APPLICATION OF A THREE CRITICAL POINTS THEOREM FOR A CLASS OF INCLUSION PROBLEMS

HANNELORE LISEI and IOANA LAZĂR

Abstract

In this paper we prove the existence of at least three solutions for a differential inclusion problem involving the p-Laplacian with nonhomogeneous and nonsmooth Neumann boundary conditions. We use a three critical points theorem for locally Lipschitz functions given by A. Kristály, W. Marzantowicz, Cs. Varga [7].

MSC 2010. 34A60, 47J20, 49J52.
Key words. Nonhomogeneous Neumann boundary condition, elliptic differential inclusions, critical points.

1. INTRODUCTION

In this paper we prove the existence of at least three solutions for the following inclusion problem with nonhomogeneous and nonsmooth Neumann boundary conditions: For $\lambda>0, \mu \geq 0$ we consider the problem $\left(P_{\lambda, \mu}\right)$ of finding $u \in W^{1, p}(\Omega)$ such that

$$
\left\{\begin{array}{l}
\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right) \in \lambda \partial F(x, u(x)) \text { a.e. } x \in \Omega \\
\left.|\nabla u|^{p-2} \frac{\partial u}{\partial n} \in \mu \partial G(x, u(x))\right) \text { a.e. } x \in \Gamma
\end{array}\right.
$$

where $\frac{\partial}{\partial n}$ denotes the unit outward normal on $\Gamma:=\partial \Omega, \partial F(x, \eta), \partial G(x, \eta)$, denote the generalized gradient (in the sense of Clarke) of $F(x, \cdot)$ and $G(x, \cdot)$ at $\eta \in \mathbb{R}$.

The main tool used in this paper is a multiplicity theorem of A. Kristály, W. Marzantowicz, Cs. Varga [7] for locally Lipschitz functions, which is an extension of a three critical points theorem of B. Ricceri [12]. For this, we impose conditions on the behavior around zero and close to infinity for the locally Lipschitz function F and only a growth condition for the locally Lipschitz perturbation G.

Different types of differential inclusion problems involving the p-Laplacian were studied by S. Carl and S. Heikkilä [1], G. Dai and W. Liu [5] (with homogeneous Dirichlet boundary conditions), G. Dai [4], [3] (with zero Neumanntype conditions), A. Kristály $[6]$ (on the whole space \mathbb{R}^{N}). Such investigations

[^0]mainly use non-smooth Ricceri-type variational principles developed by S. Marano and D. Motreanu [10], [9].

The present paper completes the results of H. Lisei and Cs. Varga [8], where the authors used a mountain pass theorem with Cerami type conditions for locally Lipschitz functions to prove the existence of at least one nontrivial solution for a differential inclusion problem of the type $\left(P_{\lambda, \mu}\right)$.

The paper has the following structure: Section 2 contains results from critical point theory for locally Lipschitz functions. In Section 3 the assumptions for our problem are given and the main result is formulated. In Section 4 auxiliary results are detailed and the proof of the main result (Theorem 7) of the paper is given.

2. PRELIMINARIES - BASIC NOTIONS AND RESULTS OF NONSMOOTH CALCULUS

Let $(X,\|\cdot\|)$ be a real Banach space and X^{*} its topological dual. Let $f: X \rightarrow \mathbb{R}$ be a locally Lipschitz function, i.e. each point $u \in X$ possesses a neighborhood \mathcal{N}_{u} such that $\left|f\left(u_{1}\right)-f\left(u_{2}\right)\right| \leq L\left\|u_{1}-u_{2}\right\|$ for all $u_{1}, u_{2} \in \mathcal{N}_{u}$, for a constant $L>0$ depending on \mathcal{N}_{u}.

The generalized directional derivative of f at the point $u \in X$ in the direction $z \in X$ is

$$
f^{\circ}(u ; z)=\limsup _{w \rightarrow u, s \rightarrow 0^{+}} \frac{f(w+s z)-f(w)}{s} .
$$

The generalized gradient (in the sense of Clarke [2]) of f at $u \in X$ is defined by $\partial f(u)=\left\{x^{*} \in X^{*}:\left\langle x^{*}, x\right\rangle \leq f^{\circ}(u ; x), \forall x \in X\right\}$, where $\langle\cdot, \cdot\rangle$ is the duality pairing between X^{*} and X. We say that $u \in X$ is a critical point of f, if $0 \in \partial f(u)$.

Theorem 1. [2, Proposition 2.3.3], [2, Theorem 2.3.7] Let $f, g: X \rightarrow \mathbb{R}$ be locally Lipschitz functions. Then the following assertions hold:
(a) $(f+g)^{\circ}(x ; y) \leq f^{\circ}(x ; y)+g^{\circ}(x ; y)$, for every $x, y \in X$.
(b) (Lebourg's Mean Value Theorem) For every $x, y \in X$ there exist an element u on the open line segment joining x and y, and $z \in \partial f(u)$ such that $f(y)-f(x)=\langle z, y-x\rangle$.

Definition 2. The locally Lipschitz function $f: X \rightarrow \mathbb{R}$ is said to satisfy the Palais-Smale condition at level $c \in \mathbb{R}$ shortly, $(P S)_{c}$), if every sequence $\left\{u_{n}\right\}$ in X satisfying $f\left(u_{n}\right) \rightarrow c$ and $f^{\circ}\left(u_{n} ; v-u_{n}\right)+\varepsilon_{n}\left\|v-u_{n}\right\| \geq 0, \forall v \in X$, for a sequence $\left\{\varepsilon_{n}\right\} \subset\left[0, \infty\left[\right.\right.$ with $\varepsilon_{n} \rightarrow 0$, contains a convergent subsequence.

For every $\tau \geq 0$, we introduce the following class of functions:
$\left(\mathcal{G}_{\tau}\right): g \in C^{1}(\mathbb{R}, \mathbb{R})$ is bounded, and $g(t)=t$ for any $t \in[-\tau, \tau]$.
The main tool we use in our paper is the following multiplicity theorem of A. Kristály, W. Marzantowicz, Cs. Varga [7] for locally Lipschitz functions.

Theorem 3. ([7, Theorem 3.3.1]) Let $(X,\|\cdot\|)$ be a real reflexive Banach space and $\tilde{X}_{i}(i=1,2)$ be two Banach spaces such that the embeddings $X \hookrightarrow$ \tilde{X}_{i} are compact. Let Λ be a real interval, $h: X \rightarrow[0, \infty)$ be a convex and continuous function, and let $\Phi_{i}: \tilde{X}_{i} \rightarrow \mathbb{R}(i=1,2)$ be two locally Lipschitz functions such that $E_{\lambda, \mu}=h+\lambda \Phi_{1}+\mu g \circ \Phi_{2}$ restricted to X satisfies the $(P S)_{c}$-condition for every $c \in \mathbb{R}, \lambda \in \Lambda, \mu \in[0,|\lambda|+1]$ and $g \in \mathcal{G}_{\tau}, \tau \geq 0$. Assume that $h+\lambda \Phi_{1}$ is coercive on X for all $\lambda \in \Lambda$ and that there exists $\rho \in \mathbb{R}$ such that

$$
\sup _{\lambda \in \Lambda} \inf _{x \in X}\left[h(x)+\lambda\left(\Phi_{1}(x)+\rho\right)\right]<\inf _{x \in X} \sup _{\lambda \in \Lambda}\left[h(x)+\lambda\left(\Phi_{1}(x)+\rho\right)\right] .
$$

Then, there exist a non-empty open set $A \subset \Lambda$ and $\sigma>0$ (both independent of the perturbation Φ_{2}) with the property that for every $\lambda \in A$ there exists $\left.\left.\mu_{0} \in\right] 0,|\lambda|+1\right]$ such that, for each $\mu \in\left[0, \mu_{0}\right]$ the functional $h+\lambda \Phi_{1}+\mu \Phi_{2}$ has at least three critical points in X whose norms are less than σ.

3. ASSUMPTIONS AND THE MAIN THEOREM

Let $\Omega \subset \mathbb{R}^{N}, N>1$, be a bounded domain with smooth boundary Γ, let $p \in(1, N), p^{\star}=\frac{N p}{N-p}, \bar{p}^{\star}=\frac{(N-1) p}{N-p}$, and we denote by $W=W^{1, p}(\Omega)$ the space endowed with the norm

$$
\|u\|:=\left(\int_{\Omega}|\nabla u|^{p}+|u|^{p} \mathrm{~d} x\right)^{1 / p} .
$$

Assumptions on the function F :
(F1) Let $F: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ be a Carathéodory function, such that $F(x, \cdot)$ is regular and locally Lipschitz for all $x \in \Omega$, and $F(x, 0)=0$ for all $x \in \Omega$ and there exist $k_{1}>0$ and $r \in\left(p, p^{*}\right)$ such that

$$
|\xi| \leq k_{1}\left(1+|u|^{r-1}\right) \text { for all } u \in \mathbb{R}, \xi \in \partial F(x, u) \text {, a.e. } x \in \Omega \text {; }
$$

(F2) uniformly for a.e. $x \in \Omega$ we have $\lim _{|u| \rightarrow 0} \frac{\max \{|\xi|: \xi \in \partial F(x, u)\}}{|u|^{p-1}}=0$;
(F3) $\limsup _{|u| \rightarrow \infty} \frac{\operatorname{esssup}_{x \in \Omega} F(x, u)}{|u|^{p}} \leq 0, \max _{|u| \leq M} F(\cdot, u) \in L^{1}(\Omega)$ for all $M>0$;
(F4) there exists $u_{0} \in \mathbb{R}$ such that $F\left(x, u_{0}\right)>0$ for a.e. $x \in \Omega$.
Assumptions on the function G :
(G1) Let $G: \Gamma \times \mathbb{R} \rightarrow \mathbb{R}$ be a Carathéodory function, such that $G(x, \cdot)$ is regular and locally Lipschitz for all $x \in \Gamma, G(\cdot, u)$ is measurable with respect to the ($N-1$)-dimensional Hausdorff measure on Γ for every $u \in \mathbb{R}$ and there exist $k_{2}>0$ and $\bar{r} \in\left[p, \bar{p}^{*}\right)$ such that

$$
|\xi| \leq k_{2}\left(1+|u|^{\bar{r}-1}\right) \text { for all } u \in \mathbb{R}, \xi \in \partial G(x, u) \text {, a.e. } x \in \Gamma \text {. }
$$

Example 4. Let $N=2, p \in(1,2), \Omega:=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}:\left\|\left(x_{1}, x_{2}\right)\right\|_{\mathbb{R}^{2}}<1\right\}$ and $\Gamma:=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}:\left\|\left(x_{1}, x_{2}\right)\right\|_{\mathbb{R}^{2}}=1\right\}$. We define $F: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ and $G: \Gamma \times \mathbb{R} \rightarrow \mathbb{R}$ by

$$
\begin{aligned}
& F\left(x_{1}, x_{2}, u\right)=\left|x_{1}\right| \cdot\left|x_{2}\right| \cdot \max \{0, \ln (|u|+1 / 2)\} \\
& G\left(x_{1}, x_{2}, u\right)=\left(\left|x_{1}\right|-\left|x_{2}\right|\right) \cdot|u|^{p}-|u|
\end{aligned}
$$

The function F satisfies the assumptions (F1), (F2), (F3) and (F4) and G satisfies (G1).

We define $J, \mathcal{F}, \mathcal{G}, \mathcal{E}_{\lambda, \mu}: W \rightarrow \mathbb{R}$ by

$$
\begin{aligned}
J(u) & =\frac{1}{p} \int_{\Omega}|\nabla u|^{p}+|u|^{p} \mathrm{~d} x, \quad \mathcal{F}(u)=-\int_{\Omega} F(x, u(x)) \mathrm{d} x \\
\mathcal{G}(u) & =-\int_{\Gamma} G(x, u(x)) \mathrm{d} \Gamma, \quad \mathcal{E}_{\lambda, \mu}(u)=J(u)+\lambda \mathcal{F}(u)+\mu \mathcal{G}(u)
\end{aligned}
$$

Definition 5. We say that $u \in W$ is a weak solution of problem $\left(P_{\lambda, \mu}\right)$, if it is a critical point of $\mathcal{E}_{\lambda, \mu}$, i.e. $0 \in \partial \mathcal{E}_{\lambda, \mu}(u)$.

Note, that $\mathcal{E}_{\lambda, \mu}=J+\lambda \mathcal{F}+\mu \mathcal{G}$ is a locally Lipschitz function (by (F1) and (G1) and Theorem 1.3 in [11]) and for $u \in W$ we have by Theorem 1 that the generalized directional derivative of \mathcal{E} at the point $u \in W$ in the direction $w \in W$ is

$$
\mathcal{E}_{\lambda, \mu}^{\circ}(u ; w) \leq\left\langle J^{\prime}(u), w\right\rangle+\lambda \mathcal{F}^{\circ}(u ; w)+\mu \mathcal{G}^{\circ}(u ; w)
$$

where

$$
\left\langle J^{\prime}(u), w\right\rangle=\int_{\Omega}|\nabla u|^{p-2} \nabla u \nabla w \mathrm{~d} x+\int_{\Omega}|u|^{p-2} u w \mathrm{~d} x
$$

Remark 6. Assume that the assumptions (F1) and (G1) hold. Let $u \in W$ be a critical point of $\mathcal{E}_{\lambda, \mu}$. From the definition of $\mathcal{E}_{\lambda, \mu}$, by Corollary 2 in Section 2.3 and Theorem 2.7.5 in [2] we have $\partial \mathcal{E}_{\lambda, \mu}(u) \subset\left\{J^{\prime}(u)\right\}+\lambda \partial \mathcal{F}(u)+\mu \partial \mathcal{G}(u)$ and there exist $\eta(x) \in \partial F(x, u(x))$ for a.e. $x \in \Omega, \theta(x) \in \partial G(x, u(x))$ for a.e. $x \in \Gamma$ such that the following equality holds

$$
\int_{\Omega}|\nabla u|^{p-2} \nabla u \nabla y \mathrm{~d} x+\int_{\Omega}|u|^{p-2} u y \mathrm{~d} x=\lambda \int_{\Omega} \eta y \mathrm{~d} x+\mu \int_{\Gamma} \theta y \mathrm{~d} \Gamma \forall y \in W
$$

In some papers the function $u \in W$ satisfying the above equality is considered to be the definition of a weak solution of problem $\left(P_{\lambda, \mu}\right)$.

The main result of our paper is the following theorem, in which we prove the existence and multiplicity of the weak solutions of $\left(P_{\lambda, \mu}\right)$.

THEOREM 7. Let $F: \Omega \times \mathbb{R} \rightarrow \mathbb{R}, G: \Gamma \times \mathbb{R} \rightarrow \mathbb{R}$ be functions satisfying the conditions (F1), (F2), (F3), (F4) and (G1). Then, there exist a non-degenerate compact interval $[a, b] \subset(0, \infty)$ and a number $\sigma>0$ (both independent of the perturbation G), such that for every $\lambda \in[a, b]$ there exists $\mu_{0} \in(0, \lambda+1]$ such that for each $\mu \in\left[0, \mu_{0}\right] \operatorname{problem}\left(P_{\lambda, \mu}\right)$ has at least three distinct weak solutions with W-norms less than σ.

4. PROOF OF THE MAIN THEOREM

It is well known that for $s \in\left[1, p^{\star}\right), \nu \in\left[p, \vec{p}^{\star}\right)$ the following embeddings

$$
\begin{equation*}
W \hookrightarrow L^{s}(\Omega) \text { and } W \hookrightarrow L^{\nu}(\Gamma) \tag{1}
\end{equation*}
$$

are compact. By (1) it follows that there exist $c_{s}, \hat{c}_{\nu}>0$ such that

$$
|u|_{L^{s}(\Omega)} \leq c_{s}\|u\| \text { and }|u|_{L^{\nu}(\Gamma)} \leq \hat{c}_{\nu}\|u\| \forall u \in W .
$$

Lemma 8. It holds:

$$
\lim _{t \rightarrow 0^{+}} \frac{1}{t} \inf \left\{\mathcal{F}(u): u \in W, \frac{1}{p}\|u\|^{p}<t\right\}=0 .
$$

Proof. We apply Lebourg's Mean Value Theorem (see Theorem 1) and the assumption (F1) for all $u \in \mathbb{R}$ and a.e. $x \in \Omega$

$$
|F(x, u)|=|F(x, u)-F(x, 0)| \leq k_{1}\left(|u|+|u|^{r}\right) .
$$

By Lebourg's Mean Value Theorem and by (F2) it follows that for any $\varepsilon>0$, there exists $\delta_{\varepsilon}>0$ such that for all $u \in \mathbb{R}$ with $|u|<\delta_{\varepsilon}$, and a.e. $x \in \Omega$ it holds

$$
|F(x, u)| \leq \varepsilon|u|^{p} .
$$

Finally, we have that there exist $K_{1 \varepsilon}>0$ such that for all $u \in \mathbb{R}$ and a.e. $x \in \Omega$

$$
\begin{equation*}
|F(x, u)| \leq \varepsilon|u|^{p}+K_{1 \varepsilon}|u|^{r}, \tag{2}
\end{equation*}
$$

where $r \in\left(p, \bar{p}^{*}\right)$. Taking into account (2) and the continuous embeddings $W \hookrightarrow L^{s}(\Omega)$, for $s=p$ and $s=r$ respectively, we have for $u \in W$

$$
\mathcal{F}(u) \geq-\varepsilon c_{p}^{p}\|u\|^{p}-K_{1 \varepsilon} c_{r}^{r}\|u\|^{r} .
$$

Then, we have

$$
0 \geq \frac{1}{t} \inf \left\{\mathcal{F}(u): u \in W, \frac{1}{p}\|u\|^{p}<t\right\} \geq-p c_{p}^{p} \varepsilon-p^{r / p} K_{1 \varepsilon} c_{r}^{r} t^{\frac{r}{p}-1}
$$

Since $p<r, \varepsilon>0$ is arbitrary, we get the desired limit for $t \rightarrow 0^{+}$.
Lemma 9. There exists $\rho_{0}>0$ such that the function $\varphi: W \times[0, \infty) \rightarrow \mathbb{R}$ defined by

$$
\varphi(u, v, \lambda)=J(u)+\lambda \mathcal{F}(u)+\lambda \rho_{0},
$$

satisfies the inequality

$$
\begin{equation*}
\sup _{\lambda \geq 0} \inf _{u \in W} \varphi(u, \lambda)<\inf _{u \in W} \sup _{\lambda \geq 0} \varphi(u, \lambda) . \tag{3}
\end{equation*}
$$

Proof. For every $t>0$ we define

$$
\beta(t)=\inf \{\mathcal{F}(u): u \in W, J(u)<t\} .
$$

We have that $\beta(t) \leq 0$, for $t>0$, and by Lemma 8 it follows

$$
\begin{equation*}
\lim _{t \rightarrow 0^{+}} \frac{\beta(t)}{t}=0 \tag{4}
\end{equation*}
$$

By (F4) immediately follows that $u_{0} \in W \backslash\{0\}$ (the constant function) satisfies $\mathcal{F}\left(u_{0}\right)<0$. Therefore it is possible to choose a number $\eta>0$ such that $0<$ $\eta<-\mathcal{F}\left(u_{0}\right)\left(J\left(u_{0}\right)\right)^{-1}$. By (4) we get the existence of a number $t_{0} \in\left(0, J\left(u_{0}\right)\right)$ such that $-\beta\left(t_{0}\right)<\eta t_{0}$. Thus

$$
\begin{equation*}
\beta\left(t_{0}\right)>\mathcal{F}\left(u_{0}\right)\left(J\left(u_{0}\right)\right)^{-1} t_{0} . \tag{5}
\end{equation*}
$$

Due to the choice of t_{0} and using (5), we conclude that there exists $\rho_{0}>0$ such that

$$
\begin{equation*}
-\beta\left(t_{0}\right)<\rho_{0}<-\mathcal{F}\left(u_{0}\right)\left(J\left(u_{0}\right)\right)^{-1} t_{0}<-\mathcal{F}\left(u_{0}\right) . \tag{6}
\end{equation*}
$$

Now, we prove that the function φ satisfies the inequality (3). The function

$$
\lambda \in[0, \infty) \mapsto \inf _{u \in W}\left\{J(u)+\lambda\left(\rho_{0}+\mathcal{F}(u)\right)\right\}
$$

is obviously upper semicontinuous on $[0, \infty)$. It follows from (6) that

$$
\lim _{\lambda \rightarrow \infty} \inf _{u \in W} \varphi(u, \lambda) \leq \lim _{\lambda \rightarrow \infty}\left\{J\left(u_{0}\right)+\lambda\left(\rho_{0}+\mathcal{F}\left(u_{0}\right)\right)\right\}=-\infty .
$$

Thus we find an element $\bar{\lambda} \in[0, \infty)$ such that

$$
\begin{equation*}
\sup _{\lambda \geq 0} \inf _{u \in W} \varphi(u, \lambda)=\inf _{u \in W}\left\{J(u)+\bar{\lambda}\left(\rho_{0}+\mathcal{F}(u)\right)\right\} \tag{7}
\end{equation*}
$$

Since $-\beta\left(t_{0}\right)<\rho_{0}$, it follows from the definition of β that for all $u \in W$ with $J(u)<t_{0}$ we have $-\mathcal{F}(u)<\rho_{0}$. Hence

$$
\begin{equation*}
t_{0} \leq \inf \left\{J(u): u \in W,-\mathcal{F}(u) \geq \rho_{0}\right\} \tag{8}
\end{equation*}
$$

On the other hand,

$$
\begin{aligned}
\inf _{u \in W} \sup _{\lambda \geq 0} \varphi(u, \lambda) & =\inf _{u \in W}\left\{J(u)+\sup _{\lambda \geq 0}\left(\lambda\left(\rho_{0}+\mathcal{F}(u)\right)\right)\right\} \\
& =\inf \left\{J(u): u \in W,-\mathcal{F}(u) \geq \rho_{0}\right\} .
\end{aligned}
$$

Thus inequality (8) is equivalent to

$$
\begin{equation*}
t_{0} \leq \inf _{u \in W} \sup _{\lambda \geq 0} \varphi(u, \lambda) \tag{9}
\end{equation*}
$$

We consider two cases: First, when $0 \leq \bar{\lambda}<\frac{t_{0}}{\rho_{0}}$, then we have that

$$
\inf _{u \in W}\left\{J(u)+\bar{\lambda}\left(\rho_{0}+\mathcal{F}(u)\right)\right\} \leq \varphi(0, \bar{\lambda})=\bar{\lambda} \rho_{0}<t_{0} .
$$

Combining this inequality with (7) and (9) we obtain (3).
Second, if $\frac{t_{0}}{\rho_{0}} \leq \bar{\lambda}$, then from (6), it follows that

$$
\begin{aligned}
& \inf _{u \in W}\left\{J(u)+\bar{\lambda}\left(\rho_{0}+\mathcal{F}(u)\right)\right\} \leq J\left(u_{0}\right)+\bar{\lambda}\left(\rho_{0}+\mathcal{F}\left(u_{0}\right)\right) \\
& \leq J\left(u_{0}\right)+\frac{t_{0}}{\rho_{0}}\left(\rho_{0}+\mathcal{F}\left(u_{0}\right)\right)<t_{0} .
\end{aligned}
$$

We apply again (7) and (9), which implies (3).

We fix $g \in \mathcal{G}_{\tau}(\tau \geq 0), \lambda \in[0, \infty), \mu \in[0, \lambda+1]$, and $c \in \mathbb{R}$ and define the functional $E_{\lambda, \mu}: W \rightarrow \mathbb{R}$ by

$$
E_{\lambda, \mu}(u)=J(u)+\lambda \mathcal{F}(u)+\mu(g \circ \mathcal{G})(u), \quad u \in W .
$$

Lemma 10. The functional $E_{\lambda, \mu}$ is coercive on W and satisfies the $(P S)_{c}$ condition for any $c \in \mathbb{R}$.

Proof. Observe that $u \in W \mapsto J(u)+\lambda \mathcal{F}(u)$ is coercive on W, due to (F3); thus, the functional $E_{\lambda, \mu}$ is also coercive on W. Consequently, it is enough to consider a bounded sequence $\left\{u_{n}\right\} \subset W$ such that

$$
\begin{equation*}
E_{\lambda, \mu}^{\circ}\left(u_{n} ; w-u_{n}\right) \geq-\varepsilon_{n}\left\|w-u_{n}\right\| \text { for all } w \in W \tag{10}
\end{equation*}
$$

where $\left\{\varepsilon_{n}\right\}$ is a positive sequence such that $\varepsilon_{n} \rightarrow 0$.
Due to Theorem 1, we have for every $\bar{w}, w \in W$ that

$$
\begin{equation*}
E_{\lambda, \mu}^{\circ}(\bar{w} ; w) \leq\left\langle J^{\prime}(\bar{w}), w\right\rangle+\lambda \mathcal{F}^{\circ}(\bar{w} ; w)+\mu(g \circ \mathcal{G})^{\circ}(\bar{w} ; w) . \tag{11}
\end{equation*}
$$

Because the sequence $\left\{u_{n}\right\}$ is bounded, there exists $u \in W$ and a subsequence which we denote also by $\left\{u_{n}\right\}$ such that $u_{n} \rightharpoonup u$ weakly in W, $u_{n} \rightarrow u$ strongly in $L^{p}(\Omega)$ and in $L^{p}(\Gamma)$ (since the embeddings $W \hookrightarrow L^{p}(\Omega)$ and $W \hookrightarrow L^{p}(\Gamma)$ are compact).

Using (10) for $w:=u$ and applying relation (11) for the pairs $\bar{w}:=u_{n}, w:=$ $u-u_{n}$ and $\bar{w}:=u, w:=u_{n}-u$, we have

$$
\begin{align*}
\left\|u-u_{n}\right\|_{p}^{p} & \leq \varepsilon_{n}\left\|u-u_{n}\right\|-E_{\lambda, \mu}^{\circ}\left(u ; u_{n}-u\right) \\
& +\lambda \mathcal{F}^{\circ}\left(u_{n} ; u-u_{n}\right)+\lambda \mathcal{F}^{\circ}\left(u ; u_{n}-u\right) \tag{12}\\
& +\mu(g \circ \mathcal{G})^{\circ}\left(u_{n} ; u-u_{n}\right)+\mu(g \circ \mathcal{G})^{\circ}\left(u ; u_{n}-u\right) .
\end{align*}
$$

Since $\left\{u_{n}\right\}$ is bounded in W, obviously we have $\lim _{n \rightarrow \infty} \varepsilon_{n}\left\|u-u_{n}\right\|=0$. Now, fix $w^{*} \in \partial E_{\lambda, \mu}(u)$; in particular, we have $\left\langle w^{*}, u_{n}-u\right\rangle \leq E_{\lambda, \mu}^{\circ}\left(u ; u_{n}-u\right)$. Since $u_{n} \rightharpoonup u$ weakly in W, it follows

$$
\liminf _{n \rightarrow \infty} E_{\lambda, \mu}^{\circ}\left(u ; u_{n}-u\right) \geq 0 .
$$

For the remaining four terms in the estimation (12) we use the fact that $\mathcal{F}^{\circ}(\cdot ; \cdot)$ and $(g \circ \mathcal{G})^{\circ}(\cdot ; \cdot \cdot)$ are upper semicontinuous functions (see Proposition 2.1.1 in [2]). Since $u_{n} \rightarrow u$ strongly in $L^{p}(\Omega)$, we have

$$
\limsup _{n \rightarrow \infty} \mathcal{F}^{\circ}\left(u_{n} ; u-u_{n}\right) \leq \mathcal{F}^{\circ}(u ; 0)=0 ;
$$

the remaining terms in (12) are treated similarly (we use that $u_{n} \rightarrow u$ strongly in $L^{p}(\Gamma)$). Combining the above outcomes, we obtain $\limsup _{n \rightarrow \infty}\left\|u-u_{n}\right\|^{p} \leq 0$, i.e., $u_{n} \rightarrow u$ strongly in W.

Proof of Theorem 7. We apply Theorem 3 by choosing $X=W, \tilde{X}_{1}=$ $L^{p}(\Omega), \tilde{X}_{2}=L^{p}(\Gamma), \Lambda=[0, \infty)$, and consider $h: W \rightarrow[0, \infty)$ to be the following convex and continuous function $h(u)=\frac{\|u\|^{p}}{p}$. The hypotheses of Theorem 3 hold due to Lemma 9 and Lemma 10.

REFERENCES

[1] Carl, S. and Heikkilä, S., p-Laplacian inclusions via fixed points for multifunctions in posets, Set-Valued Anal., 16 (2008), 637-649.
[2] Clarke, F.H., Optimization and Nonsmooth Analysis, SIAM, Philadelphia, 1990.
[3] DaI, G., Infinitely many solutions for a Neumann-type differential inclusion problem involving the $p(x)$-Laplacian, Nonlinear Anal., 70 (2009), 2297-2305.
[4] Dai, G., Three solutions for a Neumann-type differential inclusion problem involving the $p(x)$-Laplacian, Nonlinear Anal., 70 (2009), 3755-3760.
[5] Dai, G. and Liu, W., Three solutions for a differential inclusion problem involving the $p(x)$-Laplacian, Nonlinear Anal., 71 (2009), 5318-5326.
[6] Kristály, A., Infinitely many solutions for a differential inclusion problem in \mathbb{R}^{N}, J. Differential Equations, 220 (2006), 511-530.
[7] Kristály, A., Marzantowicz, W. and Varga Cs., A non-smooth three critical points theorem with applications in differential inclusions. J. Global Optim., 46 (2010), 49-62.
[8] Lisei, H. and Varga, Cs., Multiple solutions for a differential inclusion problem with nonhomogeneous boundary conditions, Numer. Funct. Anal. Optim., 30 (2009), 566-581.
[9] Marano, S. and Motreanu, D., Infinitely many critical points of non-differentiable functions and applications to a Neumann-type problem involving the p-Laplacian, J. Differential Equations, 182 (2002), 108-120.
[10] Marano, S. and Motreanu D., On a three critical points theorem for nondifferentiable functions and applications to nonlinear boundary value problems, Nonlinear Anal., 48 (2002), 37-52.
[11] Motreanu, D. and Rădulescu, V., Variational and non-variational methods in nonlinear analysis and boundary value problems. Nonconvex Optimization and its Applications, Kluwer Academic Publishers, Dordrecht, 2003.
[12] Ricceri, B., Minimax theorems for limits of parametrized functions having at most one local minimum lying in a certain set, Topology Appl., 153 (2006), 3308-3312.

Received October 9, 2009
Accepted December 3, 2009
"Babeş-Bolyai" University
Faculty of Mathematics and Computer Science Str. Mihail Kogălniceanu Nr. 1
400084 Cluj-Napoca, Romania
E-mail: hanne@math.ubbcluj.ro
E-mail: lioana@math.ubbcluj.ro

[^0]: Both authors were supported in their research by MEdC-ANCS, Grant PN II ID PCE 2008 Nr. 501/ ID 2162/ 2009.

