ORBIT DECOMPOSITION OF SKEW GROUP ALGEBRAS

EMIL HOROBEŢ

Abstract. We describe the basic algebra Morita equivalent to the skew group algebra ΛG , where Λ is the path algebra of a finite, connected, acyclic quiver and G is a finite cyclic group. We give a structure theorem for the above case, based on combinatorial techniques. We prove that in this case ΛG is isomorphic to a direct product of certain matrix algebras, which are described in detail. **MSC 2010.** 16G10, 16S35, 16W55.

Key words. Artinian rings, skew group algebras, basic algebra.

1. PRELIMINARIES

In this paper we describe the basic algebra Morita equivalent to the skew group algebra ΛG , where Λ is a path algebra of a finite, connected quiver, and G is a finite group.

1.1. Let Λ be an Artinian ring with $\Lambda/\operatorname{rad}(\Lambda) \simeq \bigoplus \operatorname{Mat}_{n_i}(\Delta_i)$, and let P_i be the corresponding projective indecomposables such that $\Lambda\Lambda = \bigoplus n_iP_i$. If we let $P := \bigoplus m_iP_i$, with $m_i \ge 1$, then P is a progenerator of $\operatorname{Mod}\Lambda$, and Γ and Λ are Morita equivalent. Let $\Gamma := \operatorname{End}_{\Lambda}(P)^{\operatorname{op}}$. Then we have $\Gamma/(\operatorname{rad}\Gamma) \simeq \bigoplus \operatorname{Mat}_{m_i}(\Delta_i)$. The smallest possibility for P is that if we choose each $m_i = 1$. In this case Γ is called the basic algebra of Λ . This means that we have to determine $\Lambda/\operatorname{rad}(\Lambda) \simeq \bigoplus \operatorname{Mat}_n(\Delta_i)$ and the corresponding projective indecomposables.

We recall the Wedderburn-Artin theorem and its proof cf. [3], because we shall need the notations.

THEOREM 1.2. Let Λ be a semisimple Artinian ring. Then $\Lambda = \bigoplus_{i=1}^{r} \Lambda_i$, where $\Lambda_i \simeq \operatorname{Mat}_{n_i}(\Delta_i)$, Δ_i is a division ring and the Λ_i are uniquely determined. The ring Λ has exactly r isomorphism classes of irreducible modules M_i , and moreover $\operatorname{End}_{\Lambda}(M_i) \simeq \Delta_i^{op}$, and $\dim_{\Delta_i^{op}}(M_i) = n_i$.

Proof. If Λ is semisimple, then $\Lambda \simeq \bigoplus_{i=1}^{r} M_i$, where M_i is semisimple, $M_i = M_{i,1} \bigoplus \cdots \bigoplus M_{i,n_i}$, where $M_{i,j} \simeq S_i$ is simple for all $i \in \{1, \ldots, n_i\}$, and $S_i \ncong S_j$ for $i \neq j$. In this case let $\Delta_i = \operatorname{End}_{\Lambda}(S_i)$, which is a division ring. We have that $\operatorname{End}_{\Lambda}(M_i) \simeq \operatorname{Mat}_{n_i}(\Delta_i)$; this implies $\operatorname{End}_{\Lambda}(M) = \bigoplus \operatorname{End}_{\Lambda}(M_i) \simeq$ $\bigoplus \operatorname{Mat}_{n_i}(\Delta_i)$. On the other hand, $\Lambda \simeq \operatorname{End}_{\Lambda}(\Lambda\Lambda)^{\operatorname{op}}$, so it follows that $\Lambda \simeq$ $\bigoplus_{i=1}^{r} \operatorname{Mat}_{n_i}(\Delta_i^{\operatorname{op}})$.

1.3. We fix the following notation.

• r is the number of isomorphism classes of simple Λ -modules;

- $\Delta_i := \operatorname{End}_{\Lambda}(S_i)$, where S_i is simple;
- n_i is the number of summands isomorphic to S_i .

Recall also from [3] the following theorem on lifting idempotents.

THEOREM 1.4. If Λ is an Artin algebra, then:

- (i) rad Λ is a nilpotent ideal of Λ ;
- (ii) If $1 = e_1 + \dots + e_n$ is a decomposition into primitive orthogonal idempotents in $\Lambda/\operatorname{rad} \Lambda$, then there is the decomposition $1 = f_1 + \dots + f_n$ into primitive orthogonal idempotents in Λ such that $\overline{f_i} := f_i + \operatorname{rad} \Lambda = e_i$.

1.5. Since $\Lambda/\operatorname{rad} \Lambda$ is semisimple, we can apply the Wedderburn-Artin theorem, and we get $\Lambda/\operatorname{rad} \Lambda = \bigoplus_{i=1}^{r} \operatorname{Mat}_{n_i}(\Delta_i)$. Let S_i be the simple Λ -module corresponding to the i^{th} matrix algebra factor. This means that $\Lambda/\operatorname{rad} \Lambda \simeq \bigoplus_{i=1}^{r} n_i S_i$.

Now we choose an orthogonal $1 = e_1 + e_2 + \cdots + e_n$ in $\Lambda/\operatorname{rad} \Lambda$. By the above theorem we get the orthogonal decomposition $1 = f_1 + f_2 + \cdots + f_n$ in Λ . With the notations of Theorem 1.2, this implies $\Lambda\Lambda = \bigoplus_{i=1}^r n_i P_i$, where $P_i/J(\Lambda)P_i \simeq S_i$. From here we can construct the progenerator $P = \bigoplus_{i=1}^r P_i$, and the corresponding basic algebra $\Gamma = \operatorname{End}_{\Lambda}(P)^{\operatorname{op}}$ associated to Λ .

Therefore, if we want to study the basic algebra of the skew group algebra ΛG , then we need information about $\Lambda G/\operatorname{rad} \Lambda G$, and also about the semisimplicity of ΛG . We only consider the case when the order |G| of G is invertible in Λ . We recall the following result from [4].

THEOREM 1.6. If |G| is invertible in Λ , then $\Lambda G/\operatorname{rad} \Lambda G = (\Lambda/\operatorname{rad} \Lambda)G$.

2. PATH ALGEBRAS AND THE DECOMPOSITION OF $(\Lambda/\operatorname{rad} \Lambda)G$

In this section we discuss the decomposition of $\Lambda/\operatorname{rad} \Lambda$ and of $(\Lambda/\operatorname{rad} \Lambda)G$, where $\Lambda = KQ$ is a path algebra of a connected, finite quiver, and G is a finite group such that the characteristic of the field K does not divide the order of G.

Let $Q = (Q_0, Q_1)$ be a quiver and let $\Lambda = KQ$ be it's path algebra. The *arrow ideal* of KQ is the ideal generated by all paths of Q. We denote by $\varepsilon_a = (a||a)$ the trivial path of Q, for $a \in Q_0$. In this case we have the following result from [1].

THEOREM 2.1. Let $Q = (Q_0, Q_1)$ be a finite, connected quiver, K an algebraically closed field and R the arrow ideal of KQ.

- (1) The set $\{\overline{\varepsilon_a} = \varepsilon_a + R\}$ is complete set of primitive orthogonal idempotents for KQ/R.
- (2) If Q is acyclic then $\operatorname{rad} KQ = R$ and KQ is finite dimensional basic algebra.

2.2. From now on we consider only finite, connected, acyclic quivers. By Theorem 2.1, we have the decomposition $\Lambda/\operatorname{rad} \Lambda \simeq Ke_1 \times \cdots \times Ke_n$, where $Q_0 = \{e_1, \ldots, e_n\}$. We also have that $(\Lambda/\operatorname{rad} \Lambda)G \simeq (Ke_1 \times \cdots \times Ke_n)G$.

Consider first the following example from [2].

EXAMPLE 2.3. Let K be a field of characteristic not equal to 2, and let Q be the following quiver

$$3 \stackrel{\beta}{\longleftarrow} 2 \stackrel{\alpha}{\longleftarrow} 1 \stackrel{\alpha'}{\longrightarrow} 2' \stackrel{\beta'}{\longrightarrow} 3'$$
.

Let $G = \langle \sigma \rangle$ of order 2, and let $\sigma e_1 = e_1$, $\sigma e_2 = e_{2'}$, $\sigma e_3 = e_{3'}$, $\sigma \alpha = \alpha'$ and $\sigma \beta = \beta'$. Then there is only one way of extending σ to be a K-algebra automorphism of Λ . We obtain the decomposition

$$(\Lambda/\operatorname{rad} \Lambda)G = (Ke_1)G \times (Ke_2 \times Ke_{2'})G \times (Ke_3 \times Ke_{3'})G.$$

This example suggests that if we have the decomposition $\Lambda/\operatorname{rad} \Lambda = Ke_1 \times \cdots \times Ke_n$, then $(\Lambda/\operatorname{rad} \Lambda)G \simeq \bigoplus_{j \in J} H_jG$, where $H_j = Ke_{j,1} \times \cdots \times Ke_{j,n_j}$, such that $\{e_{j_1}, \ldots, e_{n_j}\}$ is a maximal *G*-invariant subset of Q_0 , and for all *N*, the subset *N* of H_j , is not *G*-invariant. The precise statement is as follows.

PROPOSITION 2.4. Let Λ be the path algebra of a finite, connected and acyclic quiver $Q = (Q_0, Q_1)$, and let G be a group of automorphisms of Λ of order s. Then we have

$$(\Lambda/\operatorname{rad} \Lambda)G \simeq \bigoplus_{j \in J} \widetilde{\operatorname{Orb}(e_j)}G,$$

where $\operatorname{Orb}(e_j)$ is the orbit of e_j and $\widetilde{\operatorname{Orb}(e_j)} = Ke_{j_1} \times \cdots \times Ke_{j_{n_j}}$ for $e_{j_k} \in \operatorname{Orb}(e_j)$.

Proof. It is clear that $(\Lambda/\operatorname{rad} \Lambda)G \simeq \bigoplus_{j \in J} H_jG$, where H_j is the *G*-invariant part of $Ke_1 \times \cdots \times Ke_n$. We prove that $H_j = \operatorname{Orb}(e_r)$ for some $r \in \{1, \ldots, n\}$. It is also clear that $\operatorname{Orb}(e_r)$ is *G*-invariant.

Conversely, if H_j is *G*-invariant, then let $e_r \in (Q_0 \cap H_j)$. Then we have the implications: $g(e_r) \in H_j \Rightarrow \cdots \Rightarrow g^s(e_r) \in H_j$. Now suppose that there exists $h \in H_j$, $h \neq 0$ such that $0 \neq h \in H_j \setminus \{e_r, \ldots, g^s(e_r)\}$. This means that $\{e_r, \ldots, g^s(e_r)\}$ is a *G*-invariant subset of H_j , which is a contradiction. \Box

Next we examine the decomposition of $Orb(e_i)G$. Before this, we examine some examples.

EXAMPLE 2.5. Let K be a field of characteristic not equal to 2 and let Q be the following quiver.

$$\begin{array}{c} \begin{array}{c} & 1 \\ 2 \\ \downarrow \beta \\ 3 \end{array} \begin{array}{c} 2' \\ \downarrow \beta' \\ 3' \end{array}$$

Let $G = \langle \sigma \rangle$ be of order 2, and let $\sigma e_1 = e_1$, $\sigma e_2 = e_{2'}$, $\sigma e_3 = e_{3'}$, $\sigma \alpha = \alpha'$ and $\sigma \beta = \beta'$. Then there is a unique way to extend σ to b a K-algebra automorphism of Λ . (In a more general case we have a quiver with symmetry axis T and $\sigma \in \operatorname{Aut}(\Lambda)$ inverts the elements from the two sides of T.) Observe that $\operatorname{Orb}(e_1) = \{e_1\}$, $\operatorname{Orb}(e_2) = \{e_2, e_{2'}\}$ and $\operatorname{Orb}(e_3) = \{e_3, e_{3'}\}$.

EXAMPLE 2.6. Let $\sigma \in \operatorname{Aut}(\Lambda)$ be such that $\sigma e_i = e_{i+1}$ and $\sigma e_n = e_1$. In this case we have $\Lambda/\operatorname{rad} \Lambda = \operatorname{Orb}(e_1)$.

THEOREM 2.7. Assume that

$$(\Lambda/\operatorname{rad} \Lambda)G \simeq \bigoplus_{i \in I_1} (Ke_i)G \oplus \bigoplus_{j \in I_2} (Ke_j \times Ke_{j'})G.$$

Then:

(i) $(Ke_i)G$ has a set $\{\widetilde{e_i}, \widetilde{\widetilde{e_i}}\}$ of primitive orthogonal idempotents; (ii) $(Ke_i \times Ke_{i'})G \simeq \begin{pmatrix} K & K \\ K & K \end{pmatrix}$.

Proof. Let $\tilde{e_1} = \frac{e_1 + e_1 \sigma}{2}$, $\tilde{\tilde{e_1}} = \frac{e_1 - e_1 \sigma}{2}$. In this way we get a set of primitive orthogonal idempotents of $(Ke_i)G$. To prove the second part, we let

$$e_{2} \mapsto \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \ e_{2'} \mapsto \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \ e_{2}\sigma \mapsto \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \ e_{2'}\sigma \mapsto \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

and we are done. \Box

Now by Proposition 2.4 and Theorem 2.7, we expect that $Orb e_i G \simeq Mat_l(K)$, where $l = card(Orb e_i)$ if l > 1, and $Orb(e_i)G \simeq K \times K$ if l = 1. Before proving this we look at the following example.

EXAMPLE 2.8. Consider $Orb(e_i)G$, with |G| = 3. This means that we have a σ -cycle of length 3 in $Orb(e_i)G$ (that is, $\sigma^3(e_i) = e_i$). We have 3×3 basis elements in $Orb(e_i)G$:

$$\{e_i, \sigma(e_i), \sigma^2(e_i), e_i\sigma, \sigma(e_i)\sigma, \sigma^2(e_i)\sigma, e_i\sigma^2, \sigma(e_i)\sigma^2, \sigma^2(e_i)\sigma^2\}.$$

We want to map each basis element to one of the $\delta_{i,j}$ -s, where $\delta_{i,j}$ is a matrix with 1 at (i, j) and 0-s elsewhere. If we can do this, it means that $\widetilde{\operatorname{Orb}}(e_i)G \simeq \operatorname{Mat}_3(K)$.

We have to arrange the basis elements in a 3×3 matrix M such that $m_{i,j} = m_{i,k} \times m_{k,j}$, for all $k \in \{1, 2, 3\}$. A suitable arrangement is

$$\begin{pmatrix} e & e\sigma^2 & e\sigma \\ \sigma(e)\sigma & \sigma(e) & \sigma(e)\sigma^2 \\ \sigma^2(e)\sigma^2 & \sigma^2(e)\sigma & \sigma^2(e) \end{pmatrix}.$$

By generalizing this idea, we get the required matrix, and we can prove our result.

THEOREM 2.9. Let $Q = (Q_0, Q_1)$ be a finite, connected, acyclic quiver, and let K be an algebraically close field. Let $\Lambda = KQ$ and assume that $G = \langle \sigma \rangle$ has order invertible in Λ . Then $\widetilde{\operatorname{Orb}}(e)G \simeq \operatorname{Mat}_l(K)$, where l is the cardinality of $\operatorname{Orb}(e)$ and l > 1.

Proof. We observe that we have exactly l^2 basis elements, namely $\sigma^i(e)\sigma^j$, for $i \in \{0, \ldots, l-1\}$ and $j \in \{0, \ldots, l-1\}$. We want to arrange them in an $l \times l$ matrix $M = (m_{i,j})$ such way that $m_{i,j} = m_{i,k} \times m_{k,j}$, for all $k \in \{1, \ldots, l\}$. We denote the basis elements by $a_{i,j} := \sigma^{i-1}(e)\sigma^{j-1}$, where $i, j \in \{1, \ldots, l\}$, and we arrange them as follows.

$$M = \begin{pmatrix} a_{1,1} & a_{1,l} & \cdots & a_{1,2} \\ a_{2,2} & a_{2,1} & \cdots & a_{2,3} \\ \vdots & \vdots & \ddots & \vdots \\ a_{l-1,l-1} & a_{l-1,l-2} & \cdots & a_{l-1,l} \\ a_{l,l} & a_{l,l-1} & \cdots & a_{l,1} \end{pmatrix}$$

Consequently, we have

$$m_{i,j} = \begin{cases} a_{i,i-j+1}, & \text{if } j \le i; \\ a_{i,l-(j-i)+1}, & \text{if } i < j. \end{cases}$$

Observe that $a_{i,l-(j-i)+1} = \sigma^{i-1}(e)\sigma^{l-(j-i)} = \sigma^{i-1}(e)\sigma^{i-j} = a_{i,i-j+1}$, so we have that $m_{i,j} = a_{i,i-j+1}$, for all $i, j \in \{1, \ldots, l\}$.

We now to check that $m_{i,j} = m_{i,k} \times m_{k,j}$, for all $i, j, k \in \{1, \ldots, l\}$. We have

$$m_{i,k} \times m_{k,j} = a_{i,i-k+1} \times a_{k,k-j+1} = \sigma^{i-1}(e)\sigma^{i-k}\sigma^{k-1}(e)\sigma^{k-j}$$

= $\sigma^{i-1}(e)\sigma^{i-k+k-1}(e)\sigma^{i-k}\sigma^{k-j} = \sigma^{i-1}(e)\sigma^{i-j} = m_{i,j}.$

This means that $\operatorname{Orb}(e)G \simeq \operatorname{Mat}_l(K)$.

Our main result now follows by Theorems 1.6, 2.4 and 2.9.

THEOREM 2.10. Let $Q = (Q_0, Q_1)$ be a finite, connected, acyclic quiver, and denote $\Lambda = KQ$, where K is an algebraically closed field. Let $G = \langle \sigma \rangle$ be a cyclic group such that the characteristic of K does not divide the order of G. Then

$$\Lambda G/\operatorname{rad}(\Lambda G) \simeq |I_1|(K \times K) \bigoplus_{j>1} |I_j|\operatorname{Mat}_j(K),$$

where $|I_j|$ is the number of σ -cycles of length j.

2.11. Since full matrix algebras have isomorphic simple modules, we may now construct $e = \sum_{i=1}^{n_1} (\tilde{e_{1_i}} + \tilde{e_{1_i}}) + \sum_{j>1} e_j$, where the $\tilde{e_{1_i}} + \tilde{e_{1_i}}$ corresponds to a summand of the form $(K \times K)$, and every e_j corresponds to a full matrix algebras. This describes the basic algebra $(\Lambda G)^b = e(\Lambda G)e$ Morita equivalent to ΛG .

We take a look again at our previous Example 2.3.

EXAMPLE 2.12. By using the calculations in Example 2.3, we have

$$(\Lambda/\operatorname{rad}\Lambda)G \simeq k \times k \times \begin{pmatrix} k & k \\ k & k \end{pmatrix} \times \begin{pmatrix} k & k \\ k & k \end{pmatrix}$$

Observe that $\begin{pmatrix} k & 0 \\ k & 0 \end{pmatrix}$ and $\begin{pmatrix} 0 & k \\ 0 & k \end{pmatrix}$ are isomorphic as $\begin{pmatrix} k & k \\ k & k \end{pmatrix}$ -modules. We may construct the basic algebra $(\Lambda G)^b = e(\Lambda G)e$, where $e = \tilde{e_1} + \tilde{\tilde{e_1}} + e_2 + e_3$ corresponds to the non-isomorphic components.

Further, we have that

$$\{ e_1, e_2, e_3, e_{2'}, e_{3'}, \alpha, \beta, \alpha', \beta', \beta\alpha, \beta'\alpha' e_1\sigma, e_2\sigma, e_3\sigma, \\ e_{2'}\sigma, e_{3'}\sigma, \alpha\sigma, \beta\sigma, \alpha'\sigma, \beta'\sigma, \beta\alpha\sigma, \beta'\alpha'\sigma \}$$

is a k-basis of ΛG . By multiplying on the left and on the write we deduce that

$$\left\{\tilde{e_1}, \tilde{\tilde{e_1}}, \frac{\alpha + \alpha\sigma}{2}, \frac{\alpha - \alpha\sigma}{2} \frac{\beta(\alpha + \alpha\sigma)}{2}, \frac{\beta(\alpha - \alpha\sigma)}{2}\right\}$$

is a basis of $e\Lambda Ge$.

Now letting $\tilde{\alpha} := \frac{\alpha + \alpha \sigma}{2}$ and $\tilde{\tilde{\alpha}} := \frac{\alpha + \alpha \sigma}{2}$, we obtain that $e \Lambda G e$ is isomorphic to the path algebra of the quiver

The determination, in general, of a basis to the basic algebra of ΛG and the construction of a quiver whose path algebra is this basic algebra, are combinatorial questions which will be discussed in another paper.

REFERENCES

- ASSEM, I., SIMSON, D. and SKOWRONSKI, A., Elements of the Representation Theory of Associative Algebras, Cambridge Univ. Press, New York, 2006.
- [2] AUSLANDER, M., REITEN, I. and SMALØ, S.O., Representation Theory of Artin Algebras, Cambridge Univ. Press, New York, 1989.
- [3] BENSON, D.J., Representations and cohomology, Vol. 1, Cambridge Univ. Press, New York, 1995.
- [4] REITEN, I. and RIEDTMANN, C., Skew group algebras in the representation theory of artin algebras, J. Algebra, 92 (1985), 224–282.

Received June 26, 2010 Accepted August 4, 2010 "Babeş-Bolyai" University Faculty of Mathematics and Computer Science Str. Mihail Kogălniceanu Nr. 1 400084 Cluj-Napoca, Romania E-mail: horobetemil@gmail.com