
MATHEMATICA, Tome 53 (76), No 2, 2011, pp. 165–170

ON SUBORDINATION, STARLIKENESS AND CONVEXITY
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Abstract. The aim of this paper is to derive some sufficient conditions for

certain integral operators in the open unit disk U to be subordinate to β(1−z)
β−z

for some real values of β, z ∈ U and to be starlike and convex in U .
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1. INTRODUCTION

Let U = {z ∈ C : |z| < 1} be the open unit disk and let A denote the class

of functions f normalized by f(z) = z +
∞∑
k=2

akz
k, which are analytic in the

open unit disk U and satisfy the condition f(0) = f ′(0) − 1 = 0. We also
denote by S the subclass of A consisting of functions which are also univalent
in U . A function f ∈ A is said to be convex function of order ρ, 0 ≤ ρ < 1, if

it satisfies the inequality Re
(
zf ′′(z)
f ′(z) + 1

)
> ρ, z ∈ U . We denote the class of

convex functions of order ρ by K(ρ). Similarly, if f ∈ A satisfies the inequality

Re
(
zf ′(z)
f(z) + 1

)
> ρ, z ∈ U for some ρ, 0 ≤ ρ < 1, then f is said to be starlike

of order ρ. We denote the class of starlike functions of order ρ by S∗(ρ). We
note that f ∈ K ⇔ zf ′(z) ∈ S∗. In particular, the classes K(0) = K and
S∗(0) = S∗, are familiar classes of starlike and convex functions in U .

Let f and g be analytic functions in the unit disk U . The function f is said
to be subordinate to g and written f ≺ g if there exist an analytic function w
in U with w(0) = 0 and |w(z)| < 1, for z ∈ U such that f(z) = g(w(z)) for all
z ∈ U . If g is univalent on U , these conditions are equivalent to the conditions
that f(0) = g(0) and f(U) ⊂ g(U).

We consider the integral operators Fn(z) =
z∫
0

(
f1(t)
t

)α1

· . . . ·
(
fn(t)
t

)αn
dt

and Fα1,...,αn(z) =
z∫
0

(f ′1(t))
α1 · . . . · (f ′n(t))αn dt, where fi(z) ∈ A and αi > 0,

for all i ∈ {1, 2, ..., n}. These operators were introduced by D. Breaz and N.
Breaz [1] and studied by many authors (see [2], [3], [4]).
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In the present paper, we obtain some interesting sufficient conditions for
zF ′n(z)
Fn(z)

,
zF ′α1,...,αn (z)

Fα1,...,αn (z)
, Fn(z)
zF ′n(z)

and
Fα1,...,αn (z)

zF ′α1,...,αn (z)
to be subordinate to β(1−z)

β−z for

some real values of β, and the above integral operators Fn and Fα1,...,αn to be
starlike and convex of order β in U . In order to derive our main results, we
need the following new interesting results due to Shiraishi and Owa [5].

Theorem 1. [5] If f ∈ A satisfies Re
(

1 + zf ′′(z)
f ′(z)

)
< β+1

2(β−1) for some β

with 2 ≤ β < 3, or Re
(

1 + zf ′′(z)
f ′(z)

)
< 5β−1

2(β+1)

for some β with 1 < β ≤ 2, then zf ′(z)
f(z) ≺

β(1−z)
β−z and

∣∣∣ zf ′(z)f(z) −
β
β+1

∣∣∣ < β
β+1 .

This implies that f ∈ S∗, and
z∫
0

f(t)
t dt ∈ K.

Theorem 2. [5] If f ∈ A satisfies Re
(

1 + zf ′′(z)
f ′(z)

)
> − β+1

2β(β−1)

for some β ≤ −1 or Re
(

1 + zf ′′(z)
f ′(z)

)
> 3β+1

2β(β+1) for some β > 1, then

f(z)
zf ′(z) ≺

β(1−z)
β−z and f ∈ S∗

(
β+1
2β

)
. This implies that

z∫
0

f(t)
t dt ∈ K

(
β+1
2β

)
.

2. MAIN RESULTS

Our first investigation result is the following:

Theorem 3. Let αi > 0 be real numbers for i ∈ {1, 2, ..., n}. If fi ∈ A for
i ∈ {1, 2, ..., n} satisfies

(1) Re
zf ′i(z)

fi(z)
< 1 +

3− β

2(β − 1)
n∑
i=1

αi

,

for some β with 2 ≤ β < 3 or

(2) Re
zf ′i(z)

fi(z)
< 1 +

3

2

β − 1

(β + 1)
n∑
i=1

αi

for some β with 1 < β ≤ 2, we obtain zF ′n(z)
Fn(z)

≺ β(1−z)
β−z and

∣∣∣ zF ′n(z)Fn(z)
− β

β+1

∣∣∣ <
β
β+1 . This implies that Fn(z) ∈ S∗ and

z∫
0

Fn(t)
t dt ∈ K.

Proof. We calculate the derivatives of the first and second order for Fn.

Since Fn(z) =
z∫
0

(
f1(t)
t

)α1

· . . . ·
(
fn(t)
t

)αn
dt, we have F ′n(z) =

(
f1(z)
z

)α1

·

. . . ·
(
fn(z)
z

)αn
. Differentiating the above expression logarithmically, we have
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F ′′n (z)
F ′n(z)

=
n∑
i=1

αi

(
f ′i(z)
fi(z)

− 1
z

)
. Multiplying the above expression by z we obtain

zF ′′n (z)
F ′n(z)

=
n∑
i=1

αi

(
zf ′i(z)
fi(z)

− 1
)

. This is equivalent to

(3) 1 +
zF ′′n (z)

F ′n(z)
=

n∑
i=1

αi
zf ′i(z)

fi(z)
+ 1−

n∑
i=1

αi.

Taking real parts in (3) we get

(4) Re

(
1 +

zF ′′n (z)

F ′n(z)

)
=

n∑
i=1

αiRe
zf ′i(z)

fi(z)
+ 1−

n∑
i=1

αi.

Using (4) and (1) we obtain

Re

(
1 +

zF ′′n (z)

F ′n(z)

)
<

n∑
i=1

αi

1 +
3− β

2 (β − 1)
n∑
i=1

αi

+ 1−
n∑
i=1

αi

=
n∑
i=1

αi +
3− β

2(β − 1)
+ 1−

n∑
i=1

αi =
3− β

2(β − 1)
+ 1 =

β + 1

2(β − 1)
.

Therefore Re
(

1 + zF ′′n (z)
F ′n(z)

)
< β+1

2(β−1) for some β with 2 ≤ β < 3. And using

(4) and (2) we obtain

Re

(
1 +

zF ′′n (z)

F ′n(z)

)
<

n∑
i=1

αi

1 +
3

2

β − 1

(β + 1)
n∑
i=1

αi

+ 1−
n∑
i=1

αi

=

n∑
i=1

αi +
3β − 3

2(β + 1)
+ 1−

n∑
i=1

αi =
3β − 3

2(β + 1)
+ 1 =

5β − 1

2(β + 1)
.

Therefore Re
(

1 + zF ′′n (z)
F ′n(z)

)
< 5β−1

2(β+1) for some β with 1 < β ≤ 2. Hence by

using Theorem 1 we get zF ′n(z)
Fn(z)

≺ β(1−z)
β−z and

∣∣∣ zF ′n(z)Fn(z)
− β

β+1

∣∣∣ < β
β+1 . This

implies that Fn(z) ∈ S∗ and
z∫
0

Fn(t)
t dt ∈ K. �

Taking β = 2 in Theorem 3 we have following corollary.

Corollary 4. Let αi > 0 be real numbers for i ∈ {1, 2, ..., n}. If fi ∈ A
for i ∈ {1, 2, ..., n} satisfies Re

zf ′i(z)
fi(z)

< 1 + 1

2
n∑
i=1

αi

, then zF ′n(z)
Fn(z)

≺ 2(1−z)
2−z and∣∣∣ zF ′n(z)Fn(z)

− 2
3

∣∣∣ < 2
3 .
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Theorem 5. Let αi > 0 be real numbers for i ∈ {1, 2, ..., n}. If fi ∈ A for
i ∈ {1, 2, ..., n} satisfies

(5) Re
zf ′i(z)

fi(z)
> 1− β(2β − 1) + 1

2β(β − 1)
n∑
i=1

αi

for some β ≤ −1, or

(6) Re
zf ′i(z)

fi(z)
> 1− β(2β − 1)− 1

2β(β + 1)
n∑
i=1

αi

for some β > 1, then Fn(z)
zF ′n(z)

≺ β(1−z)
β−z and Fn(z) ∈ S∗

(
β+1
2β

)
. This implies

that
z∫
0

Fn(t)
t dt ∈ K

(
β+1
2β

)
.

Proof. Proceeding similarly to the proof of Theorem 3, we obtain that

(7) Re

(
1 +

zF ′′n (z)

F ′n(z)

)
=

n∑
i=1

αiRe
zf ′i(z)

fi(z)
+ 1−

n∑
i=1

αi.

Using (7) and (5) we obtain for some β ≤ −1

Re

(
1 +

zF ′′n (z)

F ′n(z)

)
>

n∑
i=1

αi

1− β(2β − 1) + 1

2β(β − 1)
n∑
i=1

αi

+ 1−
n∑
i=1

αi

=
n∑
i=1

αi −
β(2β − 1) + 1

2β(β − 1)
+ 1−

n∑
i=1

αi = −β(2β − 1) + 1

2β(β − 1)
+ 1 = − β + 1

2β(β − 1)
.

Therefore Re
(

1 + zF ′′n (z)
F ′n(z)

)
> − β+1

2β(β−1) . Next, using (7) and (6) we have

Re

(
1 +

zF ′′n (z)

F ′n(z)

)
>

n∑
i=1

αi

1− β(2β − 1)− 1

2β(β + 1)
n∑
i=1

αi

+ 1−
n∑
i=1

αi

=

n∑
i=1

αi −
β(2β − 1)− 1

2β(β + 1)
+ 1−

n∑
i=1

αi = −β(2β − 1)− 1

2β(β + 1)
+ 1 =

3β + 1

2β(β + 1)
.

for some β > 1. Therefore Re
(

1 + zF ′′n (z)
F ′n(z)

)
> 3β+1

2β(β+1) . By Theorem 2 we

get Fn(z)
zF ′n(z)

≺ β(1−z)
β−z and Fn(z) ∈ S∗

(
β+1
2β

)
. This implies that

z∫
0

Fn(t)
t dt ∈

K
(
β+1
2β

)
. �
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Theorem 6. Let αi > 0 be real numbers for i ∈ {1, 2, ..., n}. If fi ∈ A for
i ∈ {1, 2, ..., n} satisfies

(8) Re
zf ′′i (z)

f ′i(z)
<

3− β

2(β − 1)
n∑
i=1

αi

for some 2 ≤ β < 3, or

(9) Re
zf ′′i (z)

f ′i(z)
<

3

2

β − 1

(β + 1)
n∑
i=1

αi

for some 1 < β ≤ 2, then
zF ′α1,...,αn (z)

Fα1,...,αn (z)
≺ β(1−z)

β−z and
∣∣∣ zF ′α1,...,αn (z)Fα1,...,αn (z)

− β
β+1

∣∣∣ < β
β+1 .

This implies that F ′α1,...,αn(z) ∈ S∗ and
z∫
0

F ′α1,...,αn (t)

t ∈ K.

Proof. Following the same steps as in the proof of Theorem 3, we have
zF ′′α1,...,αn (z)

F ′α1,...,αn (z)
=

n∑
i=1

αi
zf ′′i (z)
f ′i(z)

. This is equivalent to 1+
zF ′′α1,...,αn (z)

F ′α1,...,αn (z)
=

n∑
i=1

αi
zf ′′i (z)
f ′i(z)

+

1. Taking real parts, we get

(10) Re

(
1 +

zF ′′α1,...,αn(z)

F ′α1,...,αn(z)

)
=

n∑
i=1

αiRe

(
zf ′′i (z)

f ′i(z)

)
+ 1.

Using (10) and (8) we obtain

Re

(
1 +

zF ′′α1,...,αn(z)

F ′α1,...,αn(z)

)
=

n∑
i=1

αiRe

(
zf ′′i (z)

f ′i(z)

)
+ 1

<

n∑
i=1

αi

 3− β

2(β − 1)
n∑
i=1

αi

+ 1 =
3− β

2(β − 1)
+ 1 =

β + 1

2(β − 1)

for some 2 ≤ β < 3. Next, using (10) and (9) we obtain

Re

(
1 +

zF ′′α1,...,αn(z)

F ′α1,...,αn(z)

)
=

n∑
i=1

αiRe

(
zf ′′i (z)

f ′i(z)

)
+ 1

<

n∑
i=1

αi

3

2

β − 1

(β + 1)
n∑
i=1

αi

+ 1 =
3β − 3

2(β + 1)
+ 1 =

5β − 1

2(β + 1)

for some 1 < β ≤ 2. By Theorem 1 we get
zF ′α1,...,αn (z)

Fα1,...,αn (z)
≺ β(1−z)

β−z and∣∣∣ zF ′α1,...,αn (z)Fα1,...,αn (z)
− β

β+1

∣∣∣ < β
β+1 . Then F ′α1,...,αn(z) ∈ S∗ and

z∫
0

F ′α1,...,αn (t)

t ∈ K. �
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Taking β = 2 in Theorem 6 we have following corollary.

Corollary 7. Let αi > 0 be real numbers for i ∈ {1, 2, ..., n}. If fi ∈ A
for i ∈ {1, 2, ..., n} satisfies Re

zf ′′i (z)
f ′i(z)

< 1

2
n∑
i=1

αi

, then
zF ′α1,...,αn (z)

Fα1,...,αn (z)
≺ 2(1−z)

2−z and∣∣∣ zF ′α1,...,αn (z)Fα1,...,αn (z)
− 2

3

∣∣∣ < 2
3 .

Theorem 8. Let αi > 0 be real numbers for i ∈ {1, 2, ..., n}. If fi ∈ A
for i ∈ {1, 2, ..., n} satisfies Re

zf ′′i (z)
f ′i(z)

> − β(2β−1)+1

2β(β−1)
n∑
i=1

αi

for some β ≤ −1, or

Re
zf ′′i (z)
f ′i(z)

> − β(2β−1)−1

2β(β+1)
n∑
i=1

αi

for some β > 1, then
Fα1,...,αn (z)

zF ′α1,...,αn (z)
≺ β(1−z)

β−z and

Fα1,...,αn(z) ∈ S∗
(
β+1
2β

)
. This implies that

z∫
0

Fα1,...,αn (t)
t dt ∈ K

(
β+1
2β

)
.

Proof. Similar to the proofs of the above theorems. �
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