ORBIT DECOMPOSITION OF SKEW GROUP ALGEBRAS

EMIL HOROBEŢ

Abstract

We describe the basic algebra Morita equivalent to the skew group algebra ΛG, where Λ is the path algebra of a finite, connected, acyclic quiver and G is a finite cyclic group. We give a structure theorem for the above case, based on combinatorial techniques. We prove that in this case ΛG is isomorphic to a direct product of certain matrix algebras, which are described in detail.

MSC 2010. 16G10, 16S35, 16W55.
Key words. Artinian rings, skew group algebras, basic algebra.

1. PRELIMINARIES

In this paper we describe the basic algebra Morita equivalent to the skew group algebra ΛG, where Λ is a path algebra of a finite, connected quiver, and G is a finite group.
1.1. Let Λ be an Artinian ring with $\Lambda / \operatorname{rad}(\Lambda) \simeq \bigoplus \operatorname{Mat}_{n_{i}}\left(\Delta_{i}\right)$, and let P_{i} be the corresponding projective indecomposables such that ${ }_{\Lambda} \Lambda=\bigoplus n_{i} P_{i}$. If we let $P:=\bigoplus m_{i} P_{i}$, with $m_{i} \geq 1$, then P is a progenerator of $\operatorname{Mod} \Lambda$, and Γ and Λ are Morita equivalent. Let $\Gamma:=\operatorname{End}_{\Lambda}(P)^{\mathrm{op}}$. Then we have $\Gamma /(\operatorname{rad} \Gamma) \simeq \bigoplus \operatorname{Mat}_{m_{i}}\left(\Delta_{i}\right)$. The smallest possibility for P is that if we choose each $m_{i}=1$. In this case Γ is called the basic algebra of Λ. This means that we have to determine $\Lambda / \operatorname{rad}(\Lambda) \simeq \bigoplus \operatorname{Mat}_{n}\left(\Delta_{i}\right)$ and the corresponding projective indecomposables.

We recall the Wedderburn-Artin theorem and its proof cf. [3], because we shall need the notations.

TheOrem 1.2. Let Λ be a semisimple Artinian ring. Then $\Lambda=\bigoplus_{i=1}^{r} \Lambda_{i}$, where $\Lambda_{i} \simeq \operatorname{Mat}_{n_{i}}\left(\Delta_{i}\right), \Delta_{i}$ is a division ring and the Λ_{i} are uniquely determined. The ring Λ has exactly r isomorphism classes of irreducible modules M_{i}, and moreover $\operatorname{End}_{\Lambda}\left(M_{i}\right) \simeq \Delta_{i}^{o p}$, and $\operatorname{dim}_{\Delta_{i}^{o p}}\left(M_{i}\right)=n_{i}$.

Proof. If Λ is semisimple, then $\Lambda \simeq \bigoplus_{i=1}^{r} M_{i}$, where M_{i} is semisimple, $M_{i}=M_{i, 1} \bigoplus \cdots \bigoplus M_{i, n_{i}}$, where $M_{i, j} \simeq S_{i}$ is simple for all $i \in\left\{1, \ldots, n_{i}\right\}$, and $S_{i} \nexists S_{j}$ for $i \neq j$. In this case let $\Delta_{i}=\operatorname{End}_{\Lambda}\left(S_{i}\right)$, which is a division ring. We have that $\operatorname{End}_{\Lambda}\left(M_{i}\right) \simeq \operatorname{Mat}_{n_{i}}\left(\Delta_{i}\right) ;$ this implies $\operatorname{End}_{\Lambda}(M)=\bigoplus \operatorname{End}_{\Lambda}\left(M_{i}\right) \simeq$ $\bigoplus \operatorname{Mat}_{n_{i}}\left(\Delta_{i}\right)$. On the other hand, $\Lambda \simeq \operatorname{End}_{\Lambda}\left({ }_{\Lambda} \Lambda\right)^{\mathrm{op}}$, so it follows that $\Lambda \simeq$ $\bigoplus_{i=1}^{r} \operatorname{Mat}_{n_{i}}\left(\Delta_{i}^{\mathrm{op}}\right)$.
1.3. We fix the following notation.

- r is the number of isomorphism classes of simple Λ-modules;
- $\Delta_{i}:=\operatorname{End}_{\Lambda}\left(S_{i}\right)$, where S_{i} is simple;
- n_{i} is the number of summands isomorphic to S_{i}.

Recall also from [3] the following theorem on lifting idempotents.
Theorem 1.4. If Λ is an Artin algebra, then:
(i) $\operatorname{rad} \Lambda$ is a nilpotent ideal of Λ;
(ii) If $1=e_{1}+\cdots+e_{n}$ is a decomposition into primitive orthogonal idempotents in $\Lambda / \operatorname{rad} \Lambda$, then there is the decomposition $1=f_{1}+\cdots+f_{n}$ into primitive orthogonal idempotents in Λ such that $\overline{f_{i}}:=f_{i}+\operatorname{rad} \Lambda=e_{i}$.
1.5. Since $\Lambda / \operatorname{rad} \Lambda$ is semisimple, we can apply the Wedderburn-Artin theorem, and we get $\Lambda / \operatorname{rad} \Lambda=\bigoplus_{i=1}^{r} \operatorname{Mat}_{n_{i}}\left(\Delta_{i}\right)$. Let S_{i} be the simple Λ-module corresponding to the $i^{\text {th }}$ matrix algebra factor. This means that $\Lambda / \operatorname{rad} \Lambda \simeq \bigoplus_{i=1}^{r} n_{i} S_{i}$.

Now we choose an orthogonal $1=e_{1}+e_{2}+\cdots+e_{n}$ in $\Lambda / \operatorname{rad} \Lambda$. By the above theorem we get the orthogonal decomposition $1=f_{1}+f_{2}+\cdots+f_{n}$ in Λ. With the notations of Theorem 1.2, this implies $\Lambda \Lambda=\bigoplus_{i=1}^{r} n_{i} P_{i}$, where $P_{i} / J(\Lambda) P_{i} \simeq S_{i}$. From here we can construct the progenerator $P=\bigoplus_{i=1}^{r} P_{i}$, and the corresponding basic algebra $\Gamma=\operatorname{End}_{\Lambda}(P)^{\mathrm{op}}$ associated to Λ.

Therefore, if we want to study the basic algebra of the skew group algebra ΛG, then we need information about $\Lambda G / \operatorname{rad} \Lambda G$, and also about the semisimplicity of ΛG. We only consider the case when the order $|G|$ of G is invertible in Λ. We recall the following result from [4].

Theorem 1.6. If $|G|$ is invertible in Λ, then $\Lambda G / \operatorname{rad} \Lambda G=(\Lambda / \operatorname{rad} \Lambda) G$.
2. Path algebras and the decomposition of $(\Lambda / \operatorname{rad} \Lambda) G$

In this section we discuss the decomposition of $\Lambda / \operatorname{rad} \Lambda$ and of $(\Lambda / \operatorname{rad} \Lambda) G$, where $\Lambda=K Q$ is a path algebra of a connected, finite quiver, and G is a finite group such that the characteristic of the field K does not divide the order of G.

Let $Q=\left(Q_{0}, Q_{1}\right)$ be a quiver and let $\Lambda=K Q$ be it's path algebra. The arrow ideal of $K Q$ is the ideal generated by all paths of Q. We denote by $\varepsilon_{a}=(a \| a)$ the trivial path of Q, for $a \in Q_{0}$. In this case we have the following result from [1].

Theorem 2.1. Let $Q=\left(Q_{0}, Q_{1}\right)$ be a finite, connected quiver, K an algebraically closed field and R the arrow ideal of $K Q$.
(1) The set $\left\{\overline{\varepsilon_{a}}=\varepsilon_{a}+R\right\}$ is complete set of primitive orthogonal idempotents for $K Q / R$.
(2) If Q is acyclic then $\operatorname{rad} K Q=R$ and $K Q$ is finite dimensional basic algebra.
2.2. From now on we consider only finite, connected, acyclic quivers. By Theorem 2.1, we have the decomposition $\Lambda / \operatorname{rad} \Lambda \simeq K e_{1} \times \cdots \times K e_{n}$, where $Q_{0}=\left\{e_{1}, \ldots e_{n}\right\}$. We also have that $(\Lambda / \operatorname{rad} \Lambda) G \simeq\left(K e_{1} \times \cdots \times K e_{n}\right) G$.

Consider first the following example from [2].
Example 2.3. Let K be a field of characteristic not equal to 2 , and let Q be the following quiver

$$
3 \leftarrow^{\beta} 2 \leftarrow^{\alpha} 1 \xrightarrow{\alpha^{\prime}} 2^{\prime} \xrightarrow{\beta^{\prime}} 3^{\prime} .
$$

Let $G=\langle\sigma\rangle$ of order 2, and let $\sigma e_{1}=e_{1}, \sigma e_{2}=e_{2^{\prime}}, \sigma e_{3}=e_{3^{\prime}}, \sigma \alpha=\alpha^{\prime}$ and $\sigma \beta=\beta \prime$. Then there is only one way of extending σ to be a K-algebra automorphism of Λ. We obtain the decomposition

$$
(\Lambda / \operatorname{rad} \Lambda) G=\left(K e_{1}\right) G \times\left(K e_{2} \times K e_{2^{\prime}}\right) G \times\left(K e_{3} \times K e_{3^{\prime}}\right) G .
$$

This example suggests that if we have the decomposition $\Lambda / \operatorname{rad} \Lambda=K e_{1} \times$ $\cdots \times K e_{n}$, then $(\Lambda / \operatorname{rad} \Lambda) G \simeq \bigoplus_{j \in J} H_{j} G$, where $H_{j}=K e_{j, 1} \times \cdots \times K e_{j, n_{j}}$, such that $\left\{e_{j_{1}}, \ldots, e_{n_{j}}\right\}$ is a maximal G-invariant subset of Q_{0}, and for all N, the subset N of H_{j}, is not G-invariant. The precise statement is as follows.

Proposition 2.4. Let Λ be the path algebra of a finite, connected and acyclic quiver $Q=\left(Q_{0}, Q_{1}\right)$, and let G be a group of automorphisms of Λ of order s. Then we have

$$
(\Lambda / \operatorname{rad} \Lambda) G \simeq \bigoplus_{j \in J} \widetilde{\operatorname{Orb}\left(e_{j}\right)} G
$$

where $\operatorname{Orb}\left(e_{j}\right)$ is the orbit of e_{j} and $\widetilde{\operatorname{Orb}\left(e_{j}\right)}=K e_{j_{1}} \times \cdots \times K e_{j_{n_{j}}}$ for $e_{j_{k}} \in$ $\operatorname{Orb}\left(e_{j}\right)$.

Proof. It is clear that $(\Lambda / \operatorname{rad} \Lambda) G \simeq \bigoplus_{j \in J} H_{j} G$, where H_{j} is the G-invariant part of $K e_{1} \times \cdots \times K e_{n}$. We prove that $H_{j}=\operatorname{Orb}\left(e_{r}\right)$ for some $r \in\{1, \ldots, n\}$. It is also clear that $\operatorname{Orb}\left(e_{r}\right)$ is G-invariant.

Conversely, if H_{j} is G-invariant, then let $e_{r} \in\left(Q_{0} \cap H_{j}\right)$. Then we have the implications: $g\left(e_{r}\right) \in H_{j} \Rightarrow \cdots \Rightarrow g^{s}\left(e_{r}\right) \in H_{j}$. Now suppose that there exists $h \in H_{j}, h \neq 0$ such that $0 \neq h \in H_{j} \backslash\left\{e_{r}, \ldots, g^{s}\left(e_{r}\right)\right\}$. This means that $\left\{e_{r}, \ldots, g^{s}\left(e_{r}\right)\right\}$ is a G-invariant subset of H_{j}, which is a contradiction.

Next we examine the decomposition of $\widetilde{\operatorname{Orb}\left(e_{i}\right)} G$. Before this, we examine some examples.

Example 2.5. Let K be a field of characteristic not equal to 2 and let Q be the following quiver.

Let $G=\langle\sigma\rangle$ be of order 2 , and let $\sigma e_{1}=e_{1}, \sigma e_{2}=e_{2^{\prime}}, \sigma e_{3}=e_{3^{\prime}}, \sigma \alpha=\alpha^{\prime}$ and $\sigma \beta=\beta \prime$. Then there is a unique way to extend σ to b a K-algebra automorphism of Λ. (In a more general case we have a quiver with symmetry axis T and $\sigma \in \operatorname{Aut}(\Lambda)$ inverts the elements from the two sides of T.) Observe that $\operatorname{Orb}\left(e_{1}\right)=\left\{e_{1}\right\}, \operatorname{Orb}\left(e_{2}\right)=\left\{e_{2}, e_{2^{\prime}}\right\}$ and $\operatorname{Orb}\left(e_{3}\right)=\left\{e_{3}, e_{3^{\prime}}\right\}$.

Example 2.6. Let $\sigma \in \operatorname{Aut}(\Lambda)$ be such that $\sigma e_{i}=e_{i+1}$ and $\sigma e_{n}=e_{1}$. In this case we have $\Lambda / \operatorname{rad} \Lambda=\widehat{\operatorname{Orb}\left(e_{1}\right)}$.

Theorem 2.7. Assume that

$$
(\Lambda / \operatorname{rad} \Lambda) G \simeq \bigoplus_{i \in I_{1}}\left(K e_{i}\right) G \oplus \bigoplus_{j \in I_{2}}\left(K e_{j} \times K e_{j^{\prime}}\right) G
$$

Then:
(i) $\left(K e_{i}\right) G$ has a set $\left\{\widetilde{e}_{i}, \widetilde{\widetilde{e}}_{i}\right\}$ of primitive orthogonal idempotents;
(ii) $\left(K e_{i} \times K e_{i^{\prime}}\right) G \simeq\left(\begin{array}{cc}K & K \\ K & K\end{array}\right)$.

Proof. Let $\tilde{e_{1}}=\frac{e_{1}+e_{1} \sigma}{2}, \tilde{e_{1}}=\frac{e_{1}-e_{1} \sigma}{2}$. In this way we get a set of primitive orthogonal idempotents of $\left(K e_{i}\right) G$. To prove the second part, we let

$$
e_{2} \mapsto\left(\begin{array}{cc}
1 & 0 \\
0 & 0
\end{array}\right), e_{2^{\prime}} \mapsto\left(\begin{array}{cc}
0 & 0 \\
0 & 1
\end{array}\right), e_{2} \sigma \mapsto\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), e_{2^{\prime}} \sigma \mapsto\left(\begin{array}{cc}
0 & 0 \\
1 & 0
\end{array}\right)
$$

and we are done.
Now by Proposition 2.4 and Theorem 2.7, we expect that $\widetilde{\operatorname{Orbe}_{i}} G \simeq \operatorname{Mat}_{l}(K)$, where $l=\operatorname{card}\left(\operatorname{Orb} e_{i}\right)$ if $l>1$, and $\widetilde{\operatorname{Orb}\left(e_{i}\right)} G \simeq K \times K$ if $l=1$. Before proving this we look at the following example.

Example 2.8. Consider $\widetilde{\operatorname{Orb}\left(e_{i}\right)} G$, with $|G|=3$. This means that we have a σ-cycle of length 3 in $\widetilde{\operatorname{Orb}\left(e_{i}\right)} G$ (that is, $\left.\sigma^{3}\left(e_{i}\right)=e_{i}\right)$. We have 3×3 basis elements in $\widehat{\operatorname{Orb}\left(e_{i}\right)} G$:

$$
\left\{e_{i}, \sigma\left(e_{i}\right), \sigma^{2}\left(e_{i}\right), e_{i} \sigma, \sigma\left(e_{i}\right) \sigma, \sigma^{2}\left(e_{i}\right) \sigma, e_{i} \sigma^{2}, \sigma\left(e_{i}\right) \sigma^{2}, \sigma^{2}\left(e_{i}\right) \sigma^{2}\right\}
$$

We want to map each basis element to one of the $\delta_{i, j}$-s, where $\delta_{i, j}$ is a matrix with 1 at (i, j) and 0 -s elsewhere. If we can do this, it means that $\widetilde{\operatorname{Orb}\left(e_{i}\right)} G \simeq \operatorname{Mat}_{3}(K)$.

We have to arrange the basis elements in a 3×3 matrix M such that $m_{i, j}=m_{i, k} \times m_{k, j}$, for all $k \in\{1,2,3\}$. A suitable arrangement is

$$
\left(\begin{array}{ccc}
e & e \sigma^{2} & e \sigma \\
\sigma(e) \sigma & \sigma(e) & \sigma(e) \sigma^{2} \\
\sigma^{2}(e) \sigma^{2} & \sigma^{2}(e) \sigma & \sigma^{2}(e)
\end{array}\right) .
$$

By generalizing this idea, we get the required matrix, and we can prove our result.

Theorem 2.9. Let $Q=\left(Q_{0}, Q_{1}\right)$ be a finite, connected, acyclic quiver, and let K be an algebraically close field. Let $\Lambda=K Q$ and assume that $G=\langle\sigma\rangle$ has order invertible in Λ. Then $\widetilde{\operatorname{Orb}(e) G \simeq \operatorname{Mat}_{l}(K) \text {, where l is the cardinality }}$ of $\operatorname{Orb}(e)$ and $l>1$.

Proof. We observe that we have exactly l^{2} basis elements, namely $\sigma^{i}(e) \sigma^{j}$, for $i \in\{0, \ldots, l-1\}$ and $j \in\{0, \ldots, l-1\}$. We want to arrange them in an $l \times l$ matrix $M=\left(m_{i, j}\right)$ such way that $m_{i, j}=m_{i, k} \times m_{k, j}$, for all $k \in\{1, \ldots, l\}$. We denote the basis elements by $a_{i, j}:=\sigma^{i-1}(e) \sigma^{j-1}$, where $i, j \in\{1, \ldots, l\}$, and we arrange them as follows.

$$
M=\left(\begin{array}{cccc}
a_{1,1} & a_{1, l} & \cdots & a_{1,2} \\
a_{2,2} & a_{2,1} & \cdots & a_{2,3} \\
\vdots & \vdots & \ddots & \vdots \\
a_{l-1, l-1} & a_{l-1, l-2} & \cdots & a_{l-1, l} \\
a_{l, l} & a_{l, l-1} & \cdots & a_{l, 1}
\end{array}\right) .
$$

Consequently, we have

$$
m_{i, j}= \begin{cases}a_{i, i-j+1}, & \text { if } j \leq i ; \\ a_{i, l-(j-i)+1}, & \text { if } i<j .\end{cases}
$$

Observe that $a_{i, l-(j-i)+1}=\sigma^{i-1}(e) \sigma^{l-(j-i)}=\sigma^{i-1}(e) \sigma^{i-j}=a_{i, i-j+1}$, so we have that $m_{i, j}=a_{i, i-j+1}$, for all $i, j \in\{1, \ldots, l\}$.

We now to check that $m_{i, j}=m_{i, k} \times m_{k, j}$, for all $i, j, k \in\{1, \ldots, l\}$. We have

$$
\begin{aligned}
m_{i, k} \times m_{k, j} & =a_{i, i-k+1} \times a_{k, k-j+1}=\sigma^{i-1}(e) \sigma^{i-k} \sigma^{k-1}(e) \sigma^{k-j} \\
& =\sigma^{i-1}(e) \sigma^{i-k+k-1}(e) \sigma^{i-k} \sigma^{k-j}=\sigma^{i-1}(e) \sigma^{i-j}=m_{i, j} .
\end{aligned}
$$

This means that $\widetilde{\operatorname{Orb}(e)} G \simeq \operatorname{Mat}_{l}(K)$.
Our main result now follows by Theorems 1.6, 2.4 and 2.9.
Theorem 2.10. Let $Q=\left(Q_{0}, Q_{1}\right)$ be a finite, connected, acyclic quiver, and denote $\Lambda=K Q$, where K is an algebraically closed field. Let $G=\langle\sigma\rangle$ be a cyclic group such that the characteristic of K does not divide the order of G. Then

$$
\Lambda G / \operatorname{rad}(\Lambda G) \simeq\left|I_{1}\right|(K \times K) \bigoplus_{j>1}\left|I_{j}\right| \operatorname{Mat}_{j}(K)
$$

where $\left|I_{j}\right|$ is the number of σ-cycles of length j.
2.11. Since full matrix algebras have isomorphic simple modules, we may now construct $e=\sum_{i=1}^{n_{1}}\left(\tilde{e_{i}}+e_{1_{i}}\right)+\sum_{j>1} e_{j}$, where the $\tilde{e_{1}}+\tilde{\tilde{1}_{i}}$ corresponds to a summand of the form $(K \times K)$, and every e_{j} corresponds to a full matrix algebras. This describes the basic algebra $(\Lambda G)^{b}=e(\Lambda G) e$ Morita equivalent to ΛG.

We take a look again at our previous Example 2.3.

Example 2.12. By using the calculations in Example 2.3, we have

$$
(\Lambda / \operatorname{rad} \Lambda) G \simeq k \times k \times\left(\begin{array}{cc}
k & k \\
k & k
\end{array}\right) \times\left(\begin{array}{cc}
k & k \\
k & k
\end{array}\right)
$$

Observe that $\left(\begin{array}{cc}k & 0 \\ k & 0\end{array}\right)$ and $\left(\begin{array}{cc}0 & k \\ 0 & k\end{array}\right)$ are isomorphic as $\left(\begin{array}{cc}k & k \\ k & k\end{array}\right)$-modules. We may construct the basic algebra $(\Lambda G)^{b}=e(\Lambda G) e$, where $e=\tilde{e_{1}}+\tilde{\tilde{e}_{1}}+e_{2}+e_{3}$ corresponds to the non-isomorphic components.

Further, we have that

$$
\begin{aligned}
& \left\{e_{1}, e_{2}, e_{3}, e_{2^{\prime}}, e_{3^{\prime}}, \alpha, \beta, \alpha^{\prime}, \beta^{\prime}, \beta \alpha, \beta^{\prime} \alpha^{\prime} e_{1} \sigma, e_{2} \sigma, e_{3} \sigma,\right. \\
& \left.e_{2^{\prime}} \sigma, e_{3^{\prime}} \sigma, \alpha \sigma, \beta \sigma, \alpha^{\prime} \sigma, \beta^{\prime} \sigma, \beta \alpha \sigma, \beta^{\prime} \alpha^{\prime} \sigma\right\}
\end{aligned}
$$

is a k-basis of ΛG. By multiplying on the left and on the write we deduce that

$$
\left\{\tilde{e_{1}}, \tilde{\tilde{e}}, \frac{\alpha+\alpha \sigma}{2}, \frac{\alpha-\alpha \sigma}{2} \frac{\beta(\alpha+\alpha \sigma)}{2}, \frac{\beta(\alpha-\alpha \sigma)}{2}\right\}
$$

is a basis of $e \Lambda G e$.
Now letting $\tilde{\alpha}:=\frac{\alpha+\alpha \sigma}{2}$ and $\tilde{\tilde{\alpha}}:=\frac{\alpha+\alpha \sigma}{2}$, we obtain that $e \Lambda G e$ is isomorphic to the path algebra of the quiver

The determination, in general, of a basis to the basic algebra of ΛG and the construction of a quiver whose path algebra is this basic algebra, are combinatorial questions which will be discussed in another paper.

REFERENCES

[1] Assem, I., Simson, D. and Skowronski, A., Elements of the Representation Theory of Associative Algebras, Cambridge Univ. Press, New York, 2006.
[2] Auslander, M., Reiten, I. and Smalø, S.O., Representation Theory of Artin Algebras, Cambridge Univ. Press, New York, 1989.
[3] Benson, D.J., Representations and cohomology, Vol. 1, Cambridge Univ. Press, New York, 1995.
[4] Reiten, I. and Riedtmann, C., Skew group algebras in the representation theory of artin algebras, J. Algebra, 92 (1985), 224-282.

Received June 26, 2010
Accepted August 4, 2010

"Babes-Bolyai" University
Faculty of Mathematics and Computer Science
Str. Mihail Kogălniceanu Nr. 1
400084 Cluj-Napoca, Romania
E-mail: horobetemil@gmail.com

