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ORBIT DECOMPOSITION OF SKEW GROUP ALGEBRAS

EMIL HOROBEŢ

Abstract. We describe the basic algebra Morita equivalent to the skew group
algebra ΛG, where Λ is the path algebra of a finite, connected, acyclic quiver
and G is a finite cyclic group. We give a structure theorem for the above case,
based on combinatorial techniques. We prove that in this case ΛG is isomorphic
to a direct product of certain matrix algebras, which are described in detail.
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1. PRELIMINARIES

In this paper we describe the basic algebra Morita equivalent to the skew
group algebra ΛG, where Λ is a path algebra of a finite, connected quiver, and
G is a finite group.

1.1. Let Λ be an Artinian ring with Λ/ rad(Λ) '
⊕

Matni(∆i), and let
Pi be the corresponding projective indecomposables such that ΛΛ =

⊕
niPi.

If we let P :=
⊕
miPi, with mi ≥ 1, then P is a progenerator of Mod Λ,

and Γ and Λ are Morita equivalent. Let Γ := EndΛ(P )op. Then we have
Γ/(rad Γ) '

⊕
Matmi(∆i). The smallest possibility for P is that if we choose

each mi = 1. In this case Γ is called the basic algebra of Λ. This means
that we have to determine Λ/ rad(Λ) '

⊕
Matn(∆i) and the corresponding

projective indecomposables.

We recall the Wedderburn-Artin theorem and its proof cf. [3], because we
shall need the notations.

Theorem 1.2. Let Λ be a semisimple Artinian ring. Then Λ =
⊕r

i=1 Λi,
where Λi ' Matni(∆i), ∆i is a division ring and the Λi are uniquely deter-
mined. The ring Λ has exactly r isomorphism classes of irreducible modules
Mi, and moreover EndΛ(Mi) ' ∆op

i , and dim∆op
i

(Mi) = ni.

Proof. If Λ is semisimple, then Λ '
⊕r

i=1Mi, where Mi is semisimple,
Mi = Mi,1

⊕
· · ·
⊕
Mi,ni , where Mi,j ' Si is simple for all i ∈ {1, . . . , ni}, and

Si � Sj for i 6= j. In this case let ∆i = EndΛ(Si), which is a division ring. We
have that EndΛ(Mi) ' Matni(∆i); this implies EndΛ(M) =

⊕
EndΛ(Mi) '⊕

Matni(∆i). On the other hand, Λ ' EndΛ(ΛΛ)op, so it follows that Λ '⊕r
i=1 Matni(∆

op
i ). �

1.3. We fix the following notation.

• r is the number of isomorphism classes of simple Λ-modules;
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• ∆i := EndΛ(Si), where Si is simple;
• ni is the number of summands isomorphic to Si.

Recall also from [3] the following theorem on lifting idempotents.

Theorem 1.4. If Λ is an Artin algebra, then:

(i) rad Λ is a nilpotent ideal of Λ;
(ii) If 1 = e1+· · ·+en is a decomposition into primitive orthogonal idempo-

tents in Λ/ rad Λ, then there is the decomposition 1 = f1 + · · ·+fn into
primitive orthogonal idempotents in Λ such that fi := fi + rad Λ = ei.

1.5. Since Λ/ rad Λ is semisimple, we can apply the Wedderburn-Artin
theorem, and we get Λ/ rad Λ =

⊕r
i=1 Matni(∆i). Let Si be the simple

Λ-module corresponding to the ith matrix algebra factor. This means that
Λ/ rad Λ '

⊕r
i=1 niSi.

Now we choose an orthogonal 1 = e1 + e2 + · · · + en in Λ/ rad Λ. By the
above theorem we get the orthogonal decomposition 1 = f1 + f2 + · · ·+ fn in
Λ. With the notations of Theorem 1.2, this implies ΛΛ =

⊕r
i=1 niPi, where

Pi/J(Λ)Pi ' Si. From here we can construct the progenerator P =
⊕r

i=1 Pi,
and the corresponding basic algebra Γ = EndΛ(P )op associated to Λ.

Therefore, if we want to study the basic algebra of the skew group algebra
ΛG, then we need information about ΛG/ rad ΛG, and also about the semisim-
plicity of ΛG. We only consider the case when the order |G| of G is invertible
in Λ. We recall the following result from [4].

Theorem 1.6. If |G| is invertible in Λ, then ΛG/ rad ΛG = (Λ/ rad Λ)G.

2. PATH ALGEBRAS AND THE DECOMPOSITION OF (Λ/ rad Λ)G

In this section we discuss the decomposition of Λ/ rad Λ and of (Λ/ rad Λ)G,
where Λ = KQ is a path algebra of a connected, finite quiver, and G is a finite
group such that the characteristic of the field K does not divide the order of
G.

Let Q = (Q0, Q1) be a quiver and let Λ = KQ be it’s path algebra. The
arrow ideal of KQ is the ideal generated by all paths of Q. We denote by
εa = (a||a) the trivial path of Q, for a ∈ Q0. In this case we have the following
result from [1].

Theorem 2.1. Let Q = (Q0, Q1) be a finite, connected quiver, K an alge-
braically closed field and R the arrow ideal of KQ.

(1) The set {εa = εa +R} is complete set of primitive orthogonal idempo-
tents for KQ/R.

(2) If Q is acyclic then radKQ = R and KQ is finite dimensional basic
algebra.

2.2. From now on we consider only finite, connected, acyclic quivers. By
Theorem 2.1, we have the decomposition Λ/ rad Λ ' Ke1 × · · · ×Ken, where
Q0 = {e1, . . . en}. We also have that (Λ/ rad Λ)G ' (Ke1 × · · · ×Ken)G.
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Consider first the following example from [2].

Example 2.3. Let K be a field of characteristic not equal to 2, and let Q
be the following quiver

3 2
βoo 1

αoo α′
// 2′

β′
// 3′ .

Let G = 〈σ〉 of order 2, and let σe1 = e1, σe2 = e2′ , σe3 = e3′ , σα = α′

and σβ = β′. Then there is only one way of extending σ to be a K-algebra
automorphism of Λ. We obtain the decomposition

(Λ/ rad Λ)G = (Ke1)G× (Ke2 ×Ke2′)G× (Ke3 ×Ke3′)G.

This example suggests that if we have the decomposition Λ/ rad Λ = Ke1×
· · · ×Ken, then (Λ/ rad Λ)G '

⊕
j∈J HjG, where Hj = Kej,1 × · · · ×Kej,nj ,

such that {ej1 , . . . , enj} is a maximal G-invariant subset of Q0, and for all N ,
the subset N of Hj , is not G-invariant. The precise statement is as follows.

Proposition 2.4. Let Λ be the path algebra of a finite, connected and
acyclic quiver Q = (Q0, Q1), and let G be a group of automorphisms of Λ
of order s. Then we have

(Λ/ rad Λ)G '
⊕
j∈J

Õrb(ej)G,

where Orb(ej) is the orbit of ej and Õrb(ej) = Kej1 × · · · ×Kejnj
for ejk ∈

Orb(ej).

Proof. It is clear that (Λ/ rad Λ)G '
⊕

j∈J HjG, whereHj is theG-invariant

part of Ke1×· · ·×Ken. We prove that Hj = Orb(er) for some r ∈ {1, . . . , n}.
It is also clear that Orb(er) is G-invariant.

Conversely, if Hj is G-invariant, then let er ∈ (Q0 ∩ Hj). Then we have
the implications: g(er) ∈ Hj ⇒ · · · ⇒ gs(er) ∈ Hj . Now suppose that there
exists h ∈ Hj , h 6= 0 such that 0 6= h ∈ Hj \ {er, . . . , gs(er)}. This means that
{er, . . . , gs(er)} is a G-invariant subset of Hj , which is a contradiction. �

Next we examine the decomposition of Õrb(ei)G. Before this, we examine
some examples.

Example 2.5. Let K be a field of characteristic not equal to 2 and let Q
be the following quiver.

1

2 2′

3 3′

α

α ′

β β′ .



146 E. Horobeţ 4

Let G = 〈σ〉 be of order 2, and let σe1 = e1, σe2 = e2′ , σe3 = e3′ , σα = α′

and σβ = β′. Then there is a unique way to extend σ to b a K-algebra
automorphism of Λ. (In a more general case we have a quiver with symmetry
axis T and σ ∈ Aut(Λ) inverts the elements from the two sides of T .) Observe
that Orb(e1) = {e1},Orb(e2) = {e2, e2′} and Orb(e3) = {e3, e3′}.

Example 2.6. Let σ ∈ Aut(Λ) be such that σei = ei+1 and σen = e1. In

this case we have Λ/ rad Λ = Õrb(e1).

Theorem 2.7. Assume that

(Λ/ rad Λ)G '
⊕
i∈I1

(Kei)G⊕
⊕
j∈I2

(Kej ×Kej′)G.

Then:

(i) (Kei)G has a set {ẽi, ˜̃ei} of primitive orthogonal idempotents;

(ii) (Kei ×Kei′)G '
(
K K
K K

)
.

Proof. Let ẽ1 = e1+e1σ
2 , ˜̃e1 = e1−e1σ

2 . In this way we get a set of primitive
orthogonal idempotents of (Kei)G. To prove the second part, we let

e2 7→
(

1 0
0 0

)
, e2′ 7→

(
0 0
0 1

)
, e2σ 7→

(
0 1
0 0

)
, e2′σ 7→

(
0 0
1 0

)
and we are done. �

Now by Proposition 2.4 and Theorem 2.7, we expect that Õrb eiG ' Matl(K),

where l = card(Orb ei) if l > 1, and Õrb(ei)G ' K×K if l = 1. Before proving
this we look at the following example.

Example 2.8. Consider Õrb(ei)G, with |G| = 3. This means that we have

a σ-cycle of length 3 in Õrb(ei)G (that is, σ3(ei) = ei). We have 3 × 3 basis

elements in Õrb(ei)G:

{ei, σ(ei), σ
2(ei), eiσ, σ(ei)σ, σ

2(ei)σ, eiσ
2, σ(ei)σ

2, σ2(ei)σ
2}.

We want to map each basis element to one of the δi,j-s, where δi,j is a
matrix with 1 at (i, j) and 0-s elsewhere. If we can do this, it means that

Õrb(ei)G ' Mat3(K).
We have to arrange the basis elements in a 3 × 3 matrix M such that

mi,j = mi,k ×mk,j , for all k ∈ {1, 2, 3}. A suitable arrangement is e eσ2 eσ
σ(e)σ σ(e) σ(e)σ2

σ2(e)σ2 σ2(e)σ σ2(e)

 .

By generalizing this idea, we get the required matrix, and we can prove our
result.
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Theorem 2.9. Let Q = (Q0, Q1) be a finite, connected, acyclic quiver, and
let K be an algebraically close field. Let Λ = KQ and assume that G = 〈σ〉
has order invertible in Λ. Then Õrb(e)G ' Matl(K), where l is the cardinality
of Orb(e) and l > 1.

Proof. We observe that we have exactly l2 basis elements, namely σi(e)σj ,
for i ∈ {0, . . . , l − 1} and j ∈ {0, . . . , l − 1}. We want to arrange them in an
l× l matrix M = (mi,j) such way that mi,j = mi,k×mk,j , for all k ∈ {1, . . . , l}.
We denote the basis elements by ai,j := σi−1(e)σj−1, where i, j ∈ {1, . . . , l},
and we arrange them as follows.

M =


a1,1 a1,l · · · a1,2

a2,2 a2,1 · · · a2,3
...

...
. . .

...
al−1,l−1 al−1,l−2 · · · al−1,l

al,l al,l−1 · · · al,1

 .

Consequently, we have

mi,j =

{
ai,i−j+1, if j ≤ i;
ai,l−(j−i)+1, if i < j.

Observe that ai,l−(j−i)+1 = σi−1(e)σl−(j−i) = σi−1(e)σi−j = ai,i−j+1, so we
have that mi,j = ai,i−j+1, for all i, j ∈ {1, . . . , l}.

We now to check that mi,j = mi,k×mk,j , for all i, j, k ∈ {1, . . . , l}. We have

mi,k ×mk,j = ai,i−k+1 × ak,k−j+1 = σi−1(e)σi−kσk−1(e)σk−j

= σi−1(e)σi−k+k−1(e)σi−kσk−j = σi−1(e)σi−j = mi,j .

This means that Õrb(e)G ' Matl(K). �

Our main result now follows by Theorems 1.6, 2.4 and 2.9.

Theorem 2.10. Let Q = (Q0, Q1) be a finite, connected, acyclic quiver, and
denote Λ = KQ, where K is an algebraically closed field. Let G = 〈σ〉 be a
cyclic group such that the characteristic of K does not divide the order of G.
Then

ΛG/ rad(ΛG) ' |I1|(K ×K)
⊕
j>1

|Ij |Matj(K),

where |Ij | is the number of σ-cycles of length j.

2.11. Since full matrix algebras have isomorphic simple modules, we may
now construct e =

∑n1
i=1(ẽ1i + ˜̃e1i) +

∑
j>1 ej , where the ẽ1i + ˜̃e1i corresponds

to a summand of the form (K ×K), and every ej corresponds to a full matrix

algebras. This describes the basic algebra (ΛG)b = e(ΛG)e Morita equivalent
to ΛG.

We take a look again at our previous Example 2.3.
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Example 2.12. By using the calculations in Example 2.3, we have

(Λ/ rad Λ)G ' k × k ×
(
k k
k k

)
×
(
k k
k k

)
Observe that

(
k 0
k 0

)
and

(
0 k
0 k

)
are isomorphic as

(
k k
k k

)
-modules.

We may construct the basic algebra (ΛG)b = e(ΛG)e, where e = ẽ1+ ˜̃e1+e2+e3

corresponds to the non-isomorphic components.
Further, we have that

{e1, e2, e3, e2′ , e3′ , α, β,α
′, β′, βα, β′α′ e1σ, e2σ, e3σ,

e2′σ, e3′σ, ασ, βσ, α
′σ, β′σ, βασ, β′α′σ}

is a k-basis of ΛG. By multiplying on the left and on the write we deduce that{
ẽ1, ˜̃e1,

α+ ασ

2
,
α− ασ

2

β(α+ ασ)

2
,
β(α− ασ)

2

}
is a basis of eΛGe.

Now letting α̃ := α+ασ
2 and ˜̃α := α+ασ

2 , we obtain that eΛGe is isomorphic
to the path algebra of the quiver

ẽ1
α̃ //α̃ // e2

β

��

˜̃e1

˜̃αoo

e3

The determination, in general, of a basis to the basic algebra of ΛG and
the construction of a quiver whose path algebra is this basic algebra, are
combinatorial questions which will be discussed in another paper.
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