ON SUBORDINATION, STARLIKENESS AND CONVEXITY OF CERTAIN INTEGRAL OPERATORS

AABED MOHAMMED, MASLINA DARUS, and DANIEL BREAZ

Abstract. The aim of this paper is to derive some sufficient conditions for certain integral operators in the open unit disk \mathcal{U} to be subordinate to $\frac{\beta(1-z)}{\beta-z}$ for some real values of β , $z \in \mathcal{U}$ and to be starlike and convex in \mathcal{U} . **MSC 2010.** 30C45.

Key words. Starlike functions, convex functions, integral operators, subordination.

1. INTRODUCTION

Let $\mathcal{U} = \{z \in \mathbb{C} : |z| < 1\}$ be the open unit disk and let \mathcal{A} denote the class of functions f normalized by $f(z) = z + \sum_{k=2}^{\infty} a_k z^k$, which are analytic in the open unit disk \mathcal{U} and satisfy the condition f(0) = f'(0) - 1 = 0. We also denote by \mathcal{S} the subclass of \mathcal{A} consisting of functions which are also univalent in \mathcal{U} . A function $f \in \mathcal{A}$ is said to be convex function of order ρ , $0 \le \rho < 1$, if it satisfies the inequality $\operatorname{Re}\left(\frac{zf''(z)}{f'(z)} + 1\right) > \rho$, $z \in \mathcal{U}$. We denote the class of convex functions of order ρ by $\mathcal{K}(\rho)$. Similarly, if $f \in \mathcal{A}$ satisfies the inequality $\operatorname{Re}\left(\frac{zf'(z)}{f(z)} + 1\right) > \rho$, $z \in \mathcal{U}$ for some ρ , $0 \le \rho < 1$, then f is said to be starlike of order ρ . We denote the class of starlike functions of order ρ by $\mathcal{S}^*(\rho)$. We note that $f \in \mathcal{K} \Leftrightarrow zf'(z) \in \mathcal{S}^*$. In particular, the classes $\mathcal{K}(0) = \mathcal{K}$ and $\mathcal{S}^*(0) = \mathcal{S}^*$, are familiar classes of starlike and convex functions in \mathcal{U} .

Let f and g be analytic functions in the unit disk \mathcal{U} . The function f is said to be subordinate to g and written $f \prec g$ if there exist an analytic function win \mathcal{U} with w(0) = 0 and |w(z)| < 1, for $z \in \mathcal{U}$ such that f(z) = g(w(z)) for all $z \in \mathcal{U}$. If g is univalent on \mathcal{U} , these conditions are equivalent to the conditions that f(0) = g(0) and $f(\mathcal{U}) \subset g(\mathcal{U})$.

We consider the integral operators $F_n(z) = \int_0^z \left(\frac{f_1(t)}{t}\right)^{\alpha_1} \cdot \ldots \cdot \left(\frac{f_n(t)}{t}\right)^{\alpha_n} dt$

and $F_{\alpha_1,...,\alpha_n}(z) = \int_0^z (f_1'(t))^{\alpha_1} \cdot \ldots \cdot (f_n'(t))^{\alpha_n} dt$, where $f_i(z) \in \mathcal{A}$ and $\alpha_i > 0$, for all $i \in \{1, 2, ..., n\}$. These operators were introduced by D. Breaz and N. Breaz [1] and studied by many authors (see [2], [3], [4]).

The work is fully supported by EScienceFund grant: 04-01-02-SF0425, MOSTI, Malaysia.

In the present paper, we obtain some interesting sufficient conditions for $\frac{zF'_n(z)}{F_n(z)}$, $\frac{zF'_{\alpha_1,\dots,\alpha_n}(z)}{F_{\alpha_1,\dots,\alpha_n}(z)}$, $\frac{F_n(z)}{zF'_n(z)}$ and $\frac{F_{\alpha_1,\dots,\alpha_n}(z)}{zF'_{\alpha_1,\dots,\alpha_n}(z)}$ to be subordinate to $\frac{\beta(1-z)}{\beta-z}$ for some real values of β , and the above integral operators F_n and $F_{\alpha_1,\dots,\alpha_n}$ to be starlike and convex of order β in \mathcal{U} . In order to derive our main results, we need the following new interesting results due to Shiraishi and Owa [5].

THEOREM 1. [5] If $f \in \mathcal{A}$ satisfies $\operatorname{Re}\left(1 + \frac{zf''(z)}{f'(z)}\right) < \frac{\beta+1}{2(\beta-1)}$ for some β with $2 \leq \beta < 3$, or $\operatorname{Re}\left(1 + \frac{zf''(z)}{f'(z)}\right) < \frac{5\beta-1}{2(\beta+1)}$

for some β with $1 < \beta \leq 2$, then $\frac{zf'(z)}{f(z)} \prec \frac{\beta(1-z)}{\beta-z}$ and $\left|\frac{zf'(z)}{f(z)} - \frac{\beta}{\beta+1}\right| < \frac{\beta}{\beta+1}$. This implies that $f \in \mathcal{S}^*$, and $\int_0^z \frac{f(t)}{t} dt \in \mathcal{K}$.

THEOREM 2. [5] If $f \in \mathcal{A}$ satisfies $\operatorname{Re}\left(1 + \frac{zf''(z)}{f'(z)}\right) > -\frac{\beta+1}{2\beta(\beta-1)}$ for some $\beta \leq -1$ or $\operatorname{Re}\left(1 + \frac{zf''(z)}{f'(z)}\right) > \frac{3\beta+1}{2\beta(\beta+1)}$ for some $\beta > 1$, then $\frac{f(z)}{zf'(z)} \prec \frac{\beta(1-z)}{\beta-z}$ and $f \in \mathcal{S}^*\left(\frac{\beta+1}{2\beta}\right)$. This implies that $\int_{0}^{z} \frac{f(t)}{t} dt \in \mathcal{K}\left(\frac{\beta+1}{2\beta}\right)$.

2. MAIN RESULTS

Our first investigation result is the following:

THEOREM 3. Let $\alpha_i > 0$ be real numbers for $i \in \{1, 2, ..., n\}$. If $f_i \in \mathcal{A}$ for $i \in \{1, 2, ..., n\}$ satisfies

(1)
$$\operatorname{Re}\frac{zf_i'(z)}{f_i(z)} < 1 + \frac{3-\beta}{2(\beta-1)\sum_{i=1}^n \alpha_i},$$

for some β with $2 \leq \beta < 3$ or

(2)
$$\operatorname{Re}\frac{zf_i'(z)}{f_i(z)} < 1 + \frac{3}{2}\frac{\beta - 1}{(\beta + 1)\sum_{i=1}^n \alpha_i}$$

for some β with $1 < \beta \leq 2$, we obtain $\frac{zF'_n(z)}{F_n(z)} \prec \frac{\beta(1-z)}{\beta-z}$ and $\left|\frac{zF'_n(z)}{F_n(z)} - \frac{\beta}{\beta+1}\right| < \frac{\beta}{\beta+1}$. This implies that $F_n(z) \in \mathcal{S}^*$ and $\int_0^z \frac{F_n(t)}{t} dt \in \mathcal{K}$.

Proof. We calculate the derivatives of the first and second order for F_n . Since $F_n(z) = \int_0^z \left(\frac{f_1(t)}{t}\right)^{\alpha_1} \cdot \ldots \cdot \left(\frac{f_n(t)}{t}\right)^{\alpha_n} dt$, we have $F'_n(z) = \left(\frac{f_1(z)}{z}\right)^{\alpha_1} \cdot \ldots \cdot \left(\frac{f_n(z)}{z}\right)^{\alpha_n}$. Differentiating the above expression logarithmically, we have $\frac{F_n''(z)}{F_n'(z)} = \sum_{i=1}^n \alpha_i \left(\frac{f_i'(z)}{f_i(z)} - \frac{1}{z} \right).$ Multiplying the above expression by z we obtain $\frac{zF_n''(z)}{F_n'(z)} = \sum_{i=1}^n \alpha_i \left(\frac{zf_i'(z)}{f_i(z)} - 1 \right).$ This is equivalent to

(3)
$$1 + \frac{zF_n''(z)}{F_n'(z)} = \sum_{i=1}^n \alpha_i \frac{zf_i'(z)}{f_i(z)} + 1 - \sum_{i=1}^n \alpha_i.$$

Taking real parts in (3) we get

(4)
$$\operatorname{Re}\left(1 + \frac{zF_n''(z)}{F_n'(z)}\right) = \sum_{i=1}^n \alpha_i \operatorname{Re}\frac{zf_i'(z)}{f_i(z)} + 1 - \sum_{i=1}^n \alpha_i.$$

Using (4) and (1) we obtain

$$\operatorname{Re}\left(1 + \frac{zF_{n}''(z)}{F_{n}'(z)}\right) < \sum_{i=1}^{n} \alpha_{i} \left(1 + \frac{3-\beta}{2(\beta-1)\sum_{i=1}^{n} \alpha_{i}}\right) + 1 - \sum_{i=1}^{n} \alpha_{i}$$
$$= \sum_{i=1}^{n} \alpha_{i} + \frac{3-\beta}{2(\beta-1)} + 1 - \sum_{i=1}^{n} \alpha_{i} = \frac{3-\beta}{2(\beta-1)} + 1 = \frac{\beta+1}{2(\beta-1)}.$$

Therefore Re $\left(1 + \frac{zF_n''(z)}{F_n'(z)}\right) < \frac{\beta+1}{2(\beta-1)}$ for some β with $2 \leq \beta < 3$. And using (4) and (2) we obtain

$$\operatorname{Re}\left(1 + \frac{zF_n''(z)}{F_n'(z)}\right) < \sum_{i=1}^n \alpha_i \left(1 + \frac{3}{2}\frac{\beta - 1}{(\beta + 1)\sum_{i=1}^n \alpha_i}\right) + 1 - \sum_{i=1}^n \alpha_i$$
$$= \sum_{i=1}^n \alpha_i + \frac{3\beta - 3}{2(\beta + 1)} + 1 - \sum_{i=1}^n \alpha_i = \frac{3\beta - 3}{2(\beta + 1)} + 1 = \frac{5\beta - 1}{2(\beta + 1)}.$$

Therefore Re $\left(1 + \frac{zF_n''(z)}{F_n(z)}\right) < \frac{5\beta-1}{2(\beta+1)}$ for some β with $1 < \beta \leq 2$. Hence by using Theorem 1 we get $\frac{zF_n'(z)}{F_n(z)} \prec \frac{\beta(1-z)}{\beta-z}$ and $\left|\frac{zF_n'(z)}{F_n(z)} - \frac{\beta}{\beta+1}\right| < \frac{\beta}{\beta+1}$. This implies that $F_n(z) \in \mathcal{S}^*$ and $\int_0^z \frac{F_n(t)}{t} dt \in \mathcal{K}$.

Taking $\beta = 2$ in Theorem 3 we have following corollary.

COROLLARY 4. Let $\alpha_i > 0$ be real numbers for $i \in \{1, 2, ..., n\}$. If $f_i \in \mathcal{A}$ for $i \in \{1, 2, ..., n\}$ satisfies $\operatorname{Re} \frac{zf'_i(z)}{f_i(z)} < 1 + \frac{1}{2\sum\limits_{i=1}^n \alpha_i}$, then $\frac{zF'_n(z)}{F_n(z)} \prec \frac{2(1-z)}{2-z}$ and $\left|\frac{zF'_n(z)}{F_n(z)} - \frac{2}{3}\right| < \frac{2}{3}$.

THEOREM 5. Let $\alpha_i > 0$ be real numbers for $i \in \{1, 2, ..., n\}$. If $f_i \in \mathcal{A}$ for $i \in \{1, 2, ..., n\}$ satisfies

(5)
$$\operatorname{Re}\frac{zf_i'(z)}{f_i(z)} > 1 - \frac{\beta(2\beta - 1) + 1}{2\beta(\beta - 1)\sum_{i=1}^n \alpha_i}$$

for some $\beta \leq -1$, or

(6)
$$\operatorname{Re}\frac{zf_i'(z)}{f_i(z)} > 1 - \frac{\beta(2\beta - 1) - 1}{2\beta(\beta + 1)\sum_{i=1}^n \alpha_i}$$

for some $\beta > 1$, then $\frac{F_n(z)}{zF'_n(z)} \prec \frac{\beta(1-z)}{\beta-z}$ and $F_n(z) \in \mathcal{S}^*\left(\frac{\beta+1}{2\beta}\right)$. This implies that $\int_0^z \frac{F_n(t)}{t} dt \in \mathcal{K}\left(\frac{\beta+1}{2\beta}\right)$.

Proof. Proceeding similarly to the proof of Theorem 3, we obtain that

(7)
$$\operatorname{Re}\left(1 + \frac{zF_n''(z)}{F_n'(z)}\right) = \sum_{i=1}^n \alpha_i \operatorname{Re}\frac{zf_i'(z)}{f_i(z)} + 1 - \sum_{i=1}^n \alpha_i$$

Using (7) and (5) we obtain for some $\beta \leq -1$

$$\operatorname{Re}\left(1 + \frac{zF_n''(z)}{F_n'(z)}\right) > \sum_{i=1}^n \alpha_i \left(1 - \frac{\beta(2\beta - 1) + 1}{2\beta(\beta - 1)\sum_{i=1}^n \alpha_i}\right) + 1 - \sum_{i=1}^n \alpha_i$$
$$= \sum_{i=1}^n \alpha_i - \frac{\beta(2\beta - 1) + 1}{2\beta(\beta - 1)} + 1 - \sum_{i=1}^n \alpha_i = -\frac{\beta(2\beta - 1) + 1}{2\beta(\beta - 1)} + 1 = -\frac{\beta + 1}{2\beta(\beta - 1)}$$

Therefore Re $\left(1 + \frac{zF_n''(z)}{F_n'(z)}\right) > -\frac{\beta+1}{2\beta(\beta-1)}$. Next, using (7) and (6) we have

$$\operatorname{Re}\left(1 + \frac{zF_{n}''(z)}{F_{n}'(z)}\right) > \sum_{i=1}^{n} \alpha_{i} \left(1 - \frac{\beta(2\beta - 1) - 1}{2\beta(\beta + 1)\sum_{i=1}^{n} \alpha_{i}}\right) + 1 - \sum_{i=1}^{n} \alpha_{i}$$
$$= \sum_{i=1}^{n} \alpha_{i} - \frac{\beta(2\beta - 1) - 1}{2\beta(\beta + 1)} + 1 - \sum_{i=1}^{n} \alpha_{i} = -\frac{\beta(2\beta - 1) - 1}{2\beta(\beta + 1)} + 1 = \frac{3\beta + 1}{2\beta(\beta + 1)}.$$

for some $\beta > 1$. Therefore Re $\left(1 + \frac{zF_n''(z)}{F_n'(z)}\right) > \frac{3\beta+1}{2\beta(\beta+1)}$. By Theorem 2 we get $\frac{F_n(z)}{zF_n'(z)} \prec \frac{\beta(1-z)}{\beta-z}$ and $F_n(z) \in \mathcal{S}^*\left(\frac{\beta+1}{2\beta}\right)$. This implies that $\int_0^z \frac{F_n(t)}{t} dt \in \mathcal{K}\left(\frac{\beta+1}{2\beta}\right)$. \Box

THEOREM 6. Let $\alpha_i > 0$ be real numbers for $i \in \{1, 2, ..., n\}$. If $f_i \in \mathcal{A}$ for $i \in \{1, 2, ..., n\}$ satisfies

(8)
$$\operatorname{Re} \frac{zf_i''(z)}{f_i'(z)} < \frac{3-\beta}{2(\beta-1)\sum_{i=1}^n \alpha_i}$$

for some $2 \leq \beta < 3$, or

(9)
$$\operatorname{Re}\frac{zf_i''(z)}{f_i'(z)} < \frac{3}{2}\frac{\beta - 1}{(\beta + 1)\sum_{i=1}^n \alpha_i}$$

for some $1 < \beta \leq 2$, then $\frac{zF'_{\alpha_1,\dots,\alpha_n}(z)}{F_{\alpha_1,\dots,\alpha_n}(z)} \prec \frac{\beta(1-z)}{\beta-z}$ and $\left|\frac{zF'_{\alpha_1,\dots,\alpha_n}(z)}{F_{\alpha_1,\dots,\alpha_n}(z)} - \frac{\beta}{\beta+1}\right| < \frac{\beta}{\beta+1}$. This implies that $F'_{\alpha_1,\dots,\alpha_n}(z) \in \mathcal{S}^*$ and $\int_0^z \frac{F'_{\alpha_1,\dots,\alpha_n}(t)}{t} \in \mathcal{K}$.

Proof. Following the same steps as in the proof of Theorem 3, we have $\frac{zF''_{\alpha_1,\ldots,\alpha_n}(z)}{F'_{\alpha_1,\ldots,\alpha_n}(z)} = \sum_{i=1}^n \alpha_i \frac{zf''_i(z)}{f'_i(z)}$. This is equivalent to $1 + \frac{zF''_{\alpha_1,\ldots,\alpha_n}(z)}{F'_{\alpha_1,\ldots,\alpha_n}(z)} = \sum_{i=1}^n \alpha_i \frac{zf''_i(z)}{f'_i(z)} + 1$. Taking real parts, we get

(10)
$$\operatorname{Re}\left(1 + \frac{zF_{\alpha_1,\dots,\alpha_n}'(z)}{F_{\alpha_1,\dots,\alpha_n}'(z)}\right) = \sum_{i=1}^n \alpha_i \operatorname{Re}\left(\frac{zf_i''(z)}{f_i'(z)}\right) + 1.$$

Using (10) and (8) we obtain

$$\operatorname{Re}\left(1 + \frac{zF_{\alpha_1,\dots,\alpha_n}'(z)}{F_{\alpha_1,\dots,\alpha_n}'(z)}\right) = \sum_{i=1}^n \alpha_i \operatorname{Re}\left(\frac{zf_i''(z)}{f_i'(z)}\right) + 1$$
$$< \sum_{i=1}^n \alpha_i \left(\frac{3-\beta}{2(\beta-1)\sum_{i=1}^n \alpha_i}\right) + 1 = \frac{3-\beta}{2(\beta-1)} + 1 = \frac{\beta+1}{2(\beta-1)}$$

for some $2 \leq \beta < 3$. Next, using (10) and (9) we obtain

$$\operatorname{Re}\left(1 + \frac{zF_{\alpha_{1},\dots,\alpha_{n}}'(z)}{F_{\alpha_{1},\dots,\alpha_{n}}'(z)}\right) = \sum_{i=1}^{n} \alpha_{i}\operatorname{Re}\left(\frac{zf_{i}''(z)}{f_{i}'(z)}\right) + 1$$
$$< \sum_{i=1}^{n} \alpha_{i}\left(\frac{3}{2}\frac{\beta - 1}{(\beta + 1)\sum_{i=1}^{n} \alpha_{i}}\right) + 1 = \frac{3\beta - 3}{2(\beta + 1)} + 1 = \frac{5\beta - 1}{2(\beta + 1)}$$

for some $1 < \beta \leq 2$. By Theorem 1 we get $\frac{zF'_{\alpha_1,\dots,\alpha_n}(z)}{F_{\alpha_1,\dots,\alpha_n}(z)} \prec \frac{\beta(1-z)}{\beta-z}$ and $\left|\frac{zF'_{\alpha_1,\dots,\alpha_n}(z)}{F_{\alpha_1,\dots,\alpha_n}(z)} - \frac{\beta}{\beta+1}\right| < \frac{\beta}{\beta+1}$. Then $F'_{\alpha_1,\dots,\alpha_n}(z) \in \mathcal{S}^*$ and $\int_0^z \frac{F'_{\alpha_1,\dots,\alpha_n}(t)}{t} \in \mathcal{K}$. \Box

Taking $\beta = 2$ in Theorem 6 we have following corollary.

COROLLARY 7. Let $\alpha_i > 0$ be real numbers for $i \in \{1, 2, ..., n\}$. If $f_i \in \mathcal{A}$ for $i \in \{1, 2, ..., n\}$ satisfies $\operatorname{Re} \frac{zf_i''(z)}{f_i'(z)} < \frac{1}{2\sum\limits_{i=1}^n \alpha_i}$, then $\frac{zF_{\alpha_1,...,\alpha_n}(z)}{F_{\alpha_1,...,\alpha_n}(z)} \prec \frac{2(1-z)}{2-z}$ and $\left|\frac{zF_{\alpha_1,...,\alpha_n}(z)}{F_{\alpha_1,...,\alpha_n}(z)} - \frac{2}{3}\right| < \frac{2}{3}$.

THEOREM 8. Let $\alpha_i > 0$ be real numbers for $i \in \{1, 2, ..., n\}$. If $f_i \in \mathcal{A}$ for $i \in \{1, 2, ..., n\}$ satisfies $\operatorname{Re} \frac{zf_i''(z)}{f_i'(z)} > -\frac{\beta(2\beta-1)+1}{2\beta(\beta-1)\sum_{i=1}^n \alpha_i}$ for some $\beta \leq -1$, or

$$\operatorname{Re} \frac{zf_{i}^{\prime\prime}(z)}{f_{i}^{\prime}(z)} > -\frac{\beta(2\beta-1)-1}{2\beta(\beta+1)\sum_{i=1}^{n}\alpha_{i}} \text{ for some } \beta > 1, \text{ then } \frac{F_{\alpha_{1},\ldots,\alpha_{n}}(z)}{zF_{\alpha_{1},\ldots,\alpha_{n}}(z)} \prec \frac{\beta(1-z)}{\beta-z} \text{ and}$$
$$F_{\alpha_{1},\ldots,\alpha_{n}}(z) \in \mathcal{S}^{*}\left(\frac{\beta+1}{2\beta}\right). \text{ This implies that } \int_{0}^{z} \frac{F_{\alpha_{1},\ldots,\alpha_{n}}(t)}{t} \mathrm{d}t \in \mathcal{K}\left(\frac{\beta+1}{2\beta}\right).$$

Proof. Similar to the proofs of the above theorems.

REFERENCES

- BREAZ, D. and BREAZ, N., Two integral operators, Stud. Univ. Babeş-Bolyai Math., 47 (2002), 13–19.
- [2] BREAZ, D., OWA, S. and BREAZ, N., A new integral univalent operator, Acta Univ. Apulensis Math. Inform., 16 (2008), 11–16.
- [3] BREAZ, D., A convexity property for an integral operator on the class $S_p(\beta)$, J. Inequal. Appl., **2008**, Article ID 143869, 4 pp.
- [4] BREAZ, D., Certain integral operators on the classes $\mathcal{M}(\beta_i)$ and $\mathcal{N}(\beta_i)$, J. Inequal. Appl., **2008**, Article ID 719354, 4 pp.
- [5] SHIRAISHI, H. and OWA, S., Starlikeness and convexity for analytic functions concerned with Jack's Lemma, Int. J. Open Probl. Comput. Sci. Math., 2 (2009), 37–47.

Received October 28, 2009 Accepted January 14, 2011

ICMC-USP

Universiti Kebangsaan Malaysia Faculty of Science and Technology 43600 Bangi, Selangor D. Ehsan, Malaysia E-mail: aabedukm@yahoo.com E-mail: maslina@ukm.my

"1 Decembrie 1918" University of Alba Iulia Faculty of Science Department of Mathematics-Informatics 510009 Alba Iulia, Romania E-mail: dbreaz@uab.ro