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CERTAIN FAMILIES OF ANALYTIC UNIVALENT FUNCTIONS
GENERATED BY HARMONIC UNIVALENT MAPPINGS
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Abstract. In the present paper we obtain some inclusion theorems and convo-
lution characterizations for the classes of analytic univalent functions generated
by harmonic univalent and sense-preserving mappings.
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1. INTRODUCTION

A continuous function f is said to be a complex-valued harmonic function in
a simply connected domain D in complex plane C if both real and imaginary
parts of f are real harmonic inD. Such functions can be expressed as f = h+ḡ,
where h, g are analytic in D. We call h the analytic part and g the co-analytic
part of f . A necessary and sufficient condition for f to be locally univalent
and sense-preserving in D is that |h′(z)| > |g′(z)| for all z in D (see [6]).

Every harmonic function f = h+ḡ is uniquely determined by the coefficients
of power series expansions in the unit disk U = {z : |z| < 1} given by

(1.1) h(z) = z +
∞∑
n=2

Anz
n, g(z) =

∞∑
n=1

Bnz
n, z ∈ U, |B1| < 1,

where An ∈ C for n = 2, 3, 4, . . . and Bn ∈ C for n = 1, 2, 3, . . .. For further
information about these mappings, one may refer to [4, 6, 7].

In 1984, Clunie and Sheil-Small [6] studied the family SH of all univalent
sense-preserving harmonic functions f of the form f = h + ḡ in U , such that
h and g are represented by (1.1). Note that SH reduces to the well-known
family S, the class of all normalized analytic univalent functions h given in
(1.1), whenever the co-analytic part g of f is zero. Let K, KH denote the
respective subclasses of S, SH where the images of f(U) are convex.

In the last two decades, several researchers have defined various subclasses
of S using subordination. A function h is said to be subordinate to F if
there exists an analytic function w with w(0) = 0 and |w(z)| < 1 such that
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h(z) = F (w(z)) for all z in U . Using subordination, we define two subclasses
of S as follows:

S∗[A,B, α] =

{
f ∈ S :

zf ′(z)

f(z)
≺ 1 + [B + (A−B)(1− α)]z

1 +Bz
, z ∈ U

}
,

K[A,B, α] =

{
f ∈ S :

(zf ′(z))′

f ′(z)
≺ 1 + [B + (A−B)(1− α)]z

1 +Bz
, z ∈ U

}
,

where 0 ≤ α < 1,−1 ≤ B < B + (A − B)(1 − α) < A ≤ 1. The condition
|B| ≤ 1 implies that the function [1 + (B + (A − B)(1 − α))z][1 + Bz]−1 is
convex and univalent in U . For different values of parameters A,B and α
one can obtain several subclasses of S. For information about properties and
subclasses of S, we refer to the survey article by the second author in [1].

Note that the convex domains are those domains that are convex in every
direction. The following lemma will motivate us to construct certain analytic
univalent function associated with f ∈ SH .

Lemma 1.1 ([5, 6]). A harmonic function f = h+ ḡ locally univalent in U
is a univalent mapping of U and f ∈ KH if and only if h − g is an analytic
univalent mapping of U onto a domain convex in the direction of the real axis.

For f = h + ḡ in SH , where h and g are given by (1.1), Lemma 1.1 led us
to construct the function t with suitable normalization, given by

(1.2) t(z) =
h(z)− g(z)

1−B1
= z +

∞∑
n=2

An −Bn
1−B1

zn, z ∈ U.

Since f ∈ SH is sense-preserving, it follows that |B1| < 1. Hence the function t
belongs to S. This observation has prompted us to define the following classes:

SH [A,B, α] := {f = h+ ḡ ∈ SH : t ∈ S∗[A,B, α]},

KH [A,B, α] := {f = h+ ḡ ∈ SH : t ∈ K[A,B, α]}.

In [2], the second author connected hypergeometric functions with harmonic
mappings f = h + ḡ by defining the convolution operator Ω by Ω(f) :=
f ∗̃(φ1 + φ̄2) = h ∗φ1 + g ∗ φ2, where ∗ denotes the convolution product of two
power series and φ1, φ2 are defined by

φ1(z) = zF (a1, b1; c1; z) = z +

∞∑
n=2

(a1)n−1(b1)n−1
(c1)n−1(1)n−1

zn,

φ2(z) = zF (a2, b2; c2; z) =
∞∑
n=1

(a2)n−1(b2)n−1
(c2)n−1(1)n−1

zn.

Here F (a, b; c; z) is a well-known hypergeometric function and a’s, b’s, c’s are
complex parameters with c 6= 0,−1,−2, . . .. Corresponding to any function
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f = h+ ḡ given by (1.1), we have Ω(f) = H + Ḡ, where

(1.3) H(z) = z+
∞∑
n=2

(a1)n−1(b1)n−1
(c1)n−1(1)n−1

Anz
n, G(z) =

∞∑
n=1

(a2)n−1(b2)n−1
(c2)n−1(1)n−1

Bnz
n,

|B1| < 1. We shall frequently use the well-known Gauss summation formula

F (a, b; c; 1) =
∞∑
n=0

(a)n(b)n
(c)n(1)n

=
Γ(c− a− b)Γ(c)

Γ(c− a)Γ(c− b)
, Re(c− a− b) > 0.

In the present paper, we study certain connections of the mappings f = h+ḡ
in SH with the corresponding analytic functions in the classes S∗[A,B, α] and
K[A,B, α]. More precisely, we obtain some inclusion theorems and convolution
characterization theorems for the classes S∗H [A,B, α] and KH [A,B, α].

2. LEMMAS

Lemma 2.1. A function h defined by the first part of (1.1) is in S∗[A,B, α]
if
∑∞

n=2{(n− 1)(1 + |B|) + (A−B)(1− α)}|An| ≤ (A−B)(1− α).

Proof. In view of the definition of S∗[A,B, α], h ∈ S∗[A,B, α] if and only

if there exists an analytic function w such that zh′(z)
h(z) = 1+[B+(A−B)(1−α)]w(z)

1+Bw(z)

with w(0) = 0 and |w(z)| < |z|. Since |w(z)| < 1, the above equation is
equivalent to ∣∣∣∣∣∣

zh′(z)
h(z) − 1

[B + (A−B)(1− α)]−B zh′(z)
h(z)

∣∣∣∣∣∣ < 1.

On the other hand, on |z| = 1 we have

|zh′(z)− h(z)| − |[B + (A−B)(1− α)]h(z)−Bzh′(z)| =

∣∣∣∣∣
∞∑
n=2

(n− 1)Anz
n

∣∣∣∣∣
−

∣∣∣∣∣(A−B)(1− α)z −
∞∑
n=2

[(n− 1)B − (A−B)(1− α)]Anz
n

∣∣∣∣∣
≤
∞∑
n=2

[(n− 1)(1 + |B|) + (A−B)(1− α)]|An| − (A−B)(1− α) ≤ 0,

provided the given condition holds. Hence by maximum modulus Theorem it
follows that h ∈ S∗[A,B, α]. �

Lemma 2.2. A function h defined by the first part in (1.1) is in K[A,B, α]
if
∑∞

n=2 n{(n− 1)(1 + |B|) + (A−B)(1− α)}|An| ≤ (A−B)(1− α).

Proof. From the definition of K[A,B, α] it follows that h ∈ K[A,B, α] if
and only if there exists an analytic function w such that

(zh′(z))′

h′(z)
=

1 + [B + (A−B)(1− α)]w(z)

1 +Bw(z)
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with w(0) = 0 and |w(z)| < |z| < 1. This equality is equivalent to∣∣∣∣∣∣
(zh′(z))′

h′(z) − 1

[B + (A−B)(1− α)]−B (zh′(z))′

h′(z)

∣∣∣∣∣∣ < 1.

The remaining steps of the proof are similar to the proof of Lemma 2.1. �

Lemma 2.3 ([2]). Let f = h + ḡ where h and g are analytic functions of
the form (1.1). If aj , bj ∈ C\{0}, cj ∈ R are such that cj > |aj | + |bj | + 1 for
j = 1, 2 and the hypergeometric inequalities

(i)
∞∑
n=2

|An|+
∞∑
n=1

|Bn| ≤ 1, |B1| < 1,

(ii)
2∑
j=1

(
|ajbj |

cj − |aj | − |bj | − 1
+ 1

)
F (|aj |, |bj |; cj ; 1) ≤ 2

are satisfied, then Ω(f) is sense-preserving harmonic and univalent in U ; and
so Ω(f) ∈ SH .

Lemma 2.4 ([2]). If a, b, c > 0, then

(i)
∞∑
n=1

(n− 1)
(a)n−1(b)n−1
(c)n−1(1)n−1

=
ab

c− a− b− 1
F (a, b; c; 1) if c > a+ b+ 1,

(ii)
∞∑
n=2

(n − 1)2
(a)n−1(b)n−1
(c)n−1(1)n−1

=

(
(a)2(b)2

(c− a− b− 2)2
+

ab

c− a− b− 1

)
F (a, b; c; 1) if c > a+ b+ 2.

3. MAIN RESULTS

Theorem 3.1. Let f = h+ ḡ be of the form (1.1), and for j = 1, 2, suppose
aj , bj ∈ C\{0}, cj ∈ R are such that cj > |aj |+ |bj |+ 1 and Ω(f) ∈ SH . If the
coefficient conditions

(i)
∞∑
n=2

|An|+
∞∑
n=1

|Bn| ≤ 1,

(ii)
2∑
j=1

(
(1 + |B|)

(A−B)(1− α)

|ajbj |
cj − |aj | − |bj | − 1

+ 1

)
F (|aj |, |bj |; cj ; 1)

≤ (2 + |1−B1|) < 4

are satisfied, then Ω(f) ∈ SH [A,B, α].

Proof. In order to prove that Ω(f) ∈ SH [A,B, α], it suffices to prove that

T (z) : =
H(z)−G(z)

1−B1

= z +

∞∑
n=2

[
(a1)n−1(b1)n−1
(c1)n−1(1)n−1

An −
(a2)n−1(b2)n−1
(c2)n−1(1)n−1

Bn

]
1

1−B1
zn

(3.1)
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is in S∗[A,B, α]. Note that |An| ≤ 1 and |Bn| ≤ 1, by the condition (i). As an
application of Lemma 2.1, T ∈ S∗[A,B, α] provided that Q1 ≤ 1, where

Q1 :=

∞∑
n=2

[
(n− 1)(1 + |B|) + (A−B)(1− α)

(A−B)(1− α)

]
×
∣∣∣∣(a1)n−1(b1)n−1(c1)n−1(1)n−1

An
1−B1

− (a2)n−1(b2)n−1
(c2)n−1(1)n−1

Bn
1−B1

∣∣∣∣
≤
∞∑
n=2

[
(n− 1)(1 + |B|) + (A−B)(1− α)

(A−B)(1− α)|1−B1|

]
×
(

(|a1|)n−1(|b1|)n−1
(c1)n−1(1)n−1

+
(|a2|)n−1(|b2|)n−1

(c2)n−1(1)n−1

)
=

(1 + |B|)
|1−B1|(A−B)(1− α)

×
∞∑
n=2

(n− 1)

(
(|a1|)n−1(|b1|)n−1

(c1)n−1(1)n−1
+

(|a2|)n−1(|b2|)n−1
(c2)n−1(1)n−1

)
+

1

|1−B1|

(
(|a1|)n−1(|b1|)n−1

(c1)n−1(1)n−1
+

(|a2|)n−1(|b2|)n−1
(c2)n−1(1)n−1

)
=

(1 + |B|)
|1−B1|(A−B)(1− α)

(
|a1b1|

c1 − |a1| − |b1| − 1
F (|a1|, |b1|; c1; 1)

+
|a2b2|

c2 − |a2| − |b2| − 1
F (|a2|, |b2|; c2; 1)

)
+

1

|1−B1|
(F (|a1|, |b1|; c1; 1) + F (|a2|, |b2|; c2; 1)− 2)

by Lemma 2.3. Therefore, it follows that T ∈ S∗[A,B, α] if the inequality

1

|1−B1|

2∑
j=1

(
(1 + |B|)

(A−B)(1− α)

|ajbj |
cj − |aj | − |bj | − 1

+ 1

)

× F (|aj |, |bj |; cj ; 1)− 2

|1−B1|
≤ 1

holds. But this inequality is true because of the given condition (ii). �

Theorem 3.2. Let f = h+ ḡ given by (1.1) be in SH . If the inequality
∞∑
n=2

{(n− 1)(1 + |B|) + (A−B)(1− α)}|An|

+

∞∑
n=1

{(n− 1)(1 + |B|) + (A−B)(1− α)}|Bn| ≤ (A−B)(1− α)|1−B1|

is satisfied, then f ∈ SH [A,B, α].
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Proof. From the definition of SH [A,B, α], it suffices to prove that the func-
tion t given by (1.2) is in the class S∗[A,B, α]. But, as an application of
Lemma 2.1, we only need to show that Q2 ≤ 1, where

Q2 : =

∞∑
n=2

(n− 1)(1 + |B|) + (A−B)(1− α)

(A−B)(1− α)

∣∣∣∣An −Bn1−B1

∣∣∣∣
≤

∞∑
n=2

(n− 1)(1 + |B|) + (A−B)(1− α)

(A−B)(1− α)

[
|An|+ |Bn|
|1−B1|

]
.

Thus Q2 ≤ 1 holds because of the given condition. �

Theorem 3.3. Let f = h+ ḡ be of the form (1.1) and for j = 1, 2, suppose
aj , bj ∈ C\{0}, cj ∈ R such that cj > |aj | + |bj | + 2 and Ω(f) ∈ SH . If the
coefficient conditions

(i)
∞∑
n=2

|An|+
∞∑
n=1

|Bn| ≤ 1,

(ii)
2∑
j=1

{
(1 +B)

(A−B)(1− α)

(|aj |)2(|bj |)2
(cj − |aj | − |bj | − 2)2

+

(
2(1 + |B|)

(A−B)(1− α)
+ 1

)
|ajbj |

cj − |aj | − |bj | − 1
+ 1

}
F (|aj |, |bj |; cj ; 1) ≤ 2 + |1−B1| < 4

are satisfied, then Ω(f) ∈ KH [A,B, α].

Proof. In view of the definition of KH [A,B, α] and the fact that Ω(f) ∈ SH ,
it suffices to prove that the function T given by (3.1) is in K[A,B, α]. Note
that |An| ≤ 1 and |Bn| ≤ 1, by the condition (i). In the view of Lemma (2.2),
the function T ∈ K[A,B, α] provided that Q3 ≤ 1, where

Q3 :=

∞∑
n=2

n

[
(n− 1)(1 + |B|) + (A−B)(1− α)

(A−B)(1− α)

]
×
∣∣∣∣(a1)n−1(b1)n−1(c1)n−1(1)n−1

An
1−B1

− (a2)n−1(b2)n−1
(c2)n−1(1)n−1

Bn
1−B1

∣∣∣∣
≤
∞∑
n=2

n

[
(n− 1)(1 + |B|) + (A−B)(1− α)

(A−B)(1− α)|1−B1|

]
×
[

(|a1|)n−1(|b1|)n−1
(c1)n−1(1)n−1

+
(|a2|)n−1(|b2|)n−1

(c2)n−1(1)n−1

]
=

1 + |B|
|1−B1|(A−B)(1− α)

∞∑
n=2

[(n− 1)2 + (n− 1)](D1 +D2)
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+
1

|1−B1|

∞∑
n=2

(n− 1)(D1 +D2) +
1

|1−B1|

∞∑
n=2

(D1 +D2)

=
1

|1−B1|

[
1 + |B|

(A−B)(1− α)

∞∑
n=2

(n− 1)2(D1 +D2)

+

(
1 + |B|

(A−B)(1− α)
+ 1

) ∞∑
n=2

(n− 1)(D1 +D2) +
∞∑
n=2

(D1 +D2)

]
,

where Dj =
(|aj |)n−1(|bj |)n−1

(cj)n−1(1)n−1
for j = 1, 2. Using Lemma 2.4, we find that Q3 is

less than or equal to

1

|1−B1|

2∑
j=1

{
(1 + |B|)

(A−B)(1− α)

(|aj |)2(|bj |)2
(cj − |aj | − |bj | − 2)2

+

(
2(1 + |B|)

(A−B)(1− α)
+ 1

)

× |ajbj |
cj − |aj | − |bj | − 1

+ 1

}
F (|aj |, |bj |; cj ; 1)− 2

|1−B1|
.

This proves that Q3 ≤ 1 by the given condition (ii). �

Theorem 3.4. Let f = h+ ḡ given by (1.1) be in SH . If the inequality

∞∑
n=2

n{(n− 1)((1 + |B|) + (A−B)(1− α)}|An|

+
∞∑
n=1

n{(n− 1)(1 + |B|) + (A−B)(1− α)}|Bn| ≤ (A−B)(1− α)

is satisfied, then f ∈ KH [A,B, α].

Proof. This is similar to the proof of Theorem 3.2, hence it is omitted. �

The next two theorems give characterizations of functions in SH [A,B, α]
and KH [A,B, α].

Theorem 3.5. If f(z) = h(z) +g(z) ∈ SH then f ∈ SH [A,B, α] if and only
if 1

z [(h(z)− g(z)) ∗F1(z)] 6= 0 for all z in U and all ξ, such that |ξ| = 1, where

F1(z) :=
z +

(
ξ−(B+(A−B)(1−α))

(A−B)(1−α)

)
z2

(1− z)2
.

Proof. By the definition of SH [A,B, α], it is clear that f ∈ SH [A,B, α] if
and only if t(z) given by (1.3) is in S∗[A,B, α]. But, t ∈ S∗[A,B, α] if and only

if zt′(z)
t(z) ≺

1+(B+(A−B)(1−α))z
1+Bz , that is, zt

′(z)
t(z) 6=

1+(B+(A−B)(1−α))ς
1+Bς for z ∈ U and

|ς| = 1, which is equivalent to 1
z [(1+Bς)zt′−(1+(B+(A−B)(1−α))ς)t] 6= 0.
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Since zt′ = t ∗ z
(1−z)2 and t = t ∗ z

1−z , the above inequality is equivalent to

1

z

[
t(z) ∗

[
−(A−B)(1− α)ςz + [1 + (B + (A−B)(1− α))ς]z2

(1− z)2

]]

=
−(A−B)(1− α)ς

(1−B1)z

(h(z)− g(z)) ∗

z +
(
ξ−(B+(A−B)(1−α))

(A−B)(1−α)

)
z2

(1− z)2

 6= 0,

where | − 1/ς| = |ξ| = 1, and the result follows. �

Corollary 3.6. If f(z) = h(z) + g(z) ∈ SH , then f ∈ KH [A,B, α] if and
only if 1

z [(h(z)− g(z)) ∗ F2(z)] 6= 0 for all z ∈ U and all ξ with |ξ| = 1, where

F2(z) :=
1

(1− z)3

[
z +

(
2ξ − (2B + (A−B)(1− α))

(A−B)(1− α)

)
z2
]
.

Proof. Note that t ∈ K[A,B, α] if and only if zt′(z) ∈ SH [A,B, α]. Setting

p(z) =
z+

(
ξ−(B+(A−B)(1−α))

(A−B)(1−α)

)
z2

(1−z)2 , we have zp′(z) =
z+

(
2ξ−2B−(A−B)(1−α)

(A−B)(1−α)

)
z2

(1−z)3 . Using

the identity zt′ ∗ p = t ∗ zp′, the result follows from Theorem 3.5. �
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