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ON COMMUTATIVITY OF 2-TORSION FREE ∗-PRIME RINGS
WITH GENERALIZED DERIVATIONS

NADEEM UR REHMAN and RADWAN MOHAMMED AL-OMARY

Abstract. Let (R, ∗) be a 2-torsion free ∗-prime ring with involution ∗, I 6= 0 a
∗-ideal of R. An additive mapping F : R → R is called a generalized derivation
on R if there exists a derivation d: R → R such that F (xy) = F (x)y + xd(y)
holds for all x, y ∈ R. In the present paper, we prove the commutativity of a
∗-prime ring R admitting generalized derivations satisfying several conditions,
but associated with a derivation commuting with ∗.
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1. INTRODUCTION

Throughout the present paper R will denote an associative ring with invo-
lution ∗ and center Z(R). For each x, y ∈ R, the symbol [x, y] will represent
the commutator xy−yx and the symbol x◦y stands for the skew-commutator
xy + yx. A left (resp. right, two sided) ideal I of R is called a left (resp.
right, two sided) ∗-ideal if ∗(I) = I. An ideal P of R is called ∗-prime ideal if
P (6= R) is a ∗-ideal and for ∗-ideals I, J of R, IJ ⊆ P implies that I ⊆ P or
J ⊆ P . An ideal Q of R is called ∗-semiprime ideal if for any ∗-ideal I, I2 ⊆ Q
implies that I ⊆ Q. A ring R equipped with an involution ∗ is said to be a
∗-prime ring if for any a, b ∈ R, aRb = aR ∗ (b) = {0} implies a = 0 or b = 0.
Obviously, every prime ring equipped with involution ∗ is ∗-prime. The con-
verse need not be true in general. Such a counterexample due to L. Oukhtite
is as following: Let R be a prime ring, S = R × R◦ where R◦ is the opposite
ring of R, define σ(x, y) = (y, x). From (0, x)S(x, 0) = 0, it follows that S is
not prime. For the σ-primeness of S, we suppose that (a, b)S(x, y) = 0 and
(a, b)Sσ((x, y)) = 0, then we get aRx×yRb = 0 and aRy×xRb = 0, and hence
aRx = yRb = aRy = xRb = 0, or equivalently (a, b) = 0 or (x, y) = 0. In all
that follows, we set Sa∗(R) = {x ∈ R | ∗(x) = ±x}, where ∗ is an involution
of R.

An additive mapping d : R −→ R is called a derivation if d(xy) = d(x)y +
xd(y) for all x, y ∈ R. In particular, for fixed a ∈ R, the mapping Ia : R −→ R
given by Ia(x) = [a, x] is a derivation which is said to be an inner derivation.
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An additive function F : R −→ R is called a generalized inner derivation if
F (x) = ax+xb for fixed a, b ∈ R. For such a mapping F , it is easy to see that

F (xy) = F (x)y + x[y, b] = F (x)y + xIb(y) for all x, y ∈ R.

This observation leads to the following definition, an additive mapping F :
R → R is called a generalized derivation associated with a derivation d if
F (xy) = F (x)y + xd(y) holds for all x, y ∈ R.

Familiar examples of generalized derivations are derivations and general-
ized inner derivations, and the latter includes left multipliers. Since the sum
of two generalized derivations is a generalized derivation, every map of the
form F (x) = cx+ d(x), where c is a fixed element of R and d a derivation of
R, is a generalized derivation; and if R has multiplicative identity 1, then all
generalized derivations have this form. Over the last four decades, several au-
thors have proved commutativity theorems for prime rings or semiprime rings
admitting automorphisms, derivations or generalized derivations which are
centralizing or commuting on appropriate subset of R (see [1], [4], [6], [7] and
[14], for partial bibliography). In this paper, we invesigate the commutativity
of ∗-prime ring R admittings a generalized derivations F and G satisfying any
one of the following properties: (i) F ([x, y]) = (x ◦ y), (ii) F (x ◦ y) = [x, y],
(iii) [F (x), y] = (F (x)◦y), (iv) F ([x, y]) = [F (x), y], (v) F (x◦y) = (F (x)◦y),
(vi) F (x)x = xG(x), (vii) F (x2) = x2, (viii) [F (x), y] = [x,G(y)], (ix)
F ([x, y]) = [F (x), y] + [d(y), x] and (x) F (x ◦ y) = F (x) ◦ y − d(y) ◦ x for
all x, y ∈ I.

2. PRELIMINARY RESULTS

We shall use without explicit mention the following basic identities, that
hold for any x, y, z ∈ R:

• [xy, z] = x[y, z] + [x, z]y,
• [x, yz] = y[x, z] + [x, y]z,
• x ◦ (yz) = (x ◦ y)z − y[x, z] = y(x ◦ z) + [x, y]z,
• (xy) ◦ z = x(y ◦ z)− [x, z]y = (x ◦ z)y + x[y, z].

We begin our discussion with the following results.

Lemma 2.1. [13, Lemma 3.1] Let R be a 2-torsion free ∗-prime ring and I
a nonzero ∗-ideal of R. If a, b ∈ R such that aIb = aI ∗ (b) = 0, then a = 0 or
b = 0.

Lemma 2.2. [16, Lemma 2.3] Let R be a 2-torsion free ∗-prime ring and I a
nonzero ∗-ideal of R. If R admits a derivation d commuting with ∗ such that
d2(I) = 0, then d = 0.

Lemma 2.3. [15, Lemma 2.3] Let R be a 2-torsion free ∗-prime ring and I
a nonzero ∗-ideal of R. If R admits a nonzero derivation d commuting with ∗
such that [d(x), x] = 0 for all x ∈ I, then R is commutative.
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Lemma 2.4. Let R be a 2-torsion free ∗-prime ring and I a nonzero ∗-
ideal of R. If R admits a nonzero derivation d commuting with ∗ such that
[x, y]Id(x) = 0 for all x, y ∈ I, then R is commutative.

Proof. We have

[x, y]Id(x) = 0 for all x, y ∈ I.(1)

Since I is a ∗-ideal and d∗ = ∗d, for all x ∈ I ∩Sa∗(R), thus by Lemma 2.1, we
have either [x, z] = 0 or d(x) = 0. Using the fact that x − ∗(x) ∈ I ∩ Sa∗(R)
for all x ∈ I, then [x − ∗(x), z] = 0 or d(x − ∗(x)) = 0 for all z ∈ I. If
d(x−∗(x)) = 0, then d(x) = ∗(d(x)) and hence (1) gives that either [x, z] = 0
or d(x) = 0. On the other hand if [x−∗(x), z] = 0, then [x, z] = [∗(x), z] for all
z ∈ I. As I is ∗-ideal, it follows from (1) that [x, z]yd(x) = ∗([x, z])yd(x) = 0
and hence by Lemma 2.1, we get either [x, z] = 0 or d(x) = 0. Now let
A = {x ∈ I | [x, z] = 0 for all z ∈ I} and B = {x ∈ I | d(x) = 0}. Then A
and B are both additive subgroups of I and A∪B = I. But (I,+) is not union
of two its proper subgroups shows that either A = I or B = I. If I = B, then
d(x) = 0 for all x ∈ I. For any r ∈ R, replace x by xr to get xd(r) = 0 and
hence Id(r) = 0 for all r ∈ R. In particular 1Id(R) = 0 = ∗(1)Id(R). Thus,
by Lemma 2.1 we get d = 0, a contradiction. If I = A, then [x, y] = 0 for all
x, y ∈ I and hence using the same technique as used in the proof of Theorem
1.1 of [14], we get the required result. �

3. ∗-IDEALS AND GENERALIZED DERIVATIONS

Theorem 3.1. Let R be a 2-torsion free ∗-prime ring with involution ∗, I
a nonzero ∗-ideal of R. If R admits a generalized derivation F associated with
a nonzero derivation d commuting with ∗ such that F (x) = 0 for all x ∈ I,
then R is commutative.

Proof. For any x ∈ I, we have F (x) = 0. For any r ∈ R replacing x by
[x, r], we get F (x)r+ xd(r)− F (r)x− rd(x) = 0 and hence by the hypothesis
we find that

xd(r)− F (r)x− rd(x) = 0.(2)

Replace r by rx in (2) and use (2) to get [x, r]d(x) = 0 for all x ∈ I, r ∈ R.
Again replacing r by yr, we get

[x, y]Rd(x) = {0} for all x, y ∈ I.(3)

For all x ∈ I ∩ Sa∗(R), relation (3) yields that [x, y]Rd(x) = 0 = [x, y]R ∗
(d(x)). Since R is ∗-prime ring and hence we obtain either [x, y] = 0 or
d(x) = 0.

Now for any x ∈ I, using the fact x−∗(x) ∈ I∩Sa∗(R), then [x−∗(x), y] = 0
or d(x − ∗(x)) = 0. If d(x − ∗(x)) = 0, then d(x) = d(∗(x)) = ∗(d(x))
and hence from (3) since I is ∗-ideal either [x, y] = 0 or d(x) = 0. Suppose
[x−∗(x), y] = 0 for all y ∈ I. Since x+∗(x) ∈ I∩Sa∗(R), then d(x+∗(x)) = 0
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or [x + ∗(x), y] = 0 for all y ∈ I. If [x + ∗(x), y] = 0, then 2[x, y] = 0 that is,
[x, y] = 0. If d(x + ∗(x)) = 0, then d(x) = − ∗ (d(x)) again since I is ∗-ideal
and by (3) we get either [x, y] = 0 or d(x) = 0. Consequently, for all x ∈ I,
either [x, y] = 0 or d(x) = 0. Now using similar arguments as used in the last
paragraph of the proof of Lemma 2.4, we get the required result. �

Theorem 3.2. Let R be a 2-torsion free ∗-prime ring and I be a nonzero
∗-ideal of R. Suppose that R admits a generalized derivation F associated with
a derivation d commuting with ∗ such that

(i) F ([x, y]) = (x ◦ y), for all x, y ∈ I, or
(ii) F ([x, y]) + (x ◦ y) = 0, for all x, y ∈ I, or
(iii) [d(x), F (y)] = [x, y], for all x, y ∈ I, or
(iv) [d(x), F (y)] + [x, y] = 0, for all x, y ∈ I, or
(v) F (x ◦ y) = [x, y], for all x, y ∈ I, or
(vi) F (x ◦ y) = −[x, y], for all x, y ∈ I.

If F = 0 or d 6= 0, then R is commutative.

Proof. (i) If F = 0, then x◦y = 0 for all x, y ∈ I. Replacing y by yz, we get
y[x, z] = 0 for all x, y, z ∈ I. In particular, [x, z]I[x, z] = 0 = [x, z]I ∗ ([x, z]).
Thus by Lemma 2.1, we get [x, z] = 0 and hence by [14, proof of theorem 1.1]
we get the required result.

Therefore, we shall assume that d 6= 0. Given that F is a generalized
derivation of R such that

F ([x, y]) = (x ◦ y) for all x, y ∈ I.(4)

This can be rewritten as F (x)y + xd(y) − F (y)x − yd(x) = (x ◦ y). Now,
replacing y by yx in the above expression we find that

[x, y]d(x) = 0.(5)

Again replace y by zy in (5) and use (5) to get [x, z]yd(x) = 0, that is,

[x, z]Id(x) = {0} for all x, z ∈ I.(6)

Hence by Lemma 2.4, we get the required result.
(ii) If F satisfies F ([x, y]) = −(x ◦ y), then (−F ) satisfies (−F )([x, y]) =

(x ◦ y) for all x, y ∈ I and hence by part (i), our result follows.
(iii) If F = 0, then for any x, y ∈ I we have [x, y] = 0. Thus using the same

arguments as used in the proof of Theorem 1.1 of [14], we get the required
result.

Henceforth, we shall assume that d 6= 0. For any x, y ∈ I, we have

[d(x), F (y)]) = [x, y].(7)

Replacing y by yz in (7), we get

F (y)[d(x), z] + y[d(x), d(z)] + [d(x), y]d(z) = y[x, z].(8)

Again replace z by zd(x) in (8) to get

y[d(x), z]d2(x) + yz[d(x), d2(x)] + [d(x), y]zd2(x) = yz[x, d(x)].(9)
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Now, replacing y by ty in (9), we obtain

[d(x), t]yzd2(x) = 0 for all x, y, z, t ∈ I.(10)

Let x ∈ I ∩ Sa∗(R); since d commute with ∗, (10) yields that

[d(x), t]yId2(x) = {0} = [d(x), t]yI ∗ (d2(x)) for all y, t ∈ I.
Thus by Lemma 2.1, either [d(x), t]y = 0 or d2(x) = 0. If [d(x), t]y = 0 for all
y, t ∈ I, then [d(x), t]I = 0 so that [d(x), t] = 0 by Lemma 2.1. Therefore, for
each x ∈ I ∩Sa∗R, we have [d(x), t] = 0 or d2(x) = 0 for all t ∈ I. Now for any
x ∈ I, using the fact that x − ∗(x) ∈ I ∩ Sa∗R and hence [d(x − ∗(x)), t] = 0
or d2(x− ∗(x)) = 0. If d2(x− ∗(x)) = 0, then d2(x) = ∗(d2(x)) and hence by
in view of Lemma 2.1 either [d(x), t] = 0 or d2(x) = 0. If d2(x − ∗(x)) = 0
and using the fact that x + ∗(x) ∈ I ∩ Sa∗ , then [d(x + ∗(x)), t] = 0 or
d2(x + ∗(x)) = 0. If [d(x + ∗(x)), t] = 0, then 2[d(x), t] = 0. Since R is
2-torsion free so that [d(x), t] = 0 for all t ∈ I. If d2(x + ∗(x)) = 0, then
d2(x) = − ∗ (d2(x)) and hence again by Lemma 2.1 either [d(x), t] = 0 for all
t ∈ I or d2(x) = 0. Consequently, for all x ∈ I we find that either [d(x), t] = 0
or d2(x) = 0. This means that I is the union of two its additive subgroups
U = {x ∈ I | [d(x), t] = 0 for all t ∈ I} and V = {x ∈ I | d2(x) = 0}. Since a
group cannot be the union of its two proper subgroups and hence either I = U
or I = V . If I = V , then d2(x) = 0 for all x ∈ I and hence by Lemma 2.2,
we get a contradiction. On the other hand if I = U , then [d(x), t] = 0 for all
x, t ∈ I and in particular [d(x), x] = 0 for all x ∈ I and hence by Lemma 2.3,
R is commutative.

(iv) Using the same techniques as used above with necessary variations we
get the required result.

(v) If F = 0, then we have [x, y] = 0 for all x, y ∈ I and hence using
the same arguments as used in the proof of Theorem 1.1 of [14], we get the
required result.

Therefore, we shall assume that d 6= 0. For any x, y ∈ I, we have F (x◦y) =
[x, y]. This can be rewritten as

F (x)y + xd(y) + F (y)x+ yd(x) = [x, y].(11)

Replacing y by yx in (11), we get

(x ◦ y)d(x) = 0 for all x, y ∈ I.(12)

Now, replace y by zy in (12), to get [x, z]yd(x) = 0 for all x, y, z ∈ I and hence
by Lemma 2.4 we get the required result.

(vi) Use similar arguments as above. �

Theorem 3.3. Let R be a 2-torsion free ∗-prime ring and I be a nonzero
∗-ideal of R. Suppose that R admits a generalized derivation F associated with
a nonzero derivation d commuting with ∗ such that

(i) [F (x), y] = (F (x) ◦ y), for all x, y ∈ I, or
(ii) [F (x), y] + (F (x) ◦ y) = 0, for all x, y ∈ I, or
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(iii) F ([x, y]) = [F (x), y], for all x, y ∈ I, or
(iv) F ([x, y]) + [F (x), y] = 0, for all x, y ∈ I, or
(v) F (x ◦ y) = (F (x) ◦ y), for all x, y ∈ I, or
(vi) F (x ◦ y) + (F (x) ◦ y) = 0, for all x, y ∈ I, or
(vii) F (x2) = x2, for all x ∈ I, or

(viii) F (x2) + x2 = 0, for all x ∈ I, or
(ix) F ([x, y]) = [F (x), y] + [d(y), x] for all x, y ∈ I, or
(x) F (x ◦ y) = F (x) ◦ y − d(y) ◦ x for all x, y ∈ I.

Then R is commutative.

Proof. (i) We have

[F (x), y] = (F (x) ◦ y) for all x, y ∈ I.(13)

Replacing y by yx in (13) and using (13), we get y[F (x), x] = 0 for all x, y ∈ I
that is, I[F (x), x] = {0} and hence

[F (x), x] = 0 for all x ∈ I.(14)

Linearizing (14), we get [F (x), y]+[F (y), x] = 0 for all x, y ∈ I. Now, replacing
y by yx we find that y[d(x), x] + [y, x]d(x) = 0. Again replacing y by zy and
simplifying we arrive at [z, x]yd(x) = 0 for all x, y, z ∈ I. Notice that the
arguments given in the proof of the last paragraph of Theorem 3.2 are still
valid in the present situation and hence repeating the same process we get the
required result.

(ii) Using similar techniques with necessary variations, we get the required
result.

(iii) We have F ([x, y] = [F (x), y] for all x ∈ I. This can be rewritten as

F (x)y + xd(y)− F (y)x− yd(x) = [F (x), y].(15)

Replacing y by yx in (15), we get [x, y]d(x) = y[F (x), x] for all x, y ∈ I. Again
replace y by zy, we find that [x, z]yd(x) = 0. The last expression is same as
equation (6) and hence the result follows.

(iv) Using the same techniques as (iii) with necessary variations, we get the
required result.

(v) We have F (x ◦ y) = (F (x) ◦ y) for all x, y ∈ I. This can be rewritten as

F (x)y + xd(y) + F (y)x+ yd(x) = (F (x) ◦ y).(16)

Replacing y by yx in (16), we get (x ◦ y)d(x) = −y[F (x), x] for all x, y ∈ I.
Again replace y by zy in the above expression we find that [x, z]yd(x) = 0 for
all x, y, z ∈ I and hence use the arguments as used in the last paragraph of
Theorem 3.2 (v), we get the required result.

(vi) Using similar arguments as above.
(vii) We have

F (x2) = x2 for all x ∈ I.
Replacing x by x+ y in the above relation, we get

F (x2 + y2 + xy + yx) = x2 + y2 + xy + yx for all x, y ∈ I.(17)
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Using the given hypothesis in (17), we obtain F (xy+yx) = xy+yx for all x, y ∈
I. This can be written as F (x ◦ y) − x ◦ y = 0 for all x, y ∈ I and hence by
Theorem 2.2 of [17], we get the required result.

(viii) Using similar arguments as above.
(ix) For all x, y ∈ I, we have

F ([x, y]) = [F (x), y] + [d(y), x].(18)

Replacing y by yx in (18) and using (18), we find that

2[x, y]d(x) = y[F (x), x] + y[d(x), x] for all x, y ∈ I.(19)

Now replace y by yz in (19), to get 2[x, y]zd(x) = 0 for all x, y, z ∈ I. Since R
is 2-torsion free, we get [x, y]zd(x) = 0 for all x, y, z ∈ I. Thus, result follows
from Lemma 2.4.

(x) We have

F (x ◦ y) = F (x) ◦ y − d(y) ◦ x for all x, y ∈ I.(20)

Replacing y by yx in (20) and using (20), we find that

(x ◦ y)d(x) = −y[F (x), x]− y(d(x) ◦ x) + [y, x]d(x).(21)

Replace y by zy in (21) and use (21), to get 2[x, z]yd(x) = 0 for all x, y, z ∈ I.
Since R is 2-torsion free , we get [x, z]yd(x) = 0 for all x, y, z ∈ I. Hence we
get the required result by Lemma 2.4. �

Theorem 3.4. Let R be a 2-torsion free ∗-prime ring and I be a nonzero
∗-ideal of R. Suppose R admits a pair of generalized derivations F and G
associated with derivation d and nonzero derivation g respectively commuting
with ∗ such that

(i) F (x)x = xG(x), for all x, y ∈ I, or
(ii) F (x)x+ xG(x) = 0, for all x, y ∈ I, or
(iii) [F (x), y] = [x,G(y)], for all x ∈ I, or
(iv) [F (x), y] + [x,G(y)] = 0, for all x ∈ I.

Then R is commutative.

Proof. (i) By hypothesis, we have

F (x)x = xG(x) for all x ∈ I.

On linearizing the above relation we find that

F (x)y + F (y)x = xG(y) + yG(x) for all x, y ∈ I.(22)

Replace x by xy in (22), to get

F (x)y2 + xd(y)y + F (y)xy = xyG(y) + yG(x)y + yxg(y).(23)

Right multiplication by y to the relation (22) yields that

F (x)y2 + F (y)xy = xG(y)y + yG(x)y for all x, y ∈ I.(24)
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Combining (23) and (24), we obtain

xd(y)y = yxg(y) + x[y,G(y)] for all x, y ∈ I.(25)

Now, replacing x by zx in (25), we get

zxd(y)y = yzxg(y) + zx[y,G(y)] for all x, y, z ∈ I.(26)

Left multiplying to (25) by z, we arrive at

zxd(y)y = zyxg(y) + zx[y,G(y)] for all x, y, z ∈ I.(27)

From (26) and (27), we get [y, z]xg(y) = 0 and by Lemma 2.4 we get the
required result.

(ii) If F (x)x + xG(x) = 0 for all x ∈ I, then using the same techniques as
used above with necessary variations we get the required result. This com-
pletes the proof of our theorem.

(iii) We have
[F (x), y] = [x,G(y)] for all x, y ∈ I.

Replacing y by yx in the above expression, we obtain

y[F (x), x] = [x, y]g(x) + y[x, g(x)] for all x, y ∈ I.(28)

Again replace y by zy in (28), to get [x, z]yg(x) = 0 for all x, y, z ∈ I. Hence,
we get the required result by Lemma 2.4.

(iv) Further, if [F (x), y] + [x,G(y)] = 0 for all x, y ∈ I, then using the
same techniques as used above with necessary variations we get the required
result. �

The following is an immediate corollary of the above theorem.

Corollary 3.5. Let R be a 2-torsion free ∗-prime ring and I be a nonzero
∗-ideal of R. Let d and g be derivations of R such that at least one of them
is nonzero and commuting with ∗. If d(x)x = xg(x) for all x ∈ I, then R is
commutative.

Proceeding on the same lines with necessary variations and taking G = F
or G = −F in Theorem 3.4 (i) and (ii), we get the following:

Corollary 3.6. Let R be a 2-torsion free ∗-prime ring and I be a nonzero
∗-ideal of R. Suppose that R admits a generalized derivation F with associated
nonzero derivation d commuting with ∗ such that [F (x), x] = 0 for all x ∈ I
or if F (x) ◦ x = 0 for all x ∈ I. Then R is commutative.

Proceeding on the same lines with necessary variations and taking G = F
or G = −F in Theorem 3.4 (iii) and (iv), one can prove the following result.

Corollary 3.7. Let R be a 2-torsion free ∗-prime ring and I be a nonzero
∗-ideal of R. Suppose that R admits a generalized derivation F with associated
nonzero derivation d commuting with ∗ such that

(i) [F (x), y] = [x, F (y)], for all x ∈ I, or
(ii) [F (x), y] + [x, F (y)] = 0, for all x ∈ I.
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Then R is commutative.

Example 3.8. Let S be any ring and let R =

{(
a b
0 0

)
| a, b ∈ S

}
and

I =

{(
0 b
0 0

)
| b ∈ S

}
. Define ∗ : R → R by ∗

(
a b
0 0

)
=

(
−a −b
0 0

)
for all

(
a b
0 0

)
∈ R. and d : R → R by d

(
a b
0 0

)
=

(
0 b
0 0

)
and

F : R → R by F

(
a b
0 0

)
=

(
0 a
0 0

)
. Then R is a ring under usual

operations, I is a ∗-ideal, and it is easy to see that d is a derivation of R
and F is a generalized derivation of R, and d is commuting with ∗ such that
satisfying any one of the following properties: (i) F ([x, y]) = (x ◦ y), (ii)
[d(x), F (y)] = [x, y], (iii) F (x ◦ y) = [x, y], (iv) [F (x), y] = (F (x) ◦ y), (v)
F ([x, y]) = [F (x), y], (vi) F (x ◦ y) = (F (x) ◦ y), (vii) F (x2) = x2, (viii)
F ([x, y]) = [F (x), y] + [d(y), x], (ix) F (x ◦ y) = F (x) ◦ y − d(y) ◦ x for all
x, y ∈ I, but R is not commutative. Hence, in Theorem 3.2 and Theorem 3.3,
the hypothesis of primeness cannot be omitted.

Example 3.9. Let ZZ be the ring of integers in which a2 = 0 for all a ∈ ZZ

and let R =

{(
a 0
b 0

)
| a, b ∈ ZZ

}
and I =

{(
b 0
0 0

)
| b ∈ ZZ

}
. Define

∗ : R→ R by ∗
(
a 0
b 0

)
=

(
−a 0
−b 0

)
for all

(
a 0
b 0

)
∈ R. and d : R→ R

by d

(
a 0
b 0

)
=

(
0 0
a 0

)
, g : R → R by g

(
a 0
b 0

)
=

(
0 0

a− b 0

)
, and

F : R → R by F

(
a 0
b 0

)
=

(
0 0
b 0

)
, G : R → R by G

(
a 0
b 0

)
=(

a 0
0 0

)
. Then R is a ring under usual operations, I is a ∗-ideal, and it is

easy to see that d and g are derivations of R and F and G are generalized
derivations of R, and d is commuting with ∗ such that satisfying any one of
the following properties: (i) F (x)x = xG(x), (ii) F (x)x + xG(x) = 0, (iii)
[F (x), y] = [x,G(y)], and (iv) [F (x), y]+ [x,G(y)] = 0 for all x, y ∈ I, but R is
not commutative. Hence, in Theorem 3.4, the hypothesis of primeness cannot
be omitted.
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