GENERALIZED ALMOST STARLIKENESS ASSOCIATED WITH EXTENSION OPERATORS FOR BIHOLOMORPHIC MAPPINGS

LUMINIŢA-IOANA COTÎRLĂ

Abstract. In this paper we consider an operator introduced by Pfaltzgraff and Suffridge which provides a way of extending a locally biholomorphic mapping $f \in H(B^n)$ to a locally biholomorphic mapping $F \in H(B^{n+1})$. Using the Loewner chains we prove that if f is an generalized almost starlike mapping on B^n then F is also generalized almost starlike mapping on B^{n+1} .

MSC 2010. 34C45,32H02.

Key words. Loewner chain, Roper-Suffridge extension operator, starlikeness, generalized almost starlikeness.

1. INTRODUCTION AND PRELIMINARIES

Let \mathbb{C}^n denote the space of *n*-complex variables $z = (z_1, ..., z_n)'$ with respect to the Euclidean inner product $\langle z, w \rangle = \sum_{j=1}^n z_j \overline{w}_j$ and the norm $||z|| = \sqrt{\langle z, z \rangle}$. The symbol ' means the transpose of vectors and matrices. For $n \ge 2$, let $\tilde{z} = (z_2, ..., z_n) \in \mathbb{C}^{n-1}$, so that $z = (z_1, \tilde{z}) \in \mathbb{C}^n$. Let $B_r^n = \{z \in \mathbb{C}^n : ||z|| < r\}$ and let $B^n = B_1^n$. In the case of one

Let $B_r^n = \{z \in \mathbb{C}^n : ||z|| < r\}$ and let $B^n = B_1^n$. In the case of one complex variable B_r^n is denoted by U_r and U_1 by U. If G is an open set in \mathbb{C}^n , let H(G) be the set of holomorphic maps from G into \mathbb{C}^n . A holomorphic mapping $f: B^n \to \mathbb{C}^n$ is said to be biholomorphic if the inverse f^{-1} exist and is holomorphic on the open set $f(B^n)$. A mapping $f \in H(B^n)$ is said to be locally biholomorphic if the Frechet derivative Df(z) has a bounded inverse for each $z \in B^n$. If $f \in H(B^n)$, we say that f is normalized if f(0) = 0 and Df(0) = I. Let $S(B^n)$ be the set of all normalized biholomorphic mappings on B^n .

Let $L(\mathbb{C}^n, \mathbb{C}^m)$ denote the space of complex linear mappings from \mathbb{C}^n into \mathbb{C}^m with the standard operator norm $||A|| = \sup\{||Az|| : ||z|| = 1\}$ and let I_n be the identity in $L(\mathbb{C}^n, \mathbb{C}^n)$.

Let $\mathcal{L}S_n$ be the set of normalized locally biholomorphic mappings on B^n , and let $S(B^n)$ denote the set of normalized biholomorphic mappings on B^n . In the case of one variable, the set $S(B^1)$ is denoted by S, and $\mathcal{L}S(B^1)$ is denoted by $\mathcal{L}S$. A mapping $f \in S(B^n)$ is called starlike (respective convex) if its image is a starlike domain with respect to the origin (respectively convex domain). The classes of normalized starlike (respectively convex) mappings on B^n will be denoted by $S^*(B^n)$ (respectively $K(B^n)$). In the case of one variable, $S^*(B^1)$ (respectively $K(B^1)$) is denoted by S^* (respectively K). Let $f, g \in H(B^n)$. We say that f is subordinate to g (and write $f \prec g$) if there is a Schwarz mapping v (i.e., $v \in H(B^n)$ and $||v(z)|| \leq ||z||, z \in B^n$) such that $f(z) = g(v(z)), z \in B^n$. If g is biholomorphic on B^n , this is equivalent to requiring that f(0) = g(0) and $f(B^n) \subseteq g(B^n)$.

DEFINITION 1.1. A mapping $f: B^n \times [0, \infty) \to \mathbb{C}^n$ is called a *Loewner chain* if it satisfies the following conditions:

(i) $f(\cdot, t)$ is biholomorphic on B^n , f(0, t) = 0, $Df(0, t) = e^t I_n$ for $t \ge 0$; (ii) $f(z, s) \prec f(z, t)$ whenever $0 \le s \le t < \infty$ and $z \in B^n$.

We note that condition (ii) implies that there is a unique univalent Schwarz mapping v = v(z, s, t), called the transition mapping associated to f(z, t), such that

(1.1)
$$f(z,s) = f(v(z,s,t),t), z \in B^n, 0 \le s \le t < \infty, z \in B^n.$$

Further, the normalization of f(z,t) implies the normalization $Dv(0,s,t) = e^{s-t}I_n$, $0 \le s \le t < \infty$, for the transition mapping.

On the other hand, (1.1) and the univalence of $f(\cdot, t), t \ge 0$, imply the important semigroup property of the transition mapping v(z, s, t), i.e.,

(1.2)
$$v(z,s,u) = v(v(z,s,t),t,u), \quad z \in B^n, 0 \le s \le t < \infty.$$

The following class of holomorphic mappings of B^n plays the role of Carathéodory class in n dimensions:

$$\mathcal{M} = \{ h \in H(B^n) : h(0) = 0, Dh(0) = I_n, \text{Re} \langle h(z), z \rangle > 0, z \in B^n \setminus \{0\} \}.$$

In this paper we shall prove that the Pfaltzgraff-Suffridge operator Φ_n preserves the notion of generalized almost starlikeness.

Certain subclasses of $S(B^n)$ can be characterized in terms of Loewner chains. We recall the definition of a spirallike mapping of α type on B^n .

DEFINITION 1.2. Suppose $\alpha \in (-\frac{\pi}{2}, \frac{\pi}{2})$. A biholomorphic function $f: B^n \to \mathbb{C}^n$ is said to be *spirallike mapping of* α *type* if Re $\left[e^{-i\alpha}\langle [Df(z)]^{-1}f(z), z\rangle\right] > 0, z \in B^n \setminus \{0\}.$

This subclass of biholomorphic mappings can be characterized in terms of Loewner chains (see [9]).

LEMMA 1.3. Suppose f is a normalized locally biholomorphic mapping on $B^n, \alpha \in (-\frac{\pi}{2}, \frac{\pi}{2}), a = \tan \alpha$, then f is a spirallike mapping of α type if and only if $F(z,t) = e^{(1-ia)t} f(e^{iat}z), z \in B^n, t > 0$, is a Loewner chain. In particular, f is a starlike mapping if and only if $F(z,t) = e^t f(z)$ is a Loewner chain.

The following definition was introduced by G. Kohr ([10]) in the case $\alpha = \frac{1}{2}$ and by Feng [3] in the case of $\alpha \in [0, 1)$ and on the unit ball in a complex Banach space X. For our purpose, we present this notion only in the Euclidean setting.

DEFINITION 1.4. Suppose $0 \leq \alpha < 1$. A normalized locally biholomorphic mapping $f: B^n \to \mathbb{C}^n$ is said to be an *almost starlike mapping of order* α if $\operatorname{Re} \langle [Df(z)]^{-1}f(z), z \rangle > \alpha ||z||^2, z \in B^n \setminus \{0\}.$

It is clear that if f is almost starlike of order α , then f is also starlike.

Q.H. Xu and T.S. Liu [16] proved the following characterization of almost starlikeness of order α in terms of Loewner chains.

LEMMA 1.5. Suppose f is a normalized locally biholomorphic mapping in $B^n, 0 \leq \alpha < 1$. Then f is an almost starlike mapping of order α if and only if $F(z,t) = e^{\frac{1}{1-\alpha}f}(e^{\frac{\alpha}{\alpha-1}t}z), z \in B^n, t \geq 0$, is a Loewner chain. In particular, f is a starlike mapping (i.e., $\alpha = 0$) if and only if $F(z,t) = e^t f(z)$ is a Loewner chain.

Next we recall the definition for generalized almost starlikeness [2].

DEFINITION 1.6. Let $a : [0, \infty) \to \mathbb{C}$ of class C^{∞} with $\eta \leq \text{Re } a(t) \leq 0, t \in [0, \infty), \eta < 0$. A normalized locally biholomorphic mapping $f : B^n \to \mathbb{C}^n$ is said to be generalized almost starlike if

(1.3) Re {
$$(1 - a'(t))e^{-a(t)}\langle [Df(e^{a(t)}z)]^{-1}f(e^{a(t)}z), z\rangle$$
} $\geq -\text{Re}(a'(t))||z||^2$,
for $z \in B^n$ $t \geq 0$

We denote with $S_q^*(B^n)$ the set of generalized almost starlike mapping.

REMARK 1.7. In the case of $a'(t) = \frac{\alpha}{\alpha-1}, \alpha \in [0,1)$, in Definition 1.6, we obtain the usual notion of almost starlikeness of order α . In the case of a'(t) = -1 in Definition 1.6, we obtain the notion of almost starlikeness of order $\frac{1}{2}$. If $a'(t) = \lambda, \lambda \in \mathbb{C}^n$, Re $\lambda \leq 0$, in Definition 1.6, we obtain the notion of almost starlike mapping of complex order λ .

The following result provides a necessary and sufficient condition for generalized almost starlikeness in terms of Loewner chains.

LEMMA 1.8. [2] Let $f: U \to \mathbb{C}$ be a normalized holomorphic function and let $a: [0, \infty) \to \mathbb{C}$, be a function of class C^{∞} , such that $\eta \leq \operatorname{Re} a(t) \leq 0$, $t \in [0, \infty)$, for some $\eta < 0$. Then f is a generalized almost starlike mapping if and only if $g(z,t) = e^{t-a(t)} f(e^{a(t)}z)$, $z \in U$, $t \geq 0$, is a Loewner chain. In particular, f is a starlike function (i.e., a(t) = 0) if and only if $g(z,t) = e^t f(z)$ is a Loewner chain.

The next definition refers to the notion of parametric representation for biholomorphic mappings on B^n . Note that this notion was studied in [6], [4], [12], [13]. Here we present an equivalent definition to the original one given in [8] and [12].

DEFINITION 1.9. Let $f \in H(B^n)$ be a normalized mapping. We say that f has parametric representation if there exists a Loewner chain f(z,t) such that $\{e^{-t}f(\cdot,t)\}_{t\geq 0}$ is a normal family on B^n and $f = f(\cdot,0)$.

Let $S^0(B^n)$ be the set of mappings which have parametric representation on B^n . A key role in our discussion is played by the following Schwarz- type lemma for the Jacobian determinant of a holomorphic mapping from B^n .

LEMMA 1.10. [15] Let $\psi \in H(B^n)$ be such that $\psi(B^n) \subseteq B^n$. Then

(1.4)
$$|J_{\psi}(z)| \leq \left[\frac{1 - \|\psi(z)\|^2}{1 - \|z\|^2}\right]^{\frac{n+1}{2}}, \quad z \in B^n.$$

This inequality is sharp and equality at a given point $z \in B^n$ holds if and only if $\psi \in Aut(B^n)$, where $Aut(B^n)$ is the set of holomorphic automorphism of B^n .

For $n \ge 1$, set $z' = (z_1, ..., z_n) \in \mathbb{C}^n$ and $z = (z', z_{n+1}) \in \mathbb{C}^{n+1}$.

DEFINITION 1.11 ([11]). The Pfaltzgraff-Suffridge extension operator Φ_n : $\mathcal{L}S_n \to \mathcal{L}S_{n+1}$ is defined by $\Phi_n(f)(z) = F(z) = (f(z'), z_{n+1}[J_f(z')]^{\frac{1}{n+1}}), z = (z', z_{n+1}) \in B^{n+1}$. We choose the branch of the power function such that $[J_f(z')]^{\frac{1}{n+1}}|_{z'=0} = 1$.

Then $F = \Phi_n(f) \in \mathcal{L}S_{n+1}$ whenever $f \in \mathcal{L}S_n$. It is easy to see that if $f \in S(B^n)$ then $F = \Phi_n(f) \in S(B^{n+1})$.

If n = 1 then Φ_1 reduces to the well-known Roper-Suffridge extension operator. For general $n \ge 2$ we have:

DEFINITION 1.12. [14] The Roper-Suffride extension operator $\Psi_n : \mathcal{L}S \to \mathcal{L}S_n$ is defined by $\Psi_n(f)(z) = (f(z_1), \tilde{z}\sqrt{f'(z_1)}), z = (z_1, \tilde{z}) \in B^n$. We choose the branch of the power function such that $\sqrt{f'(z_1)}|_{z_1=0} = 1$.

Various properties of the Pfaltzgraff-Suffridge and Roper-Suffridge operators may be found in [11], [16], [5], respectively.

In this paper we shall prove that the Roper-Suffridge operator and the Pfaltzgraff-Suffridge operators preserve the notion of generalized almost starlikeness.

2. MAIN RESULTS

We begin this section with the main result of this paper.

THEOREM 2.1. Assume f is a generalized almost starlike mapping. Then $F = \Phi_n(f)$ is also a generalized almost starlike mapping.

Proof. Let $F: B^{n+1} \times [0,\infty) \to \mathbb{C}^{n+1}$, be given by

(2.1)
$$F(z,t) = (f(z',t), z_{n+1}e^{\frac{t}{n+1}}[J_{f_t}(z')]^{\frac{1}{n+1}})$$

for $z = (z', z_{n+1}) \in B^{n+1}$ and $t \ge 0$. We choose the branch of the power function such that $[J_{f_t}(z')]^{\frac{1}{n+1}}|_{z'=0} = e^{\frac{nt}{n+1}}$. Using the Schwarz-type lemma for the Jacobian determinant of a holomorphic mapping from B^n into B^n and the automorphisms of B^n , the authors have proved in Theorem 2.1. (see [7]) that F(z,t) is a Loewner chain. The fact that f is generalized almost starlike is equivalent to the statement that $f(z',t) = e^{t-a(t)}f(e^{a(t)}z'), z \in B^n, t \ge 0, a :$ $[0,\infty) \to \mathbb{C}, \eta \le \text{Re } a(t) \le 0, \eta < 0, a \text{ of class } C^{\infty}$, is a Loewner chain. With this choice of f(z',t), we deduce that F(z,t) given by (2.1) is a Loewner chain.

On the other hand a simple computation yields that

$$F(z,t) = e^{t-a(t)} (f(e^{a(t)}z'), z_{n+1} \cdot e^{a(t)} [J_f(e^{a(t)}z')]^{\frac{1}{n+1}}) = e^{t-a(t)} F(e^{a(t)}z),$$

for $z \in B^{n+1}$, and $t \ge 0, a : [0, \infty) \to \mathbb{C}, \eta \le \operatorname{Re} a(t) \le 0, \eta < 0, a$ of C^{∞} class. Thus $F = \Phi_n(f)$ is a generalized almost starlike mapping on B^{n+1} . This completes the proof.

We next consider some particular cases of the above result.

If $a'(t) = \tan \alpha$ we obtain the following particular case [7].

COROLLARY 2.2. Assume f is a spirallike mapping of α type. Then $F = \Phi_n(f)$ is a spirallike mapping of α type.

If in the proof of Theorem 2.1, we consider that $a'(t) = \frac{\alpha}{\alpha-1}, \alpha \in [0, 1)$, we obtain the following result.

COROLLARY 2.3. Assume f is an almost starlike mapping of order α . Then $F = \Phi_n(f)$ is an almost starlike mapping of order α .

Note that, if n = 1 in Corollary 2.3, we deduce that the Roper-Suffridge operator preserves the notion of almost starlikeness of order α (see[16]).

Considering $a'(t) \equiv \lambda$, Re $\lambda \leq 0$, we obtain in view of Theorem 2.1 the following particular case (see [1]).

COROLLARY 2.4. Assume f is an almost starlike mapping of complex order λ . Then $F = \Phi_n(f)$ is also an almost starlike mapping of complex order λ .

Another consequence of Theorem 2.1 is given in the following result, which provides a positive answer to the question of Pfaltzgraff and Suffridge regarding the preservation of starlikeness under the operator Φ_n (see [7] and [11]). To prove this result, it suffices to consider $a'(t) \equiv 0$ in Theorem 2.1.

COROLLARY 2.5. Assume that $f \in S^*(B^n)$. Then $F = \Phi_n(f) \in S^*(B^{n+1})$.

We close this paper with the following compactness result.

THEOREM 2.6. The set $\Phi_n[S_q^*(B^n)]$ is compact.

Proof. Since $\Phi_n[S_g^*(B^n)] \subset S_g^*(B^{n+1})$ and $S^*(B^{n+1})$ is compact by [2], we deduce that $\Phi_n[S_g^*(B^n)]$ is a locally uniformly bounded family. It remains to prove that $\Phi_n[S^*(B^n)]$ is closed. To this end, let $\{F_k\}_{k\in\mathbb{N}}$ be a sequence in $\Phi_n[S_g^*(B^n)]$ which converges locally uniformly on B^{n+1} to a mapping F as $k \to \infty$. Also let $\{f_k\}_{k\in\mathbb{N}}$ be a sequence in $S_g^*(B^n)$ be such that $F_k = \Phi_n(f_k), k \in \mathbb{N}$. Since $\{f_k\}_{k\in\mathbb{N}}$ is a locally uniformly bounded sequence on B^n , there is a subsequence $\{f_{k_p}\}_{p\in\mathbb{N}}$ of $\{f_k\}_{k\in\mathbb{N}}$ which converges locally uniformly on B^n to

L.I. Cotîrlă

a mapping f. Since $S_g^*(B^n)$ is a compact set, we deduce that $f \in S_g^*(B^n)$. Also it is easy to see that the subsequence $\{\Phi_n(f_{k_p})\}_{p \in \mathbb{N}}$ converges locally uniformly on B^{n+1} to $\Phi_n(f)$, and thus we must have $F = \Phi_n(f)$. Hence $F \in \Phi_n[S_g^*(B^n)]$. This completes the proof.

REFERENCES

- BĂLĂEȚI, C.M. and NECHITA, V.O., Loewner chains and almost starlike mappings of complex order λ, Carpathian J. Math., 26 (2010), 146–157.
- [2] COTÎRLĂ, L.I., Loewner chains and generalized almost starlike mappings, Mathematica, 54 (77), to appear.
- [3] FENG, S.X., Some classes of holomorphic mappings in several complex variables, University of Science and Technology of China, Doctoral thesis, 2004.
- [4] GRAHAM, I., KOHR, G., Geometric function theory in one and higher dimension, Marcel Dekker, New York, 2003.
- [5] GRAHAM, I., KOHR, G. and KOHR, M., Loewner chains and the Roper-Suffridge extension operator, J. Math. Anal. Appl., 247 (2000), 448–465.
- [6] GRAHAM, I., KOHR, G., KOHR, M., Loewner chains and parametric representation in several complex variables, J. Math. Anal. Appl., 281 (2003), 425–438.
- [7] GRAHAM, I., KOHR, G. and PFALTZGRAFF, J.A., Parametric representation and linear functionals associated with extension operators for biholomorphic mappings, Rev. Roumaine Math. Pure Appl., 52 (2007), 47–68.
- [8] GRAHAM, I., HAMADA, H. and KOHR, G., Parametric representation of univalent mappings in several complex variables, Canad. J.Math., 54 (2002), 324–351.
- [9] HAMADA,H. and KOHR, G., Subordination chains and the growth theorem of spirallike mappings, Mathematica, **42 (65)** (2000), 153–161.
- [10] KOHR, G., On some sufficient conditions of almost starlikeness of order 1/2 in Cⁿ, Stud. Univ. Babes-Bolyai Math., 41 (1996), 51–55.
- [11] PFALTZGRAFF, J.A. and SUFFRIDGE, T.J., An extension theorem and linear invariant families generated by starlike maps, Ann. Univ. Mariae Curie-Sklodowska, Sect. A, 53 (1999), 193–207.
- [12] POREDA, T., On the univalent subordination chain of holomorphic mappings in Banach spaces, Comment. Math., 28 (1989), 295–304.
- [13] POREDA, T., On the univalent holomorphic maps of the unit polydisc of \mathbb{C}^n which have the parametric representation, II-necessary and sufficient conditions, Ann. Univ. Mariae Curie-Sklodowska, Sect. A, **41** (1987), 114–121.
- [14] ROPER, K. and SUFFRIDGE, T.J., Convexity properties of holomorphic mappings in Cⁿ, Trans. Amer. Math. Soc., 351 (1999), 1803–1833.
- [15] RUDIN, W., Function Theory in the Unit Ball of \mathbb{C}^n , Springer-Verlag, New-York, 1980.
- [16] XU, Q.-H. and LIU, T.S., Loewner chains and a subclass of biholomorphic mappings, J. Math. Anal. Appl., 334 (2007), 1096–1105.

Received January 15, 2010 Accepted May 20, 2010 "Babeş-Bolyai" University Faculty of Mathematics and Computer Science Str. Mihail Kogălniceanu Nr. 1 400084 Cluj-Napoca, Romania E-mail: uluminita@math.ubbcluj.ro E-mail: luminita.cotirla@yahoo.com