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NEW STABLE ELEMENTS
IN HOCHSCHILD COHOMOLOGY ALGEBRA

CONSTANTIN COSMIN TODEA

Abstract. We give a similar result to the embedding of the ordinary cohomol-
ogy ring of a group into the subalgebra of stable elements in the Hochschild
cohomology ring of the group algebra.We take in this case the ordinary coho-
mology of the centralizer of a representative of a conjugacy class in G, which
also embeds into the Hochschild cohomology ring of the group algebra.
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1. PRELIMINARIES

In the next sections we consider G a finite group, {xi | i ∈ {1, . . . , r}} a
system of representatives of conjugacy classes of G with the representative
xi, for i ∈ {1, . . . , r} a fixed indices and R a commutative ring. By [2] we
know that there is the additive decomposition of the Hochschild cohomology
HHn(RG) '

⊕r
i=1 Hn(CG(xi), R). Thus there are the canonical injections

of R-modules Hn(CG(xi), R) ↪→ HHn(RG), which extends to the injective
homomorphisms of graduates R-algebras

H∗(CG(xi), R) ↪→ HH∗(RG).

These homomorphisms are explicitly described in [4] in a more general case.
We denote by K(RG) the homotopy category and by C(RG) the category of
complexes of finite generated RG-modules.

In Section 2 we define explicitly the injective R-algebras homomorphism
γGxi

from H∗(CG(xi), R) to HH∗(RG), which if xi = 1,the unity of G, is ex-
actly the ”diagonal induction” from the ordinary cohomology H∗(G,R) to the
Hochschild cohomology, from [3]. Next we show that the usual transfer be-
tween the cohomology rings H∗(CH(xi), R) and H∗(CG(xi), R) is compatible
with γGxi

, where H is a subgroup of G. The compatibility of restriction between
this two cohomology rings is not true in general, excepting some particular
groups G containing subgroups H.

In Section 3 using the same hypothesis from compatibility of restriction
with γGxi

, we prove the embedding of the cohomology algebra H∗(CG(xi), R)
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into the algebra of stable elements HH∗M (RG), where M =RG RGRH is the
regular RG−RH-bimodule.

Definition 1. The ordinary cohomology of G with coefficients in R is
the graduate R-algebra H∗(G,R) = Ext∗RG(R,R), where R is the RG-module
with trivial action. By standard results in homological algebra we use the
isomorphism:

Hn(G,R) ∼= HomK(RG)(PR,PR[n]),
where PR is a projective resolution of R as RG-module with trivial action.

Remark 1. (a) If H is a subgroup of G then ResGHPR is a projective resolu-
tion of R as RH-module. Thus any element [τ ] ∈ Hn(H,R) can be represented
by a chain map τ : ResGHPR −→ ResGHPR[n].

(b) For ∆G = {(g, g) | g ∈ G} the diagonal subgroup of G×G, there is the
isomorphism IndG×G∆G R ∼= RG. We consider from now IndG×G∆G PR a projective
resolution of RG as RG−RG bimodule (or R[G×G]-module).

(c) By [2] we have: HH∗(RG) = Ext∗RG⊗RGop(RG) ∼= Ext∗R[G×G](RG). Sim-
ilar to Definition 1 we work with:

HHn(RG) = HomK(RG)(PRG,PRG[n]),

where PRG is a projective resolution of RG as R[G × G]-modules. By (b)
we consider an element [τ ] ∈ HHn(RG) represented by a chain map τ :
IndG×G∆G PR −→ IndG×G∆G PR[n].

From group theory we recall the following result:

Remark 2. If K ≤ H ≤ G subgroups, [G/H] a system of representatives
of left cosets of H in G, [H/K] a system of representatives of left cosets of K
in H then there is a system of representatives of left cosets of K in G such
that:

[G/K] = {xy | x ∈ [G/H], y ∈ [H/K]}.
By [3, Definition 2.9] if A,B are R symmetric algebras and X is a bounded

complex of A − B-bimodules, projective as left and right modules, we may
define the transfer associated to X denoted tX . In the definition of tX from
HH∗(B) to HH∗(A) we use the adjunctions maps. From [3, Example 2.6] we
explicitly give the definition of the adjunctions maps in the case ofM = (RG)H
considered as RG − RH- bimodule, obtained by restriction of the regular
RGRGRG-bimodule. The dual M∗ is RHRGRG as RH − RG-bimodule. We
consider IndH×H∆H R as RH −RH-bimodule by

h1 · [(x, y)⊗R∆H 1R] · h2 = (h1x, h
−1
2 y)⊗R∆H 1R,

where h1, h2, x, y ∈ H.

Remark 3. By [3, Example 2.6] we know that for a ∈ RG:

εM∗ : RG −→ RG⊗RH RH ⊗RH RG, εM∗(a) =
∑

g∈[G/H]

ag ⊗RH 1⊗RH g−1.
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Using the isomorphisms from Remark 1 (b) we can define:

εM∗ : IndG×G∆G R −→ RG⊗RH IndH×H∆H R⊗RH RG,

εM∗((x, y)⊗R∆G 1R) =
∑

g∈[G/H]

xg ⊗RH [(1, 1)⊗R∆H 1R]⊗RH g−1y−1,

where (x, y)⊗R∆G 1R ∈ IndG×G∆G R. Similarly:

ηM : RG⊗RH IndH×H∆H R⊗RH RG −→ IndG×G∆G R,

ηM (a⊗RH [(x, y)⊗R∆H 1R]⊗RH b) = (ax, b−1y)⊗R∆G 1R,
where a, b ∈ G and x, y ∈ H.

Remark 4. εM∗ and ηM lifts to homomorphisms of complexes of R[G×G]-
modules:

εM∗ : IndG×G∆G PR −→ RG⊗RH IndH×H∆H PR ⊗RH RG

εM∗((x, y)⊗R∆G z) =
∑

g∈[G/H]

xg ⊗RH [(1, 1)⊗R∆H g−1z]⊗RH g−1y−1,

where x, y ∈ G and z ∈ PR.

ηM : RG⊗RH IndH×H∆H PR ⊗RH RG −→ IndG×G∆G PR
ηM (a⊗RH [(x, y)⊗R∆H z]⊗RH b) = (ax, b−1y)⊗R∆G z,

where a, b ∈ G and x, y ∈ H, z ∈ PR.

By [3, Definition 2.9] using Remarks 3, 4 we can define the transfer associ-
ated to M .

Definition 2. The transfer associated to M is the unique graded linear
map

tM : HHn(RH) −→ HHn(RG),
sending for any n ≥ 0, the homotopy class [τ ] of a chain map

τ : IndH×H∆H PR −→ IndH×H∆H PR[n]

to the homotopy class [ηM [n] ◦ (IdM ⊗RH τ ⊗RH IdM∗) ◦ εM∗ ].
Explicitly we have for any element (x, y)⊗R∆G z ∈ IndG×G∆G PR:

tM (τ)((x, y)⊗R∆Gz) =
∑

g∈[G/H]

ηM [n](xg⊗RHτ((1, 1)⊗R∆Hg
−1z)⊗RHg−1y−1).

Similarly by [3]:

Remark 5. The adjunction maps associated to M and M∗:

εM : IndH×H∆H PR −→ IndG×G∆G PR, εM ((x, y)⊗R∆H z) = (x, y)⊗R∆G z,

where x, y ∈ H and z ∈ PR. The map

ηM∗ : IndG×G∆G PR −→ IndH×H∆H PR,
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is the natural projection mapping (x, y)⊗R∆G z to (x, y)⊗R∆H z if x ∈ H and
y ∈ H and to 0 if x /∈ H or y /∈ H, where (x, y)⊗R∆G z ∈ IndG×G∆G PR.

By [3, Definition 2.9] using Remark 5 we define tM∗ :

Definition 3. The transfer associated to M∗ is the unique graded linear
map:

tM∗ : HH∗(RG) −→ HH∗(RH),

sending for any n ≥ 0, the homotopy class [τ ] of a chain map

τ : IndG×G∆G PR −→ IndG×G∆G PR[n]

to the homotopy class [ηM∗ [n] ◦ τ ◦ εM ]. Explicitly:

tM∗(τ) : IndH×H∆H PR −→ IndH×H∆H PR[n],

tM∗(τ)((x, y)⊗R∆H z) = (ηM∗ [n] ◦ τ)((x, y)⊗R∆G z).

Remark 6. As in [3, Proposition 4.5] there is an injective homomorphisms
of R-algebras

δG : H∗(G,R) −→ HH∗(RG), δG([τ ]) = [IndG×G∆G (τ)],

where [τ ] ∈ Hn(G,R) corresponding to τ : PR −→ PR[n]. Explicitly we have:

IndG×G∆G (τ) : IndG×G∆G PR −→ IndG×G∆G PR[n],

IndG×G∆G (τ)((x, y)⊗R∆G z) = (x, y)⊗R∆G τ(z)

where x, y ∈ G and z ∈ PR.

We recall the definition of the transfer map in group cohomology. By [3] we
know that:

trGH : H∗(H,R) −→ H∗(G,R), trGH([τ ] = [TrGH(τ)],

where [τ ] ∈ Hn(H,R) represented by τ : ResGHPR −→ ResGHPR[n]. Explicitly,
the chain map TrGH(τ) is

TrGH(τ) : PR −→ PR[n], TrGH(τ)(a) =
∑

g∈[G/H]

gτ(g−1a), a ∈ PR.

2. THE GENERALIZATION OF THE DIAGONAL INDUCTION

From [4] we know that there is an injective ring homomorphism

γi : H∗(CG(xi), R) −→ H∗(G,RG),

where RG is a G-module by conjugation (ga = gag−1, g ∈ G, a ∈ RG). γi is
defined in [4] using cocycles, by the diagram:

H∗(CG(xi), R)
θxi // H∗(CG(xi), RG)

trG
CG(xi) // H∗(G,RG)
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We will restate the definition of this homomorphism, which we denote γGxi
using

the description of ordinary cohomology and Hochschild cohomology by chain
map. We also keep in mind the isomorphism from [4]: H∗(G,RG) ∼= HH∗(RG).

If [τ ] ∈ Hn(CG(xi), R) is represented by the chain map

τ : ResGCG(xi)
PR −→ ResGCG(xi)

PR[n]

we define the map:

γGxi
(τ) : IndG×G∆G PR −→ IndG×G∆G PR[n],

γGxi
(τ)((x, y)⊗R∆G z) = (x, y)

∑
g∈[G/CG(xi)]

(gxi, g)⊗R∆G τ(g−1z),

where x, y ∈ G, z ∈ PR.

Proposition 1. For every chain map τ , the map γGxi
(τ) is well defined and

is a chain map.

Proof. First we prove that the definition of γGxi
is independent of the choice

of representatives [G/CG(xi)]. If A is a set of different representatives then
for any a ∈ A there is g ∈ [G/CG(xi)] such that a = gba where ba ∈ CG(xi).
Then:

γGxi
(τ)((x, y)⊗R∆G z) = (x, y)

∑
a∈A

(axi, a)⊗R∆G τ(a−1z)

= (x, y)
∑

g∈[G/CG(xi)]

(gbaxi, gba)⊗R∆G τ(b−1
a g−1z)

= (x, y)
∑

g∈[G/CG(xi)]

(gxi, g)⊗R∆G τ(g−1z)

where x, y ∈ G, z ∈ PR.The last equality is clear since ba ∈ CG(xi) for all
a ∈ A.The second part is obvious since τ is a chain map. �

By Proposition 1 we have the following definition:

Definition 4. LetG be a finite group and xi a representative of a conjugacy
class of G. The injective R-algebra homomorphism

γGxi
: H∗(CG(xi), R) −→ HH∗(RG)

is the unique graduated linear map given by γGxi
([τ ]) = [γGxi

(τ)], where [τ ] ∈
Hn(CG(xi), R) is represented by the chain map

τ : ResGCG(xi)
PR −→ ResGCG(xi)

PR[n].

If xi = 1 then CG(1) = G and by Remark 6 we have that γG1 = δG. The
next proposition is a generalization of [3, Proposition 4.6], since we obtain it
for xi = 1.
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Proposition 2. Let G be a finite group, xi a representative of a conjugacy
class of G, H a subgroup of G such that xi ∈ H. Then xi is a representative
of a conjugacy class of H, CH(xi) ≤ CG(xi) and the following diagram is
commutative:

H∗(CH(xi), R)
tr

CG(xi)

CH (xi) //

γH
xi

��

H∗(CG(xi), R)

γG
xi

��
HH∗(RH)

tM // HH∗(RG)

Proof. Let PR be a projective resolution of R as trivial RG-module, [τ ] ∈
Hn(CH(xi), R) represented by the chain map

τ : ResGCH(xi)
PR −→ ResGCH(xi)

PR[n]

and the elements x, y ∈ G, z ∈ PR. By Definition 4 we have that (γGxi
◦

trCG(xi)
CH(xi)

)(τ) is a chain map representing an element in HHn(RG) defined by:

γGxi
(trCG(xi)

CH(xi)
)(τ)((x, y)⊗R∆G z)

= (x, y)
∑

g∈[G/CG(xi)]

(gxi, g)⊗R∆G trCG(xi)
CH(xi)

(τ)(g−1z)

= (x, y)
∑

g∈[G/CG(xi)]

(gxi, g)⊗R∆G

∑
h∈[CG(xi)/CH(xi)]

hτ(h−1g−1z)

= (x, y)
∑

g∈[G/CG(xi)]

∑
h∈[CG(xi)/CH(xi)]

(gxih, gh)⊗R∆G τ((gh)−1z).

Using Remark 2 and the fact that hxi = xih we obtain that:

(γGxi
◦ trCG(xi)

CH(xi)
)(τ)((x, y)⊗R∆G z) = (x, y)

∑
m∈[G/CH(xi)]

(mxi,m)⊗R∆G τ(m−1z).

By Definition 2 and 4, using Remark 4 we have that:

tM (γHxi
(τ))((x, y)⊗R∆G z)

=
∑

g∈[G/H]

ηM [n](xg ⊗RH γHxi
(τ)((1, 1)⊗R∆H g−1z)⊗RH g−1y−1)

=
∑

g∈[G/H]

ηM [n](xg ⊗RH
∑

h∈[H/CH(xi)]

(hxi, h)⊗R∆H τ(h−1g−1z)⊗RH g−1y−1)

=
∑

g∈[G/H]

∑
h∈[H/CH(xi)]

(xghxi, ygh)⊗R∆G τ(h−1g−1z)

= (x, y)
∑

m∈[G/CH(xi)]

(mxi,m)⊗R∆G τ(m−1z),
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which concludes the proof. �

If xi = 1 we are under the hypothesis of Proposition 2 and we obtain as
corollary [3, Proposition 4.6].

Corollary 1. For H a subgroup of G the following diagram is commuta-
tive:

H∗(H,R)
trG

H //

δH
��

H∗(G,R)

δG
��

HH∗(RH)
tM // HH∗(RG)

By [3, Proposition 4.7] we know that δG is compatible with resGH for all
H subgroups of G. In our case we have that γGxi

is compatible with resGH for
particular groups.

In the next paragraphs we will work under the following situation :

Situation (∗). Let G be a finite group, H a subgroup of G and xi an
element of H, a representative of a G conjugacy class . Suppose that there
is a system of representatives of left cosets of CH(xi) in H which is also a
system of representatives of left cosets of CG(xi) in G.

The question which arise now is, if there are groups G in situation (∗)? We
give next such an example.

Example 1. Let G be the dihedral group of order 4n denoted D2n, where
n is an odd nonnegative integer:

D2n = 〈x, y | x2n = 1, y2 = 1, yxy = x−1〉.
We give the description of D2n:

D2n = {1, x, x2, . . . , x2n−1, y, xy, x2y, . . . , x2n−1y}.
We take xi = y and H = {1, y, x2, x4, . . . , x2n−2, x2y, x4y, . . . , x2n−2y} to
be a subgroup of G. By regarding the composition table, we have that
CG(y) = {1, y, xn, xny} thus CH(y) = {1, y}, since n is odd. There are n
left cosets of CH(y) in H: {1, y}, {x2, x2y}, . . . , {x2n−2, x2n−2y} which are
included, respectively in the n left cosets of CG(y) in G: {1, y, xn, xny},
{x, xy, xn+1, xn+1y}, {x2, x2y, xn+2, xn+2y}, . . . , {xn−1, xn−1y, x2n−1, x2n−1y}.
Obviously if we choose the system [H/CH(y)] = {1, x2, x4, . . . , x2n−2} we see
that this is also a system in G, since n is odd. This system will be denoted by
[G/CG(y)].

Moreover, as we can remark by Example 1 we have the following lemma.

Lemma 1. Under the situation (∗) it is true that any system of representa-
tives of left cosets of CH(xi) in H is a system of representatives of left cosets
of CG(xi) in G.
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Proof. Let {a1, a2, . . . , an} be a system of representatives of left cosets of
CH(xi) in H which is a system of representatives of left cosets of CG(xi) in
G. Let {b1, b2, . . . , bn} be a different system of representatives of left cosets of
CH(xi) in H. Since for any j, k from 1 to n with i different form j we have
b−1
k bj /∈ CH(xi) it follows that b−1

k bj /∈ CG(xi) thus they represent different
classes in G. If bj corresponds to aj then b−1

j aj ∈ CH(xi), thus b−1
j aj ∈ CG(xi),

which concludes the proof. �

Proposition 3. Under the situation (∗) the following diagram is commu-
tative:

H∗(CG(xi), R)
res

CG(xi)

CH (xi) //

γG
xi

��

H∗(CH(xi), R)

γH
xi

��
HH∗(RG)

tM∗ // HH∗(RH)

Proof. Let PR be a projective resolution of R, [τ ] ∈ Hn(CG(xi), R) repre-
sented by the chain map τ : ResGCG(xi)

PR −→ ResGCG(xi)
PR[n] and the elements

x, y ∈ H z ∈ PR.

(γHxi
◦ resCG(xi)

CH(xi)
)(τ)((x, y)⊗R∆H z) = (γHxi

res
CG(xi)
CH(xi)

)(τ))((x, y)⊗R∆H z)

= (x, y)
∑

h∈[H/CH(xi)]

(hxi, h)⊗R∆H τ(h−1z).

The left composition from the diagram is:

tM∗(γGxi
(τ))((x, y)⊗R∆H z) = ηM∗ [n](γGxi

(τ)((x, y)⊗R∆G z)

= ηM∗ [n](x, y)
∑

g∈[G/CG(xi)]

(gxi, g)⊗R∆G τ(g−1z),

where x, y ∈ H and z ∈ PR.
From Lemma 1, since the last term is independent of the choice of [G/CG(xi)]

we choose, using situation (∗), the system which is in H. Thus the last term
is: ∑

h∈[H/CH(xi)]

ηM∗ [n]((xhxi, yh)⊗R∆G τ(h−1z))

= (x, y)
∑

h∈[H/CH(xi)]

(hxi, h)⊗R∆H τ(h−1z)

where the last equality follows by Remark 5. �

If xi = 1 we are in situation (∗) then from Proposition 3 we obtain as
corollary [3, Proposition 4.7].
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Corollary 2. For H a subgroup of G and R a commutative ring the
following diagram is commutative:

H∗(G,R)
resG

H //

δG
��

H∗(H,R)

δH
��

HH∗(RG)
tM∗ // HH∗(RH).

3. STABLE ELEMENTS IN HOCHSCHILD COHOMOLOGY OF GROUP ALGEBRAS

By [3, Proposition 4.8 ] we know that Im δG ⊂ HH∗M (RG). Thus Im δG is a
subalgebra of the graded algebra of stable elements in Hochschild cohomology
algebra of RG. We prove in the next theorem, which is the main result of
this paper, that under the situation (∗) we have a similar embedding ImγGxi

⊂
HH∗M (RG) where M is the regular RG−RH bimodule.

First we remind, from [3] the description of the subalgebra of M stable
elements in the Hocshschild cohomology algebra of the group algebra. We
denote by HH∗M (RG) the subalgebra of M -stable elements in HH∗(RG). An
element ζ ∈ HH∗(RG) is called M -stable if there is τ ∈ HH∗(RH) such that for
all nonnegative integer n the following diagram is a commutative homotopy:

PRG ⊗RGM
∼= //

ζn⊗IdM

��

M ⊗RH PRH
IdM⊗τn

��
PRG[n]⊗RGM

∼= // M ⊗RH PRH [n]

where ζn, τn are degree n components of ζ, τ and the horizontal arrows are the
natural homotopy equivalences PRG ⊗RG M ∼= M ⊗RH PRH which lifts the
natural isomorphisms RG⊗RGM ∼= M ⊗RH RH.

Theorem 1. Under the situation (∗) the following statements are true:
(i) For any nonnegative integer n and chain map τ ∈ HomC(RG)(PR,PR[n])

we have that the following diagram is a commutative homotopy:

RG⊗RH IndH×H∆H
(PR)⊗RH RG

ηM //

IdM⊗RHγ
H
xi

(τ)⊗RHIdM∗

��

IndG×G∆G (PR)

γG
xi

(τ)

��
RG⊗RH IndH×H∆H

(PR[n])⊗RH RG
ηM [n] // IndG×G∆G (PR[n])

(ii) Im γGxi
⊂ HH∗M (RG).

Proof. By definition of ηM from Remark 4 and of γGxi
from Definition 4 we

have for g1, g2 ∈ G, x, y ∈ H and z ∈ PR:

γGxi
(τ)[ηM (g1 ⊗RH ((x, y)⊗R∆H z)⊗RH g2)] = γGxi

(τ)((g1x, g
−1
2 y)⊗R∆G z)



84 C.C. Todea 10

= (g1x, g
−1
2 y)

∑
g∈[G/CG(xi)]

(gxi, g)⊗R∆G τ(g−1z),

ηM [n](IdM ⊗RH γHxi
(τ)⊗RH IdM∗(g1 ⊗RH ((x, y)⊗R∆H z)⊗RH g2))

= ηM [n](g1 ⊗RH γHxi
(τ)((x, y)⊗R∆H z)⊗RH g2)

= ηM [n](g1 ⊗RH (
∑

h∈[H/CH(xi)]

(xhxi, yh)⊗R∆H τ(h−1z))⊗RH g2)

=
∑

h∈[H/CH(xi)]

ηM [n](g1 ⊗RH [(xhxi, yh)⊗R∆H τ(h−1z)]⊗RH g2)

=
∑

h∈[H/CH(xi)]

(g1xhxi, g
−1
2 yh)⊗R∆G τ(h−1z).

Since we are under situation (∗) the last sum is equal to

(g1x, g
−1
2 y)

∑
g∈[G/CG(xi)]

(gxi, g)⊗R∆G τ(g−1z),

which completes the proof of (i).
The statement (ii) is a consequence of (i) and [3, lemma 3.3, 3.3.6]. �

If xi = 1 then we are under the situation (∗), and since γG1 = δG we obtain
in theorem 1 the statement [3, Proposition 4.8, ii)].

REFERENCES

[1] Benson, D.J., Representations and Cohomology I, Cambridge University Press, Cam-
bridge, 1991.

[2] Benson, D.J., Representations and Cohomology II, Cambridge University Press, Cam-
bridge, 1991.

[3] Linckelmann, M., Transfer in Hochschild cohomology of blocks of finite groups, Algebr.
Represent. Theory, 2 (1999), 107–135.

[4] Siegel, S.F. and Witherspoon, S.W., The Hochschild cohomology ring of a group
algebra, Proc. London Math. Soc., 79 (1999), 131–157.

Received March 10, 2009
Accepted July 3, 2009

Technical University
Department of Mathematics
Str. C. Daicoviciu Nr. 15

400020 Cluj-Napoca, Romania
E-mail: Constantin.Todea@math.utcluj.ro


