Lemma 2.1. we deduce that f is not a monomorphism, so $\operatorname{Im} f$ is regular and $R_{x}[1]$ is quasi-simple, which means that f is an epimorphism.

Denote by $R_{x}^{i}[1], i=\overline{1, m}$ the i-th quasi-simple regular from the mouth of the non-homogeneous tube τ_{x} of rank $m \geq 2$. Notice that this time $\operatorname{deg} x=1$, $\sum_{i=1}^{m} \underline{\operatorname{dim}} R_{x}^{i}[1]=\delta$ and $\operatorname{Ext}^{1}\left(P, R_{x}^{i}[1]\right)=0$ so we have

$$
\begin{aligned}
& \sum_{i=1}^{m} \operatorname{dim}_{k} \operatorname{Hom}\left(P, R_{x}^{i}[1]\right)=\sum_{i=1}^{m}\left\langle\underline{\operatorname{dim}} P, \underline{\operatorname{dim}} R_{x}^{i}[1]\right\rangle \\
& =\left\langle\underline{\operatorname{dim}} P, \sum_{i=1}^{m} \underline{\operatorname{dim}} R_{x}^{i}[1]\right\rangle=\langle\underline{\operatorname{dim}} P, \delta\rangle=-\partial P=1 .
\end{aligned}
$$

It follows that $\exists!i_{0}$ such that $\operatorname{Hom}\left(P, R_{x}^{i_{0}}[1]\right) \neq 0$, so we have a nonzero morphism $f: P \rightarrow R_{x}^{i_{0}}[1]$ with $\underline{\operatorname{dim}} P>\delta>\underline{\operatorname{dim}} R_{x}^{i_{0}}[1]$. Using Lemma 2.1. we deduce that f is not a monomorphism, so $\operatorname{Im} f$ is regular and $R_{x}^{i_{0}}[1]$ is quasisimple, which means that f is an epimorphism. Let $R_{x}^{P}[1]:=R_{x}^{i_{0}}[1]$.
b) Since $\underline{\operatorname{dim}} P \ngtr \delta$ clearly P could project only on quasi-simple regulars from non-homogeneous tubes. Denote again by $R_{x}^{i}[1], i=\overline{1, m}$ the i-th quasisimple regular on the mouth of the non-homogeneous tube τ_{x} of rank $m \geq 2$. As above we can deduce that $\exists!i_{0}$ such that $\operatorname{Hom}\left(P, R_{x}^{i_{0}}[1]\right) \neq 0$, so we have a nonzero morphism $f: P \rightarrow R_{x}^{i_{0}}[1]$. But if $\underline{\operatorname{dim}} P \ngtr \underline{\operatorname{dim}} R_{x}^{i_{0}}[1]$ then f is a monomorphism and not an epimorphism.

Remark 2.3. Notice that $\operatorname{dim}_{k} \operatorname{Hom}\left(P, R_{x}^{P}[1]\right)=\operatorname{deg} x$.
THEOREM 2.4. Let $P \nsubseteq P^{\prime}$ be preprojective indecomposables with defect -1 and suppose $F_{X P}^{P^{\prime}} \neq 0$ for some module X. Then X satisfies the following conditions:
i) it is a regular module with $\underline{\operatorname{dim}} X=\underline{\operatorname{dim}} P^{\prime}-\underline{\operatorname{dim}} P$,
ii) if it has an indecomposable component from a tube τ_{x} then the quasi-top of this component is the quasi-simple regular $R_{x}^{P^{\prime}}[1]$,
iii) its indecomposable components are taken from pairwise different tubes.

Proof. We will check the conditions i),ii),iii).
Condition i). Since $F_{X P}^{P^{\prime}} \neq 0$ we have a short exact sequence $0 \rightarrow P \rightarrow$ $P^{\prime} \rightarrow X \rightarrow 0$. Then $\underline{\operatorname{dim}} X=\underline{\operatorname{dim}} P^{\prime}-\underline{\operatorname{dim}} P$ and $\partial P^{\prime}=\partial P+\partial X$, but $\partial P^{\prime}=$ $\partial P=-1$, so $\partial X=0$. Notice that X can't have preprojective components,
since if $P^{\prime \prime}$ would be such a component then $P^{\prime} \rightarrow P^{\prime \prime} \not \equiv P^{\prime}$ which is impossible due to Lemma 2.1. a). So X is regular.

Condition ii). Let R be an indecomposable component of X taken from the tube τ_{x}. Denote by topR its quasi-top which must be quasi-simple due to uniseriality. Then $P^{\prime} \rightarrow X \rightarrow R \rightarrow \operatorname{top} R$ so using Lemma 2.2. top $R \cong R_{x}^{P^{\prime}}[1]$.

Condition iii). Suppose $X=X^{\prime} \oplus R_{1} \oplus \ldots \oplus R_{l}$, where R_{1}, \ldots, R_{l} are taken from the same tube τ_{x}. Then by Condition ii) they have the same quasi-top $R_{x}^{P^{\prime}}[1]$ and we have the monomorphism $0 \rightarrow \operatorname{Hom}\left(X, R_{x}^{P^{\prime}}[1]\right) \rightarrow$ $\operatorname{Hom}\left(P^{\prime}, R_{x}^{P^{\prime}}[1]\right)$.

It follows that $\operatorname{dim}_{k} \operatorname{Hom}\left(X, R_{x}^{P^{\prime}}[1]\right) \leq \operatorname{dim}_{k} \operatorname{Hom}\left(P^{\prime}, R_{x}^{P^{\prime}}[1]\right)=\operatorname{deg} x$. Then $\operatorname{dim}_{k} \operatorname{Hom}\left(X, R_{x}^{P^{\prime}}[1]\right)=\operatorname{dim}_{k} \operatorname{Hom}\left(X^{\prime}, R_{x}^{P^{\prime}}[1]\right)+\sum_{i=1}^{l} \operatorname{dim}_{k} \operatorname{Hom}\left(R_{i}, R_{x}^{P^{\prime}}[1]\right) \leq$ $\operatorname{deg} x$. Hence we have $\operatorname{dim}_{k} \operatorname{Hom}\left(R_{i}, R_{x}^{P^{\prime}}[1]\right)=\operatorname{deg} x$ for τ_{x} homogeneous and $\operatorname{dim}_{k} \operatorname{Hom}\left(R_{i}, R_{x}^{P^{\prime}}[1]\right) \geq 1=\operatorname{deg} x$ for τ_{x} non-homogeneous. It follows that $l=1$.

We move on to the preinjective case.
Lemma 2.5. Let I be preinjective indecomposable with defect $\partial I=1$ and I^{\prime} a preinjective. If $f: I^{\prime} \rightarrow I$ is a monomorphism then its an isomorphism.

Proof. Consider the short exact sequence $0 \rightarrow I^{\prime} \rightarrow I \rightarrow I / I^{\prime} \rightarrow 0$. Since $I \rightarrow I / I^{\prime}$ then I / I^{\prime} is either preinjective or 0 . But if I / I^{\prime} is preinjective then $1=\partial I=\partial I^{\prime}+\partial I / I^{\prime}>1$ a contradiction, so I / I^{\prime} is 0 and f is an isomorphism.

LEmma 2.6. Let R be a quasi-simple regular and I a preinjective indecomposable with defect $\partial I=1$. Suppose that $\underline{\operatorname{dim} R}<\underline{\operatorname{dim} I}$. Then a nonzero morphism $f: R \rightarrow I$ is a monomorphism.

Proof. Consider the short exact sequence $0 \rightarrow \operatorname{Ker} f \rightarrow R \rightarrow \operatorname{Im} f \rightarrow 0$. Since Ker $f \hookrightarrow R, R$ is quasi-simple regular and f is nonzero $\operatorname{Ker} f$ could be preprojective or 0 . But if Ker f is preprojective then from $0=\partial R=$ $\partial \operatorname{Ker} f+\partial \operatorname{Im} f$ results that $\operatorname{Im} f$ has a preinjective component which embeds into I. This would imply that $\operatorname{Im} f=I$ so $R \rightarrow I$, a contradiction due to $\underline{\operatorname{dim}} R<\underline{\operatorname{dim}} I$. So Ker f is 0 .

Lemma 2.7. Let I be a preinjective indecomposable with defect $\partial I=1$.
 homogeneous tube τ_{x} with $(\operatorname{deg} x) \delta<\operatorname{dim} I$ embeds into I. Also a unique quasisimple regular from the mouth of each non-homogeneous tube τ_{x} embeds into I. We will denote these quasi-simple regulars by $R_{x}^{I}[1]$ where for τ_{x} homogeneous with $(\operatorname{deg} x) \delta<\operatorname{dim} I$ we have $R_{x}^{I}[1]=R_{x}[1]$.
 each non-homogeneous tube τ_{x} embeds into I. We denote this quasi-simple regular by $R_{x}^{I}[1]$.

Proof. a) Suppose that $R_{x}[1]$ denotes the quasi-simple regular from the mouth of the homogeneous tube τ_{x} with $\underline{\operatorname{dim}} R_{x}[1]=(\operatorname{deg} x) \delta<\underline{\operatorname{dim}} I$. Then we have $\operatorname{Ext}^{1}\left(R_{x}[1], I\right)=0$ (see Lemma 1.1.) so

$$
\begin{aligned}
\operatorname{dim}_{k} \operatorname{Hom}\left(R_{x}[1], I\right) & =\left\langle\underline{\operatorname{dim}} R_{x}[1], \underline{\operatorname{dim}} I\right\rangle=\langle(\operatorname{deg} x) \delta, \underline{\operatorname{dim}} I\rangle \\
& =(\operatorname{deg} x)(\partial I)=\operatorname{deg} x \neq 0 .
\end{aligned}
$$

This means that we have a nonzero morphism $f: R_{x}[1] \rightarrow I$ with $\underline{\operatorname{dim} I>}$ $\underline{\operatorname{dim}} R_{x}[1]$. Using Lemma 2.6. we deduce that f is a monomorphism.

Denote by $R_{x}^{i}[1], i=\overline{1, m}$ the i-th quasi-simple regular from the mouth of the non-homogeneous tube τ_{x} of rank $m \geq 2$. Notice that this time $\operatorname{deg} x=1$, $\sum_{i=1}^{m} \underline{\operatorname{dim}} R_{x}^{i}[1]=\delta$ and $\operatorname{Ext}^{1}\left(R_{x}^{i}[1], I\right)=0$ so we have

$$
\begin{aligned}
& \sum_{i=1}^{m} \operatorname{dim}_{k} \operatorname{Hom}\left(R_{x}^{i}[1], I\right)=\sum_{i=1}^{m}\left\langle\underline{\operatorname{dim}} R_{x}^{i}[1], \underline{\operatorname{dim}} I\right\rangle \\
& =\left\langle\sum_{i=1}^{m} \underline{\operatorname{dim}} R_{x}^{i}[1], \underline{\operatorname{dim}} I\right\rangle=\langle\delta, \underline{\operatorname{dim}} I\rangle=\partial I=1 .
\end{aligned}
$$

It follows that $\exists!i_{0}$ such that $\operatorname{Hom}\left(R_{x}^{i_{0}}[1], I\right) \neq 0$, so we have a nonzero mor$\operatorname{phism} f: R_{x}^{i_{0}}[1] \rightarrow I$ with $\underline{\operatorname{dim} I>\delta>\underline{\operatorname{dim}} R_{x}^{i_{0}}[1] \text {. Using Lemma 2.6. we }}$ deduce that f is a monomorphism. Let $R_{x}^{I}[1]:=R_{x}^{i_{0}}[1]$.
b) Since $\operatorname{dim} I<\delta$ clearly only quasi-simple regulars from non-homogeneous tubes could embed into I. Denote again by $R_{x}^{i}[1], i=\overline{1, m}$ the i-th quasisimple regular on the mouth of the non-homogeneous tube τ_{x} of rank $m \geq 2$. As above we can deduce that $\exists!i_{0}$ such that $\operatorname{Hom}\left(R_{x}^{i_{0}}[1], I\right) \neq 0$, so we have
 monomorphism.

Remark 2.8. Notice that $\operatorname{dim}_{k} \operatorname{Hom}\left(R_{x}^{I}[1], I\right)=\operatorname{deg} x$.
ThEOREM 2.9. Let $I \nsubseteq I^{\prime}$ be preinjective indecomposables with defect 1 and suppose $F_{I X}^{I^{\prime}} \neq 0$ for some module X. Then X satisfies the following conditions:
i) it is a regular module with $\underline{\operatorname{dim}} X=\underline{\operatorname{dim}} I^{\prime}-\underline{\operatorname{dim}} I$,
ii) if it has an indecomposable component from a tube τ_{x} then the quasi-socle of this component is the quasi-simple regular $R_{x}^{I^{\prime}}[1]$,
iii) its indecomposable components are taken from pairwise different tubes.

Proof. We will check the conditions i),ii),iii).
Condition i). Since $F_{I X}^{I^{\prime}} \neq 0$ we have a short exact sequence $0 \rightarrow X \rightarrow I^{\prime} \rightarrow$ $I \rightarrow 0$. Then $\underline{\operatorname{dim}} X=\underline{\operatorname{dim}} I^{\prime}-\underline{\operatorname{dim}} I$ and $\partial I^{\prime}=\partial I+\partial X$, but $\partial I^{\prime}=\partial I=1$, so $\partial X=0$. Notice that X can't have preinjective components, since if $I^{\prime \prime}$ would be such a component then $I^{\prime \prime} \hookrightarrow I^{\prime}$ so $I^{\prime \prime} \cong I^{\prime}$ due to Lemma 2.5 . which is a contradiction. It follows that X is regular

Condition ii). Let R be an indecomposable component of X taken from the tube τ_{x}. Denote by $\operatorname{soc} R$ its quasi-socle which must be quasi-simple due to uniseriality. Then $\operatorname{soc} R \hookrightarrow R \hookrightarrow X \hookrightarrow I^{\prime}$ so using Lemma 2.7. soc $R \cong R_{x}^{I^{\prime}}[1]$.

Condition iii). Suppose $X=X^{\prime} \oplus R_{1} \oplus \ldots \oplus R_{l}$, where R_{1}, \ldots, R_{l} are taken from the same tube τ_{x}. Then by Condition ii) they have the same quasi-socle $R_{x}^{I^{\prime}}[1]$ and we have the monomorphism $0 \rightarrow \operatorname{Hom}\left(R_{x}^{I^{\prime}}[1], X\right) \rightarrow$ $\operatorname{Hom}\left(R_{x}^{I^{\prime}}[1], I^{\prime}\right)$.

It follows that $\operatorname{dim}_{k} \operatorname{Hom}\left(R_{x}^{I^{\prime}}[1], X\right) \leq \operatorname{dim}_{k} \operatorname{Hom}\left(R_{x}^{I^{\prime}}[1], I^{\prime}\right)=\operatorname{deg} x$. Then $\operatorname{dim}_{k} \operatorname{Hom}\left(R_{x}^{X^{\prime}}[1], X\right)=\operatorname{dim}_{k} \operatorname{Hom}\left(R_{x}^{I^{\prime}}[1], X^{\prime}\right)+\sum_{i=1}^{l} \operatorname{dim}_{k} \operatorname{Hom}\left(R_{x}^{I^{\prime}}[1], R_{i}\right) \leq$ $\operatorname{deg} x$. Hence we have $\operatorname{dim}_{k} \operatorname{Hom}\left(R_{x}^{I^{\prime}}[1], R_{i}\right)=\operatorname{deg} x$ for τ_{x} homogeneous and $\operatorname{dim}_{k} \operatorname{Hom}\left(R_{x}^{I^{\prime}}[1], R_{i}\right) \geq 1=\operatorname{deg} x$ for τ_{x} non-homogeneous. It follows that $l=1$.

REFERENCES

[1] Assem, I., Simson, D. and Skowronski, A., Elements of Representation Theory of Associative Algebras, Volume 1: Techniques of Representation Theory, LMS Student Texts, 65, Cambridge Univ. Press, 2006.
[2] Auslander, M., Reiten, I. and Smalø, S., Representation Theory of Artin Algebras, Cambridge Stud. in Adv. Math., 36, Cambridge Univ. Press, 1995.
[3] Dlab, V. and Ringel, C. M., Indecomposable representations of graphs and algebras, Mem. Amer. Math. Soc., 173, 1976.
[4] Ringel, C. M., Tame algebras and Integral Quadratic Forms, Lect. Notes Math., 1099, Springer, 1984.
[5] Zhang, P., Composition algebras of affine type, J. Algebra, 206 (1998), 505-540.

Received September 5, 2010
Accepted December 3, 2010

"Babeş-Bolyai" University
Faculty of Mathematics and Computer Science
Str. Mihail Kogălniceanu Nr. 1
400084 Cluj-Napoca, Romania
E-mail: szanto.cs@gmail.com

[^0]: This work was supported by Grant PN II-RU-TE-2009-1-ID 303.

