CERTAIN FAMILIES OF ANALYTIC UNIVALENT FUNCTIONS GENERATED BY HARMONIC UNIVALENT MAPPINGS

SAYALI S. JOSHI and OM P. AHUJA

Abstract

In the present paper we obtain some inclusion theorems and convolution characterizations for the classes of analytic univalent functions generated by harmonic univalent and sense-preserving mappings.

MSC 2010. 30C45, 30C55, 50E20.
Key words. Harmonic mappings, univalent, sense-preserving, analytic, hypergeometric functions, subordination.

1. INTRODUCTION

A continuous function f is said to be a complex-valued harmonic function in a simply connected domain D in complex plane \mathbb{C} if both real and imaginary parts of f are real harmonic in D. Such functions can be expressed as $f=h+\bar{g}$, where h, g are analytic in D. We call h the analytic part and g the co-analytic part of f. A necessary and sufficient condition for f to be locally univalent and sense-preserving in D is that $\left|h^{\prime}(z)\right|>\left|g^{\prime}(z)\right|$ for all z in D (see [6]).

Every harmonic function $f=h+\bar{g}$ is uniquely determined by the coefficients of power series expansions in the unit disk $U=\{z:|z|<1\}$ given by

$$
\begin{equation*}
h(z)=z+\sum_{n=2}^{\infty} A_{n} z^{n}, \quad g(z)=\sum_{n=1}^{\infty} B_{n} z^{n}, \quad z \in U,\left|B_{1}\right|<1, \tag{1.1}
\end{equation*}
$$

where $A_{n} \in \mathbb{C}$ for $n=2,3,4, \ldots$ and $B_{n} \in \mathbb{C}$ for $n=1,2,3, \ldots$. For further information about these mappings, one may refer to $[4,6,7]$.

In 1984, Clunie and Sheil-Small [6] studied the family S_{H} of all univalent sense-preserving harmonic functions f of the form $f=h+\bar{g}$ in U, such that h and g are represented by (1.1). Note that S_{H} reduces to the well-known family S, the class of all normalized analytic univalent functions h given in (1.1), whenever the co-analytic part g of f is zero. Let K, K_{H} denote the respective subclasses of S, S_{H} where the images of $f(U)$ are convex.

In the last two decades, several researchers have defined various subclasses of S using subordination. A function h is said to be subordinate to F if there exists an analytic function w with $w(0)=0$ and $|w(z)|<1$ such that

[^0]$h(z)=F(w(z))$ for all z in U. Using subordination, we define two subclasses of S as follows:
\[

$$
\begin{aligned}
S^{*}[A, B, \alpha] & =\left\{f \in S: \frac{z f^{\prime}(z)}{f(z)} \prec \frac{1+[B+(A-B)(1-\alpha)] z}{1+B z}, z \in U\right\} \\
K[A, B, \alpha] & =\left\{f \in S: \frac{\left(z f^{\prime}(z)\right)^{\prime}}{f^{\prime}(z)} \prec \frac{1+[B+(A-B)(1-\alpha)] z}{1+B z}, z \in U\right\}
\end{aligned}
$$
\]

where $0 \leq \alpha<1,-1 \leq B<B+(A-B)(1-\alpha)<A \leq 1$. The condition $|B| \leq 1$ implies that the function $[1+(B+(A-B)(1-\alpha)) z][1+B z]^{-1}$ is convex and univalent in U. For different values of parameters A, B and α one can obtain several subclasses of S. For information about properties and subclasses of S, we refer to the survey article by the second author in [1].

Note that the convex domains are those domains that are convex in every direction. The following lemma will motivate us to construct certain analytic univalent function associated with $f \in S_{H}$.

Lemma 1.1 ([5, 6]). A harmonic function $f=h+\bar{g}$ locally univalent in U is a univalent mapping of U and $f \in K_{H}$ if and only if $h-g$ is an analytic univalent mapping of U onto a domain convex in the direction of the real axis.

For $f=h+\bar{g}$ in S_{H}, where h and g are given by (1.1), Lemma 1.1 led us to construct the function t with suitable normalization, given by

$$
\begin{equation*}
t(z)=\frac{h(z)-g(z)}{1-B_{1}}=z+\sum_{n=2}^{\infty} \frac{A_{n}-B_{n}}{1-B_{1}} z^{n}, \quad z \in U \tag{1.2}
\end{equation*}
$$

Since $f \in S_{H}$ is sense-preserving, it follows that $\left|B_{1}\right|<1$. Hence the function t belongs to S. This observation has prompted us to define the following classes:

$$
\begin{aligned}
S_{H}[A, B, \alpha] & :=\left\{f=h+\bar{g} \in S_{H}: t \in S^{*}[A, B, \alpha]\right\} \\
K_{H}[A, B, \alpha] & :=\left\{f=h+\bar{g} \in S_{H}: t \in K[A, B, \alpha]\right\}
\end{aligned}
$$

In [2], the second author connected hypergeometric functions with harmonic mappings $f=h+\bar{g}$ by defining the convolution operator Ω by $\Omega(f):=$ $f \tilde{*}\left(\phi_{1}+\bar{\phi}_{2}\right)=h * \phi_{1}+\overline{g * \phi_{2}}$, where $*$ denotes the convolution product of two power series and ϕ_{1}, ϕ_{2} are defined by

$$
\begin{aligned}
& \phi_{1}(z)=z F\left(a_{1}, b_{1} ; c_{1} ; z\right)=z+\sum_{n=2}^{\infty} \frac{\left(a_{1}\right)_{n-1}\left(b_{1}\right)_{n-1}}{\left(c_{1}\right)_{n-1}(1)_{n-1}} z^{n}, \\
& \phi_{2}(z)=z F\left(a_{2}, b_{2} ; c_{2} ; z\right)=\sum_{n=1}^{\infty} \frac{\left(a_{2}\right)_{n-1}\left(b_{2}\right)_{n-1}}{\left(c_{2}\right)_{n-1}(1)_{n-1}} z^{n} .
\end{aligned}
$$

Here $F(a, b ; c ; z)$ is a well-known hypergeometric function and a 's, b 's, c 's are complex parameters with $c \neq 0,-1,-2, \ldots$ Corresponding to any function
$f=h+\bar{g}$ given by (1.1), we have $\Omega(f)=H+\bar{G}$, where

$$
\begin{equation*}
H(z)=z+\sum_{n=2}^{\infty} \frac{\left(a_{1}\right)_{n-1}\left(b_{1}\right)_{n-1}}{\left(c_{1}\right)_{n-1}(1)_{n-1}} A_{n} z^{n}, G(z)=\sum_{n=1}^{\infty} \frac{\left(a_{2}\right)_{n-1}\left(b_{2}\right)_{n-1}}{\left(c_{2}\right)_{n-1}(1)_{n-1}} B_{n} z^{n} \tag{1.3}
\end{equation*}
$$

$\left|B_{1}\right|<1$. We shall frequently use the well-known Gauss summation formula

$$
F(a, b ; c ; 1)=\sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n}}{(c)_{n}(1)_{n}}=\frac{\Gamma(c-a-b) \Gamma(c)}{\Gamma(c-a) \Gamma(c-b)}, \operatorname{Re}(c-a-b)>0
$$

In the present paper, we study certain connections of the mappings $f=h+\bar{g}$ in S_{H} with the corresponding analytic functions in the classes $S^{*}[A, B, \alpha]$ and $K[A, B, \alpha]$. More precisely, we obtain some inclusion theorems and convolution characterization theorems for the classes $S_{H}^{*}[A, B, \alpha]$ and $K_{H}[A, B, \alpha]$.

2. LEMMAS

Lemma 2.1. A function h defined by the first part of (1.1) is in $S^{*}[A, B, \alpha]$ if $\sum_{n=2}^{\infty}\{(n-1)(1+|B|)+(A-B)(1-\alpha)\}\left|A_{n}\right| \leq(A-B)(1-\alpha)$.

Proof. In view of the definition of $S^{*}[A, B, \alpha], h \in S^{*}[A, B, \alpha]$ if and only if there exists an analytic function w such that $\frac{z h^{\prime}(z)}{h(z)}=\frac{1+[B+(A-B)(1-\alpha)] w(z)}{1+B w(z)}$ with $w(0)=0$ and $|w(z)|<|z|$. Since $|w(z)|<1$, the above equation is equivalent to

$$
\left|\frac{\frac{z h^{\prime}(z)}{h(z)}-1}{[B+(A-B)(1-\alpha)]-B \frac{z h^{\prime}(z)}{h(z)}}\right|<1
$$

On the other hand, on $|z|=1$ we have

$$
\begin{aligned}
& \left|z h^{\prime}(z)-h(z)\right|-\left|[B+(A-B)(1-\alpha)] h(z)-B z h^{\prime}(z)\right|=\left|\sum_{n=2}^{\infty}(n-1) A_{n} z^{n}\right| \\
& -\left|(A-B)(1-\alpha) z-\sum_{n=2}^{\infty}[(n-1) B-(A-B)(1-\alpha)] A_{n} z^{n}\right| \\
& \leq \sum_{n=2}^{\infty}[(n-1)(1+|B|)+(A-B)(1-\alpha)]\left|A_{n}\right|-(A-B)(1-\alpha) \leq 0
\end{aligned}
$$

provided the given condition holds. Hence by maximum modulus Theorem it follows that $h \in S^{*}[A, B, \alpha]$.

Lemma 2.2. A function h defined by the first part in (1.1) is in $K[A, B, \alpha]$ if $\sum_{n=2}^{\infty} n\{(n-1)(1+|B|)+(A-B)(1-\alpha)\}\left|A_{n}\right| \leq(A-B)(1-\alpha)$.

Proof. From the definition of $K[A, B, \alpha]$ it follows that $h \in K[A, B, \alpha]$ if and only if there exists an analytic function w such that

$$
\frac{\left(z h^{\prime}(z)\right)^{\prime}}{h^{\prime}(z)}=\frac{1+[B+(A-B)(1-\alpha)] w(z)}{1+B w(z)}
$$

with $w(0)=0$ and $|w(z)|<|z|<1$. This equality is equivalent to

$$
\left|\frac{\frac{\left(z h^{\prime}(z)\right)^{\prime}}{h^{\prime}(z)}-1}{[B+(A-B)(1-\alpha)]-B \frac{\left(z h^{\prime}(z)\right)^{\prime}}{h^{\prime}(z)}}\right|<1
$$

The remaining steps of the proof are similar to the proof of Lemma 2.1.
Lemma 2.3 ([2]). Let $f=h+\bar{g}$ where h and g are analytic functions of the form (1.1). If $a_{j}, b_{j} \in \mathbb{C} \backslash\{0\}, c_{j} \in \mathbb{R}$ are such that $c_{j}>\left|a_{j}\right|+\left|b_{j}\right|+1$ for $j=1,2$ and the hypergeometric inequalities
(i) $\sum_{n=2}^{\infty}\left|A_{n}\right|+\sum_{n=1}^{\infty}\left|B_{n}\right| \leq 1,\left|B_{1}\right|<1$,
(ii) $\sum_{j=1}^{2}\left(\frac{\left|a_{j} b_{j}\right|}{c_{j}-\left|a_{j}\right|-\left|b_{j}\right|-1}+1\right) F\left(\left|a_{j}\right|,\left|b_{j}\right| ; c_{j} ; 1\right) \leq 2$
are satisfied, then $\Omega(f)$ is sense-preserving harmonic and univalent in U; and so $\Omega(f) \in S_{H}$.

Lemma 2.4 ([2]). If $a, b, c>0$, then
(i) $\sum_{n=1}^{\infty}(n-1) \frac{(a)_{n-1}(b)_{n-1}}{(c)_{n-1}(1)_{n-1}}=\frac{a b}{c-a-b-1} F(a, b ; c$; 1) if $c>a+b+1$,
(ii) $\begin{aligned} & \sum_{n=2}^{\infty}(n-1)^{2} \frac{(a)_{n-1}(b)_{n-1}}{(c)_{n-1}(1)_{n-1}} \\ & F(a, b ; c ; 1) \text { if } c>a+b+2 .\end{aligned}$

3. MAIN RESULTS

ThEOREM 3.1. Let $f=h+\bar{g}$ be of the form (1.1), and for $j=1,2$, suppose $a_{j}, b_{j} \in \mathbb{C} \backslash\{0\}, c_{j} \in \mathbb{R}$ are such that $c_{j}>\left|a_{j}\right|+\left|b_{j}\right|+1$ and $\Omega(f) \in S_{H}$. If the coefficient conditions
(i) $\sum_{n=2}^{\infty}\left|A_{n}\right|+\sum_{n=1}^{\infty}\left|B_{n}\right| \leq 1$,
(ii) $\sum_{j=1}^{2}\left(\frac{(1+|B|)}{(A-B)(1-\alpha)} \frac{\left|a_{j} b_{j}\right|}{c_{j}-\left|a_{j}\right|-\left|b_{j}\right|-1}+1\right) F\left(\left|a_{j}\right|,\left|b_{j}\right| ; c_{j} ; 1\right)$

$$
\leq\left(2+\left|1-B_{1}\right|\right)<4
$$

are satisfied, then $\Omega(f) \in S_{H}[A, B, \alpha]$.
Proof. In order to prove that $\Omega(f) \in S_{H}[A, B, \alpha]$, it suffices to prove that

$$
\begin{align*}
T(z): & =\frac{H(z)-G(z)}{1-B_{1}} \\
& =z+\sum_{n=2}^{\infty}\left[\frac{\left(a_{1}\right)_{n-1}\left(b_{1}\right)_{n-1}}{\left(c_{1}\right)_{n-1}(1)_{n-1}} A_{n}-\frac{\left(a_{2}\right)_{n-1}\left(b_{2}\right)_{n-1}}{\left(c_{2}\right)_{n-1}(1)_{n-1}} B_{n}\right] \frac{1}{1-B_{1}} z^{n} \tag{3.1}
\end{align*}
$$

is in $S^{*}[A, B, \alpha]$. Note that $\left|A_{n}\right| \leq 1$ and $\left|B_{n}\right| \leq 1$, by the condition (i). As an application of Lemma 2.1, $T \in S^{*}[A, B, \alpha]$ provided that $Q_{1} \leq 1$, where

$$
\begin{aligned}
& Q_{1}:=\sum_{n=2}^{\infty}\left[\frac{(n-1)(1+|B|)+(A-B)(1-\alpha)}{(A-B)(1-\alpha)}\right] \\
& \times\left|\frac{\left(a_{1}\right)_{n-1}\left(b_{1}\right)_{n-1}}{\left(c_{1}\right)_{n-1}(1)_{n-1}} \frac{A_{n}}{1-B_{1}}-\frac{\left(a_{2}\right)_{n-1}\left(b_{2}\right)_{n-1}}{\left(c_{2}\right)_{n-1}(1)_{n-1}} \frac{B_{n}}{1-B_{1}}\right| \\
& \leq \sum_{n=2}^{\infty}\left[\frac{(n-1)(1+|B|)+(A-B)(1-\alpha)}{(A-B)(1-\alpha)\left|1-B_{1}\right|}\right] \\
& \times\left(\frac{\left(\left|a_{1}\right|\right)_{n-1}\left(\left|b_{1}\right|\right)_{n-1}}{\left(c_{1}\right)_{n-1}(1)_{n-1}}+\frac{\left(\left|a_{2}\right|\right)_{n-1}\left(\left|b_{2}\right|\right)_{n-1}}{\left(c_{2}\right)_{n-1}(1)_{n-1}}\right) \\
& =\frac{(1+|B|)}{\left|1-B_{1}\right|(A-B)(1-\alpha)} \\
& \times \sum_{n=2}^{\infty}(n-1)\left(\frac{\left(\left|a_{1}\right|\right)_{n-1}\left(\left|b_{1}\right|\right)_{n-1}}{\left(c_{1}\right)_{n-1}(1)_{n-1}}+\frac{\left(\left|a_{2}\right|\right)_{n-1}\left(\left|b_{2}\right|\right)_{n-1}}{\left(c_{2}\right)_{n-1}(1)_{n-1}}\right) \\
& +\frac{1}{\left|1-B_{1}\right|}\left(\frac{\left(\left|a_{1}\right|\right)_{n-1}\left(\left|b_{1}\right|\right)_{n-1}}{\left(c_{1}\right)_{n-1}(1)_{n-1}}+\frac{\left(\left|a_{2}\right|\right)_{n-1}\left(\left|b_{2}\right|\right)_{n-1}}{\left(c_{2}\right)_{n-1}(1)_{n-1}}\right) \\
& =\frac{(1+|B|)}{\left|1-B_{1}\right|(A-B)(1-\alpha)}\left(\frac{\left|a_{1} b_{1}\right|}{c_{1}-\left|a_{1}\right|-\left|b_{1}\right|-1} F\left(\left|a_{1}\right|,\left|b_{1}\right| ; c_{1} ; 1\right)\right. \\
& \left.+\frac{\left|a_{2} b_{2}\right|}{c_{2}-\left|a_{2}\right|-\left|b_{2}\right|-1} F\left(\left|a_{2}\right|,\left|b_{2}\right| ; c_{2} ; 1\right)\right) \\
& +\frac{1}{\left|1-B_{1}\right|}\left(F\left(\left|a_{1}\right|,\left|b_{1}\right| ; c_{1} ; 1\right)+F\left(\left|a_{2}\right|,\left|b_{2}\right| ; c_{2} ; 1\right)-2\right)
\end{aligned}
$$

by Lemma 2.3. Therefore, it follows that $T \in S^{*}[A, B, \alpha]$ if the inequality

$$
\begin{aligned}
& \frac{1}{\left|1-B_{1}\right|} \sum_{j=1}^{2}\left(\frac{(1+|B|)}{(A-B)(1-\alpha)} \frac{\left|a_{j} b_{j}\right|}{c_{j}-\left|a_{j}\right|-\left|b_{j}\right|-1}+1\right) \\
& \quad \times F\left(\left|a_{j}\right|,\left|b_{j}\right| ; c_{j} ; 1\right)-\frac{2}{\left|1-B_{1}\right|} \leq 1
\end{aligned}
$$

holds. But this inequality is true because of the given condition (ii).
Theorem 3.2. Let $f=h+\bar{g}$ given by (1.1) be in S_{H}. If the inequality

$$
\begin{aligned}
& \sum_{n=2}^{\infty}\{(n-1)(1+|B|)+(A-B)(1-\alpha)\}\left|A_{n}\right| \\
& +\sum_{n=1}^{\infty}\{(n-1)(1+|B|)+(A-B)(1-\alpha)\}\left|B_{n}\right| \leq(A-B)(1-\alpha)\left|1-B_{1}\right|
\end{aligned}
$$

is satisfied, then $f \in S_{H}[A, B, \alpha]$.

Proof. From the definition of $S_{H}[A, B, \alpha]$, it suffices to prove that the function t given by (1.2) is in the class $S^{*}[A, B, \alpha]$. But, as an application of Lemma 2.1, we only need to show that $Q_{2} \leq 1$, where

$$
\begin{aligned}
Q_{2}: & =\sum_{n=2}^{\infty} \frac{(n-1)(1+|B|)+(A-B)(1-\alpha)}{(A-B)(1-\alpha)}\left|\frac{A_{n}-B_{n}}{1-B_{1}}\right| \\
& \leq \sum_{n=2}^{\infty} \frac{(n-1)(1+|B|)+(A-B)(1-\alpha)}{(A-B)(1-\alpha)}\left[\frac{\left|A_{n}\right|+\left|B_{n}\right|}{\left|1-B_{1}\right|}\right]
\end{aligned}
$$

Thus $Q_{2} \leq 1$ holds because of the given condition.
ThEOREM 3.3. Let $f=h+\bar{g}$ be of the form (1.1) and for $j=1,2$, suppose $a_{j}, b_{j} \in \mathbb{C} \backslash\{0\}, c_{j} \in \mathbb{R}$ such that $c_{j}>\left|a_{j}\right|+\left|b_{j}\right|+2$ and $\Omega(f) \in S_{H}$. If the coefficient conditions
(i) $\sum_{n=2}^{\infty}\left|A_{n}\right|+\sum_{n=1}^{\infty}\left|B_{n}\right| \leq 1$,
(ii) $\sum_{j=1}^{2}\left\{\frac{(1+B)}{(A-B)(1-\alpha)} \frac{\left(\left|a_{j}\right|\right)_{2}\left(\left|b_{j}\right|\right)_{2}}{\left(c_{j}-\left|a_{j}\right|-\left|b_{j}\right|-2\right)_{2}}+\left(\frac{2(1+|B|)}{(A-B)(1-\alpha)}+1\right)\right.$

$$
\left.\frac{\left|a_{j} b_{j}\right|}{c_{j}-\left|a_{j}\right|-\left|b_{j}\right|-1}+1\right\} F\left(\left|a_{j}\right|,\left|b_{j}\right| ; c_{j} ; 1\right) \leq 2+\left|1-B_{1}\right|<4
$$

are satisfied, then $\Omega(f) \in K_{H}[A, B, \alpha]$.
Proof. In view of the definition of $K_{H}[A, B, \alpha]$ and the fact that $\Omega(f) \in S_{H}$, it suffices to prove that the function T given by (3.1) is in $K[A, B, \alpha]$. Note that $\left|A_{n}\right| \leq 1$ and $\left|B_{n}\right| \leq 1$, by the condition (i). In the view of Lemma (2.2), the function $T \in K[A, B, \alpha]$ provided that $Q_{3} \leq 1$, where

$$
\begin{aligned}
& Q_{3}:=\sum_{n=2}^{\infty} n\left[\frac{(n-1)(1+|B|)+(A-B)(1-\alpha)}{(A-B)(1-\alpha)}\right] \\
& \times\left|\frac{\left(a_{1}\right)_{n-1}\left(b_{1}\right)_{n-1}}{\left(c_{1}\right)_{n-1}(1)_{n-1}} \frac{A_{n}}{1-B_{1}}-\frac{\left(a_{2}\right)_{n-1}\left(b_{2}\right)_{n-1}}{\left(c_{2}\right)_{n-1}(1)_{n-1}} \frac{B_{n}}{1-B_{1}}\right| \\
& \leq \sum_{n=2}^{\infty} n\left[\frac{(n-1)(1+|B|)+(A-B)(1-\alpha)}{(A-B)(1-\alpha)\left|1-B_{1}\right|}\right] \\
& \times\left[\frac{\left(\left|a_{1}\right|\right)_{n-1}\left(\left|b_{1}\right|\right)_{n-1}}{\left(c_{1}\right)_{n-1}(1)_{n-1}}+\frac{\left(\left|a_{2}\right|\right)_{n-1}\left(\left|b_{2}\right|\right)_{n-1}}{\left(c_{2}\right)_{n-1}(1)_{n-1}}\right] \\
& =\frac{1+|B|}{\left|1-B_{1}\right|(A-B)(1-\alpha)} \sum_{n=2}^{\infty}\left[(n-1)^{2}+(n-1)\right]\left(D_{1}+D_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{1}{\left|1-B_{1}\right|} \sum_{n=2}^{\infty}(n-1)\left(D_{1}+D_{2}\right)+\frac{1}{\left|1-B_{1}\right|} \sum_{n=2}^{\infty}\left(D_{1}+D_{2}\right) \\
& =\frac{1}{\left|1-B_{1}\right|}\left[\frac{1+|B|}{(A-B)(1-\alpha)} \sum_{n=2}^{\infty}(n-1)^{2}\left(D_{1}+D_{2}\right)\right. \\
& \left.+\left(\frac{1+|B|}{(A-B)(1-\alpha)}+1\right) \sum_{n=2}^{\infty}(n-1)\left(D_{1}+D_{2}\right)+\sum_{n=2}^{\infty}\left(D_{1}+D_{2}\right)\right]
\end{aligned}
$$

where $D_{j}=\frac{\left(\left|a_{j}\right|\right)_{n-1}\left(\left|b_{j}\right|\right)_{n-1}}{\left(c_{j}\right)_{n-1}(1)_{n-1}}$ for $j=1,2$. Using Lemma 2.4, we find that Q_{3} is less than or equal to

$$
\begin{aligned}
& \frac{1}{\left|1-B_{1}\right|} \sum_{j=1}^{2}\left\{\frac{(1+|B|)}{(A-B)(1-\alpha)} \frac{\left(\left|a_{j}\right|\right)_{2}\left(\left|b_{j}\right|\right)_{2}}{\left(c_{j}-\left|a_{j}\right|-\left|b_{j}\right|-2\right)_{2}}+\left(\frac{2(1+|B|)}{(A-B)(1-\alpha)}+1\right)\right. \\
& \left.\times \frac{\left|a_{j} b_{j}\right|}{c_{j}-\left|a_{j}\right|-\left|b_{j}\right|-1}+1\right\} F\left(\left|a_{j}\right|,\left|b_{j}\right| ; c_{j} ; 1\right)-\frac{2}{\left|1-B_{1}\right|} .
\end{aligned}
$$

This proves that $Q_{3} \leq 1$ by the given condition (ii).
Theorem 3.4. Let $f=h+\bar{g}$ given by (1.1) be in S_{H}. If the inequality

$$
\begin{aligned}
& \sum_{n=2}^{\infty} n\left\{(n-1)((1+|B|)+(A-B)(1-\alpha)\}\left|A_{n}\right|\right. \\
& +\sum_{n=1}^{\infty} n\{(n-1)(1+|B|)+(A-B)(1-\alpha)\}\left|B_{n}\right| \leq(A-B)(1-\alpha)
\end{aligned}
$$

is satisfied, then $f \in K_{H}[A, B, \alpha]$.
Proof. This is similar to the proof of Theorem 3.2, hence it is omitted.
The next two theorems give characterizations of functions in $S_{H}[A, B, \alpha]$ and $K_{H}[A, B, \alpha]$.

THEOREM 3.5. If $f(z)=h(z)+\overline{g(z)} \in S_{H}$ then $f \in S_{H}[A, B, \alpha]$ if and only if $\frac{1}{z}\left[(h(z)-g(z)) * F_{1}(z)\right] \neq 0$ for all z in U and all ξ, such that $|\xi|=1$, where

$$
F_{1}(z):=\frac{z+\left(\frac{\xi-(B+(A-B)(1-\alpha))}{(A-B)(1-\alpha)}\right) z^{2}}{(1-z)^{2}}
$$

Proof. By the definition of $S_{H}[A, B, \alpha]$, it is clear that $f \in S_{H}[A, B, \alpha]$ if and only if $t(z)$ given by (1.3) is in $S^{*}[A, B, \alpha]$. But, $t \in S^{*}[A, B, \alpha]$ if and only if $\frac{z t^{\prime}(z)}{t(z)} \prec \frac{1+(B+(A-B)(1-\alpha)) z}{1+B z}$, that is, $\frac{z t^{\prime}(z)}{t(z)} \neq \frac{1+(B+(A-B)(1-\alpha)) \varsigma}{1+B \varsigma}$ for $z \in U$ and $|\varsigma|=1$, which is equivalent to $\frac{1}{z}\left[(1+B \varsigma) z t^{\prime}-(1+(B+(A-B)(1-\alpha)) \varsigma) t\right] \neq 0$.

Since $z t^{\prime}=t * \frac{z}{(1-z)^{2}}$ and $t=t * \frac{z}{1-z}$, the above inequality is equivalent to

$$
\begin{aligned}
& \frac{1}{z}\left[t(z) *\left[\frac{-(A-B)(1-\alpha) \varsigma z+[1+(B+(A-B)(1-\alpha)) \varsigma] z^{2}}{(1-z)^{2}}\right]\right] \\
& =\frac{-(A-B)(1-\alpha) \varsigma}{\left(1-B_{1}\right) z}\left[(h(z)-g(z)) *\left(\frac{z+\left(\frac{\xi-(B+(A-B)(1-\alpha))}{(A-B)(1-\alpha)}\right) z^{2}}{(1-z)^{2}}\right)\right] \neq 0
\end{aligned}
$$

where $|-1 / \varsigma|=|\xi|=1$, and the result follows.
Corollary 3.6. If $f(z)=h(z)+\overline{g(z)} \in S_{H}$, then $f \in K_{H}[A, B, \alpha]$ if and only if $\frac{1}{z}\left[(h(z)-g(z)) * F_{2}(z)\right] \neq 0$ for all $z \in U$ and all ξ with $|\xi|=1$, where

$$
F_{2}(z):=\frac{1}{(1-z)^{3}}\left[z+\left(\frac{2 \xi-(2 B+(A-B)(1-\alpha))}{(A-B)(1-\alpha)}\right) z^{2}\right]
$$

Proof. Note that $t \in K[A, B, \alpha]$ if and only if $z t^{\prime}(z) \in S_{H}[A, B, \alpha]$. Setting $p(z)=\frac{z+\left(\frac{\xi-(B+(A-B)(1-\alpha))}{(A-B)(1-\alpha)}\right) z^{2}}{(1-z)^{2}}$, we have $z p^{\prime}(z)=\frac{z+\left(\frac{2 \xi-2 B-(A-B)(1-\alpha)}{(A-B)(1-\alpha)}\right) z^{2}}{(1-z)^{3}}$. Using the identity $z t^{\prime} * p=t * z p^{\prime}$, the result follows from Theorem 3.5.

REFERENCES

[1] Ahuja, O.P., The Bieberbach Conjecture and its impact on the developments in geometric function Theory, Math. Chronicle, 15 (1986), 1-28.
[2] Ahuja, O.P., Planar harmonic convolution operators generated by hypergeometric functions, Integral Trans. and Special Functions, 18(3) (2007), 165-177.
[3] Ahuja, O.P., Connections between various subclasses of harmonic mappings involving hypergeometric functions, Appd Math. Compu., 198 (2008), 305-316.
[4] Ahuja, O.P., Planar harmonic univalent and related mappings, J. Ineq. Pure Appl. Math., 6(4) (2005), Art 122.
[5] Ahuja, O.P., Jahangiri, J.M. and Silverman, H., Convolutions for special classes of harmonic univalent functions, Appl. Math. Letters, 16 (2003), 905-909.
[6] Clunie, J. and Sheil-Small, T., Harmonic univalent functions, Ann. Acad Sci. Fenn. Ser. A. I. Mat., 9 (1984), 3-25.
[7] Duren, P.L., Harmonic mappings in the plane, Cambridge University Press, 2004.
[8] Ruscheweyh, St. and Sheil-Small, T., Hadamard product of Schlicht functions and Polya-Schoenberg conjecture, Comment. Math Helv., 48 (1973), 119-135.
[9] Silverman, H., Silvia, E.M. and Telage, T., Convolution condition for convexity, starlikness, and spriallikness, Math. Z., 2 (1978), 125-130.

Received March 1, 2009
Accepted January 18, 2010

Walchand College of Engineering Department of Mathematics Sangli, (M.S.) 416415, India
E-mail: sayali-75@yahoo.co.in

Kent State University Department of Mathematics
Burton, Ohio 44021-9500, USA
E-mail: oahuja@kent.edu

[^0]: This work is supported by Department of Science and Technology, SERC Division, New Delhi under the Young Scientist Project (SR/FTP/MS-17/2007) sanctioned to first named author.

