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COMPUTATIONS OF HEEGAARD FLOER
HOMOLOGY GROUPS
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Abstract. After reviewing basic concepts and constructions of (the hat-version
of) Heegaard Floer homology groups of closed 3–manifolds, we show a way to
compute these groups in associated (extended) grid diagrams.
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1. INTRODUCTION

Heegaard Floer invariants of 3– and 4–manifolds, knots in 3–manifolds and
contact structures on 3–manifolds have played central role in the resolutions
of many important problems of low dimensional topology. In the present
note we focus on the developement of computations of (the hat version of)
Heegaard Floer homology groups ĤF of closed oriented 3–manifolds. These
invariants (among further versions of the theory, not discussed in these notes)
were introduced by Peter Ozsváth and Zoltán Szabó in their seminal paper
[7]. The definition of the invariants rests on simple 3–dimensional notions
(most notably on the theory of Heegaard decompositions and diagrams), and
fairly advanced techniques of symplectic topology (the concept of Lagrangian
Floer homology). While the 3–dimensional background is rather combinato-
rial, Lagrangian Floer homology theory requires the study of moduli spaces of
holomorphic maps from the unit disk into high dimensional symplectic (and
therefore almost-complex) manifolds. The study of such moduli spaces, rest-
ing on Gromov’s seminal paper [2] and infinite dimensional global analysis,
leads to intricate complex geometry. In addition, the nature of the definition
of these moduli spaces (as solutions of a partial differential equation provided
by the ∂–operator) makes direct and explicite computations rather difficult.
Despite this complexity, beautiful and deep results were achieved by the use
of Heegaard Floer invariants.

In 2006 the work of Sarkar and Wang [10] provided a breakthrough in the
computational aspects of the theory: in their aforementioned paper it has been
shown that for specific Heegaard diagrams the Heegaard Floer group ĤF(Y )
of a closed, oriented 3–manifold Y can be computed in a purely combinatorial
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manner. Diagrams with similar properties were found in [5], and in [6] it
has been shown that (the appropriate stable version of) the hat-version of
Heegaard Floer homology is a purely combinatorial theory.

After a brief review of the 3–dimensional and the symplectic topological
background in Section 2, we give the definition of the hat-version of Heegaard
Floer homology groups in Section 3. Nice diagrams will be discussed in Sec-
tion 4, and finally we give a simple computational scheme (resting on the
branched cover construction) for the homologies in Section 5.

2. BACKGROUND

2.1. Heegaard decompositions and diagrams of 3–manifolds. Suppose
that Y is a closed, oriented, smooth 3–dimensional manifold. It is a standard
fact (and follows, for example, from the existence of a Morse function, or a
triangulation on Y ) that Y admits a Heegaard decomposition U = (U0, U1, Σ),
i.e.,

Y = U0 ∪Σ U1,

where U0, U1 are genus-g handlebodies and Σ = ∂U0 = −∂U1 is a genus-g sur-
face (the Heegaard surface of the decomposition). This simply means that Y
can be given by gluing two genus-g handlebodies together along their (diffeo-
morphic) boundaries. For example, the 3–sphere S3 can be decomposed as the
union of two disks, giving a genus-0 Heegaard decomposition S, and also as the
union of the solid unknotted torus and its complement, providing the standard
toric Heegaard decomposition T of S3. By taking the connected sum point on
the Heegaard surfaces Σi, the Heegaard decompositions Ui = (U i

0, U
i
1, Σi) of Yi

(i = 1, 2) provide a Heegaard decomposition U = (U1
0 \U2

0 , U1
1 \U2

1 , Σ1#Σ2) of
the connected sum Y = Y1#Y2. The connected sum of a Heegaard decomposi-
tion U with the standard toric decomposition T of S3 is called the stabilization
of U. The following theorem is of fundamental importance in our discussions.

Theorem 2.1 (Reidemeister, Singer [9, 11]). Two Heegaard decompositions
U1 and U2 of the same 3–manifold Y admit common stabilization.

Next we would like to give a simple presentation of a genus-g handlebody
U. To this end, suppose that α = {α1, . . . , αk} is a collection of disjoint,
embedded simple closed curves in Σ of genus g. If dim〈[αi]ki=1〉 = g (in the
first homology H1(Σ; Z2)) then α determines a unique handlebody (unique up
to homeomorphism restricting to the identity on the boundary Σ) for which αi

are compressible, that is, bound embedded disks in the handlebody. In fact, by
attaching 3–dimensional 2–handles to Σ× [0, 1] along the αi, and then capping
off the resulting S2–boundaries with (k − g + 1) copies of D3 we recover the
handlebody U with the above property.

Suppose now that α1, α2, α
′
1 ⊂ Σ are disjoint embedded simple closed curves

bounding a pair-of-pants (i.e. a three-punctured sphere) in Σ which is disjoint
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from all the other α–curves. In this case {α′
1, α2} is called the result of the

handleslide of α1 over α2. The significance of this operation follows from

Theorem 2.2. The curves α = {α1, . . . , αk} and α′ = {α′
1, . . . , α

′
k} de-

termine the same handlebody if and only if α can be transformed to α′ by a
sequence of isotopies and handleslides.

A Heegaard diagram (Σ,α, β) determines a Heegaard decomposition U0 ∪Σ

U1 (by taking U0 given by (Σ,α) and U1 by (Σ, β)), and through the Heegaard
decomposition therefore (Σ, α, β) determines a 3–manifold Y = U0 ∪Σ U1. In
the following we will always assume that our Heegaard diagrams are balanced,
that is, |α| = |β|.

Definition 2.3. Suppose that (Σ, α,β) is a (balanced) Heegaard diagram
of Y , where Σ is of genus g and |α| = k. Suppose that the set of points
w = {w1, . . . , wk−g+1} ⊂ Σ − α − β satisfies that

• each component of Σ − α contains a unique wi, and
• each component of Σ − β contains a unique wj .

Then (Σ, α, β,w) is a multi-pointed Heegaard diagram for the 3–manifold Y .
The elements of w are the basepoints of the diagram.

Examples 2.4. • Suppose that α1 and β1 are two simple closed curves in
S2 intersecting each other in exactly two points. Let w1, w2 be two points
in two domains which do not share sides. The result is the (once stabilized)
standard spherical Heegaard diagram S1 = (S2, α1, β1, {w1, w2}) of S3.

• Suppose that the torus T 2 is presented as the identification of the top–
bottom and left–right sides of a square in the plane. Then n horizontal and
n vertical segments in the square close up to n α– and n β–curves, providing
a genus-1 Heegaard diagram for the standard toric Heegaard decomposition
T of the 3–sphere S3. Placing one wi in each row in such a manner that
also each column has a single wj , we get a multi-pointed Heegaard diagram
(T 2, α, β,w) for S3. For n = 1 the resulting Heegaard diagram (T 2, α1, β1, w1)
will be denoted by T1.

• Notice that if we place a further point zi in each row of the n–pointed
toric Heegaard diagram of S3 in such a manner that each column also contains
a unique zj (only in squares not containing wi’s), we specify a link (multi-
component knot) in S3. Indeed, connect the wi and the zj in each column
by vertical intervals, and then connect the points wp and zq in each row by
horizontal intervals. Whenever a vertical and a horizontal segment would
meet, apply the convention that the vertical line segment passes over the
horizontal one. In this way we get a link L in S3, with the property that
the horizontal intervals are in one handlebody, while the vertical intervals
comprising L are in the other handlebody of the standard toric Heegaard
decomposition of S3. The link L intersects the toric Heegaard surface T 2

exactly in the points wi and zj . The above presentation of L is called a
grid presentation, and it is not hard to see that any link in S3 admits a grid
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presentation: consider the modification of an arbitrary projection of L such
that the result contains only horizontal and vertical segments, and the vertical
segments pass over the horizontal ones.

The following definition (together with the concept of isotopies and han-
dleslides) will play a crucial role in understanding the relation among Heegaard
diagrams representing diffeomorphic 3–manifolds.

Definition 2.5. • A type-g stabilization of a multi-pointed Heegaard dia-
gram (Σ,α, β,w) is the connected sum of it with the standard once-pointed
toric diagram T1 of S3, where the connected sum is taken in domains con-
taining basepoints (and only one of the two basepoints in the connect-sum
domains is kept).

• A type-b stabilization of a multi-pointed Heegaard diagram (Σ, α, β,w) is
the connected sum of it with the standard spherical diagram S1 of S3, where
the connected sum is taken in domains containing basepoints (and only one
of the two basepoints in the connect-sum domains is kept).

With the above definition at hand, we can state the main result of this
subsection:

Theorem 2.6. • If two Heegaard diagrams differ by isotopy, handleslide
or (type-g or type-b) stabilization then the diagrams represent diffeomorphic
3–manifolds.

• Suppose that (Σi, αi, βi,wi) (for i = 1, 2) are two multi-pointed Heegaard
diagrams of the 3–manifold Y . Then (Σ1, α1, β1,w1) can be transformed into
(Σ2, α2, β2,w2) by a finite sequence of isotopies, handleslides and (type-g and
type-b) stabilizations and their inverses.

In the light of this result, a 3–manifold invariant can be defined by con-
structing an invariant of multi-pointed Heegaard diagrams which does not
change under isotopies, handleslides and (type-g and type-b) stabilizations.
This is exactly the line of reasoning we will adapt in the next section. Before
defining the 3–manifold invarian ĤFst, however, we will very briefly review the
general concept of Lagrangian Floer homologies.

2.2. Lagrangian Floer homology. Suppose that X2n is a smooth, oriented
even–dimensional manifold, and ω ∈ Ω2(X) is a smooth 2–form which is

• closed, i.e. dω = 0, and
• nondegenerate, that is, ωn > 0.

Then the pair (X, ω) is called a symplectic manifold and ω a symplectic form.
A submanifold L ⊂ X of dimension n with the property that ω|L = 0 is called
a Lagrangian submanifold of (X, ω).

Suppose now that we have two Lagrangian submanifolds L1, L2 ⊂ (X, ω)
intersecting each other transversally. In its simplest version (and under the
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favourable circumstances indicated in Remarks 2.7), Lagrangian Floer homol-
ogy associates a chain complex, and hence a homology theory HF(L1, L2) to
(X, ω,L1, L2). The definition of this chain complex proceeds as follows.

Assume first of all that L1 ∩L2 is finite, and consider the finite dimensional
Z2 vector space CF(L1, L2) generated by the intersection points L1∩L2. Let J
be an almost-complex structure on X, that is, a linear bundle map J : TX →
TX satisfying J2 = −IdTX . Assume furthermore that J is compatible with
ω, meaning that ω(Jv1, Jv2) = ω(v1, v2) and ω(v, Jv) > 0 for all v1, v2 ∈ TX
and 0 6= v ∈ TX. Let D denote the unit complex disk {z ∈ C | zz ≤ 1}.

Define the boundary map

∂ : CF(L1 ∩ L2) → CF(L1 ∩ L2)

as follows. Fix x,y ∈ L1 ∩L2 and consider the moduli space Mxy of holomor-
phic maps

u : D → X

with the boundary conditions
• u(i) = x, u(−i) = y,
• u({z ∈ ∂D | Re z ≥ 0}) ⊂ L1 and u({z ∈ ∂D | Re z ≤ 0}) ⊂ L2.

The automorphism group of D fixing i and −i is isomorphic to R; let the mod
2 number of 0–dimensional components of the factor Mxy/R be denoted by
nxy. Then the boundary map is defined as

∂x =
∑

y∈L1∩L2

nxy · y.

With ∂ in place, we define the Lagrangian Floer homology of the pair
(L1, L2) as

HF(L1, L2) = H∗(CF(L1, L2), ∂) = ker ∂/Im ∂.

In order the above definitions to make sense, we need specific properties
of the symplectic manifold (X,ω) and the Lagrangians L1, L2. We will just
list these concerns and do not provide sufficient conditions under which these
hold.

Remarks 2.7. (a) In the definition we assumed that the intersection L1∩L2

is finite – this is usually a simple consequence of some compactness assumption
we make when applying the above scheme.

(b) To have smooth moduli spaces (with the expected dimensions predicted
by the index formula) we need to choose a sufficiently generic almost-complex
structure.

(c) In order to have a well-defined value for nxy we need some assumptions
which ensure that there are only finitely many 0–dimensional components of
the factor Mxy/R.

(d) We need to verify that the square ∂2 of the boundary operator vanishes,
i.e. we get that Im ∂ ≤ ker ∂. This delicate property of a Lagrangian theory
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(which is often not satisfied) ensured that (CF(L1, L2), ∂) is indeed a chain
complex, and hence the step of taking the homology does make sense.

(e) Under the appropriate conditions, the resulting homology theory admits
the following invariance feature: if L1 and L′

1 are Hamiltonian isotopic, then
the groups HF(L1, L2) and HF(L′

1, L2) are isomorphic.

3. HEEGAARD FLOER GROUPS

Suppose that (Σ, α, β,w) is a multi-puntured Heegaard diagram of the
closed, oriented 3–manifold Y . Consider the k–fold symmetric power Symk(Σ),
i.e. the factor of the k–fold power ×k

1Σ with the natural action of the sym-
metric group Sk on k letters. Although symmetric powers are typically not
manifolds, the symmetric power of a 2–dimensional surface is a smooth man-
ifold. In addition, it also admits a symplectic structure; according to [8] this
structure can be chosen to be the factor of a product structure on ×k

1Σ away
from the diagonal. The product of the α–curves (and similarly of the β–
curves) provides an embedded torus Tα (and a torus Tβ) of dimension k. It
is straightforward to check that these tori are Lagrangian submanifolds, and
since α and β intersect transversally, so do the tori Tα and Tβ . Before pro-
ceeding further in constructing the Heegaard Floer homology groups, we need
a few definitions regarding Heegaard diagrams.

Definition 3.1. Suppose that D = (Σ, α,β,w) is a multi-pointed Hee-
gaard diagram of the 3–manifold Y .

• A connected component Di of Σ−α−β is called an elementary domain.
Suppose therefore that Σ−α−β = ∪iDi. The formal linear combination D =∑

niDi (with ni ∈ Z) of elementary domains is a domain. Since an elementary
domain is a 2–dimensional submanifold-with-boundary of Σ, each Di defines a
2–chain, and hence each domain D defines a 2–chain in the Heegaard surface
Σ.

• The boundary ∂D is by definition the boundary of this 2–chain.
• Suppose that D is a domain and Di is an elementary domain. Then the

multiplicity of Di in D is simply the coefficient ni of Di in the formal linear
combination defining D.

• Let x and y denote two intesection points of Tα and Tβ . The set π2(x,y)
comprises of those domains D for which ∂D has the property that ∂(∂D∩α) =
y − x and ∂(∂D ∩ β) = x − y.

Notice that if u is a holomorphic map from D to X, then u naturally defines
a domain D(u) by taking the multiplicity of the elementary domain Di to be
equal to the intersection number u(D) ∩ ({di} × Symk−1(Σ)) for a point di ∈
Di. Since the almost-complex structure J can be chosen in such a way that
{di}× Symk−1(Σ) is J–holomorphic for all i, we get that D(u) is nonnegative
(i.e. ni ≥ 0 for all coefficients in D(u) =

∑
i niDi) once u is a holomorphic

map. Now we define the concept admissibility.
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Definition 3.2. The domain D in the multi-pointed Heegaard diagram D
is a periodic domain if D ∈ π2(x,x) = π2(x) for some x, that is, ∂D is the
union of complete α– and β–curves, and for all basepoints wi we have that
the multiplicity of the elementary domain containing wi is zero in D. The
multi-pointed Heegaard diagram D is admissible if for all nonzero periodic
domain P , its defining formal linear combination involves both positive and
negative coefficients.

Now the application of the Lagranian Floer homology scheme discussed in
Subsection 2.2 for (Symk(Σ), Tα, Tβ) (and with the requirement that u(D) ∩
({wi}×Symk−1(Σ) = ∅) provides a chain complex (ĈF(D), ∂) and a homology
theory, denoted by ĤF(D). In [7] it has been shown that for admissible an
multi-pointed Heegaard diagram the resulting Lagrangian Floer homology is
well-defined, and produces the Heegaard Floer homology group ĤF(D). In
order to state the precise result about the invariance of the resulting group,
we need two more definitions.

Definition 3.3. The pairs (V1, b1) and (V2, b2) of Z2 vector spaces Vi and
positive integers bi are equivalent if (with the assumption b1 ≥ b2) we have
that V1 = V2 ⊗ (Z2 ⊕ Z2)⊗(b1−b2). The equivalence class of the pair (V, b) will
be denoted by [V, b].

Definition 3.4. Suppose that D = (Σ, α, β,w) is an admissible multi-
pointed Heegaard diagram of Y . Define b(D) as the cardinality |w| of the
basepoint set, and take ĤFst(D) to be equal to [ĤF(D), b(D)].

Theorem 3.5 (Ozsváth–Szabó [7]). Suppose that D = (Σ, α, β,w) is an
admissible multi-pointed Heegaard diagram of the closed, oriented 3–manifold
Y . Then the associated Lagrangian Floer homology ĤF(D) is well-defined. For
two admissible diagrams D1 and D2 of Y the resulting homologies ĤF(D1) and
ĤF(D2) satisfy

[ĤF(D1), b(D1)] = [ĤF(D2), b(D2)],

hence the stabil Heegaard Floer homology ĤFst(Y ) = [ĤF(D), b(D)] of Y (for
some admissible diagram D) is a diffeomorphism invariant of Y .

Remarks 3.6. • The proof of the theorem relies on the application of
Theorem 2.6. The effect of stabilizations can be determined in a fairly simple
manner. It has been shown in [8] that both isotopies and handleslides induce
Hamiltonian isotopies on the corresponding tori Tα or Tβ , hence the generic
property of Lagrangian Floer homologies being invariant under Hamiltonian
isotopies (cf. Remarks 2.7) implies that the diagrams related by isotopy or
handleslide give rise to equal stable Heegaard Floer groups.

• In the original version of the definition of Heegaard Floer homologies
(as it is given in [7]) the authors considered only once-punctured diagrams,
resulting the groups ĤF without the stable property. Also, the groups were
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equipped with many extra structures (a spinc grading, and a homological
grading), and further variants of the groups were defined (which are modules
over polynomial rings rather than Z2 vector spaces). These constructions led
to 4–manifold invariants and provided the basis of many striking new results
in low dimensional topology. In the present note we chose to discuss the stable
hat-version because of its simplicity and computability.

4. NICE DIAGRAMS

The computation of the boundary map ∂ is rather complicated in general.
It was the crucial observation of Sarkar and Wang that for specific Heegaard
diagrams ∂ can be computed in a fairly simple combinatorial way.

Definition 4.1. Suppose that D is a multi-pointed Heegaard diagram of
Y .

• An elementary domain Di is a 2n–gon if Di is simply connected and has
2n intersection points on its boundary ∂Di. For n = 1 we say that Di is a
bigon, for n = 2 it is a rectangle.

• We say that D is nice if for every elementary domain Di in the diagram
either Di contains a basepoint, or Di is a bigon, or Di is a rectangle.

Definition 4.2. Fix a multi-pointed Heegaard diagram D, and consider
two intersection points x and y. A domain D ∈ π2(x,y) is an embedded
2n–gon if

• in the formal linear combination D =
∑

niDi all coefficients are either
0 or 1,

• the union of the closures of Di with ni = 1 is a simply connected
subspace of Σ, having exactly 2n intersection points on its boundary,
and

• at each intersection point on ∂D exactly one of the four quandrants
meeting at that point have multiplicity 1 and all the others have mul-
tiplicity 0.

As before, for n = 1 the 2n–gon is also called a bigon, while for n = 2 it
is a rectangle. The 2n–gon is empty if none of the Di with ni = 1 contain
basepoints, and at any coordinate xi of x (and yj of y) at most one of the
quadrant meeting at xi (or yj) has multiplicity 1.

The following simple property of a nice diagram will turn out to be very
useful later.

Lemma 4.3. Suppose that D is a nice diagram. If αi is an α–curve in
the diagram, then on either side of this curve there is an elementary domain
containing a basepoint.

Proof. In fact, if on one side there is no such elementary domain, then
either all elementary domains on this side of αi are rectangles (which implies
that there is a parallel α–curve αj determining an annullar component with
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no basepoint), or there are two bigons and some rectangles, in which case αi

is the boundary of a disk-component of Σ − α having no basepoint. Since
every component in a multi-punctured Heegaard diagram contains a (unique)
basepoint, we reached a contradiction. �

Lemma 4.4. A nice diagram is admissible.

Proof. For a periodic domain P we need that ∂P is a union of complete α–
and β–curves. Since next to every curve in the boundary there is a basepoint,
and there the multiplicity of P is zero, we get that P = 0, concluding the
proof. �

Recall that in the definition of the Heegaard Floer groups an almost-complex
structure J must be fixed, and then we can consider the moduli space of
holomorphic maps with the prescribed boundary values. The number of such
holomorphic representatives typically depends on the chosen almost-complex
structure. In a nice diagram, however, there is no such dependence. (The
reason is that in nice diagrams – because of purely topological reasons – there
are no Maslov index 0, nonnegative domains.) The following result of Sarkar
and Wang provides a combinatorial description of ∂ in nice diagrams.

Theorem 4.5 (Sarkar–Wang [10]). Suppose that D is a nice diagram, and
x,y ∈ Tα ∩ Tβ are two intersection points. Then nxy defined using the factor
of the moduli space of holomorphic disks connecting x and y is equal (mod 2)
to the number of empty embedded bigons and rectangles connecting x and y in
the diagram.

Remark 4.6. The proof of the above theorem relies on the fact that using a
nice diagram any holomorphic map encountered in the definition of ∂ gives rise
to an empty bigon or rectangle, and conversely, an empty bigon or rectangle
admits a unique holomorphic representative in Mxy/R. All the finiteness
concerns listed in Remark 2.7 are automatically taken care of in a nice diagram.
For example, the proof of ∂2 = 0 is an exercise resting on some simple planar
geometry, cf. [6].

The above theorem shows that having a nice diagram for a 3–manifold Y
makes the computation of the Heegaard Floer groups particularly convenient.
At this point, however, it is unclear, what class of 3–manifolds admit nice
Heegaard diagrams. According to a result of Sarkar and Wang [10], in fact,
having such a diagram is not a restriction on the 3–manifold:

Theorem 4.7 (Sarkar-Wang [10]). Any 3–manifold Y admits a nice Hee-
gaard diagram. In fact, if (Σ, α, β, w) is a once-punctured Heegaard diagram of
Y , then an appropriate sequence of isotopies and handleslides of the β–curves
turn it into nice.
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In the next section we will show a recipe for finding a nice (multi-pointed)
Heegaard diagram of a 3–manifold Y based on the branched cover construc-
tion, and also show how to get a simple description of the Heegaard Floer
chain complex from such a presentation.

5. ADAPTED DIAGRAMS

A smooth map f : X1 → X2 between the n–manifolds X1, X2 is a d–fold
branched cover if there is a codimension–2 submanifold N in X2 such that
over the complement X2 − N the map f is an ordinary d–fold covering map.
If N is minimal with this property, then it can be presented as f(B) = N ,
the image of the singular set B where f is not (locally) injective. The d–fold
cover over X2 −N can be given by the monodromy representation, which is a
homomorphism (defined up to conjugacy)

p : π1(X2 − N) → Sd,

where Sd is the symmetric group on d letters. The image of p on the meridians
of N determine the structure of the cover; if all meridians are mapped to
transpositions, the branched cover is called simple. In the following we will
only consider double and simple triple branched covers. Double branched
covers are much easier to handle from our point of view, so we start our
discussion with such covers. On the other hand, not every 3–manifold admits
a double branched cover presentation along a link in S3. According to a famous
result of Hilden and Montesinos [3, 4] every 3–manifold can be presented as a
simple triple branched cover of S3. We will therefore extend the constructions
found for the double branched covers to the case of simple triple branched
covers.

5.1. Double branched covers. For an alternate description of the double
branched cover construction, let N ⊂ X2 be a codimension-2 submanifold,
and let L → X2 denote the line bundle with c1(L) = PD([N ]) ∈ H2(X2; Z).
If c1(L) is divisible by 2 in H2(X2; Z), and 2a = c1(L) then for the line bundle
K with c1(K) = a we have K⊗K = L. Take a section σ of L with σ−1(0) = N
and let X1 = {qx ∈ K | qx ⊗ qx = σ(x)} for all x ∈ X2. The restriction of the
bundle map to X1 ⊂ K then provides a double branched cover f : X1 → X2

branched along N . Notice that the construction depends on the choice of
a ∈ H2(X2; Z) satisfying 2a = c1(L). For X2 = S3 there is no 2–torsion in the
second cohomology (in fact, that group is trivial), hence the double branched
cover of S3 along a link is unique. (If PD([N ]) is not divisible by two in
H2(X2; Z), there is no double branched cover of X2 with branched set N .)

So consider a link L ⊂ S3, and take Y to be the double branched cover of
S3 branched along L. Since the meridians generate π1(S3 − L), and they are
all mapped to the single nontrivial element of S2 = Z2, the 3–manifold Y is
determined by L. In the following we will produce a nice Heegaard diagram
for Y and compute the Heegaard Floer homology of Y using that particular
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diagram. To this end, put the branch set L in a grid diagram, as it is discussed
in Examples 2.4. Suppose that the result is an n × n grid. For every annular
region between two neighbouring α–curve αi and αi+1 put a new curve αi+ 1

2
,

which is parallel to the boundaries but separates the two points zi and wj .
(These will be the new curves, the other ones are the old curves.) Add the
similar β–curves. The grid together with the new curves will be referred to
as the extended grid. When starting with an n × n grid, the result will be of
dimension 2n × 2n.

Theorem 5.1. The pull-back of the extended grid diagram provides a Hee-
gaard diagram D for Y which has only octagons and rectangles as elementary
domains. By placing a basepoint in each octagon, we get a nice Heegaard
diagram for Y .

Proof. The addition of the new curves turns the grid presentation of L into
a multi-pointed toric Heegaard diagram of S3, since the baspoints which previ-
ously shared a component now became separated. Denote the toric Heegaard
diagram of S3 defined by the extended grid by Tgrid. It is easy to see that
the double branched cover of the solid torus along the n arcs of L falling into
this handlebody is a handlebody of genus n + 1. The old α–curves in the
grid bound disks disjoint from the branch link L, therefore an old curve lifts
to two disjoint copies of circles in the 3–manifold, both bounding disk in the
appropriate handlebody. A new curve bounds a disk in S3 which intersects the
branch locus in a single point, hence a new curve lifts to a single component,
still bounding a disk in the handlebody (since the double branched cover of a
disk branched in a point is a disk again).

In conclusion, with considering the pull-back we get 3n disjoint α– (and sim-
ilarly 3n disjoint β–) curves in the genus-(n+1) surface, providing a Heegaard
diagram D of Y . The components of T 2 − α in the extended grid are all an-
nuli, containing unique basepoints. Their inverse images are all pair-of-pants,
hence the 3n α–curves (and similarly the 3n β–curves) provide a pair-of-pants
decomposition of the Heegaard surface Σ of the diagram D. Notice that since
the f–image of any of the α–curves in D is homologically essential in the torus,
all α–curves (and similarly all β–curves) in D are homologically essential. An
elementary domain in D is clearly the inverse image of an elementary domain
of the toric diagram Tgrid. Therefore an elementary domain Di of D either
covers a rectangle of Tgrid which contains no basepoint, in which case Di is
also a rectangle, or it covers an elementary domain with a basepoint, in which
case Di is an octagon. Since each pair-of-pants component contains a unique
octagon, by placing the basepoints into them, we get a nice diagram. �

Definition 5.2. A Heegaard diagram of Y given by the aid of a double
branched cover as above is called an adapted diagram.

Next we would like to understand the intersection points and the empty
rectangles of the adapted diagram D when working only in the extended grid
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downstairs. To this end, fix a point P in the torus, which is an intersection
of an old α– and an old β–curve α1 and β1 in Tgrid. Cut the torus open
along these curves and get a square in the plane. Connect the two branch
points in an annular old α–component with an arc `b which is disjoint from
the chosen β1. (We assume that these line segments `b avoid all intersection
points.) Recall that over every point of the torus (except the basepoints z and
w) there are two points of the Heegaard surface Σ ⊂ Y . We chose the arcs `b

to handle the two sheets of the double cover away from z and w: consider a
point u ∈ T 2 − z − w and choose one of its inverse images in Σ. By lifting a
path from u to any other v ∈ T 2 − z−w avoiding ∪b`b we uniquely determine
one of the two points of Σ which map to v. For another path with the same
property the result will be the same, since a closed loop in T 2 −α1 −β1 −∪b`b

encircles an even number of branch points, and hence the lift of a closed loop in
T 2−α1−β1−∪b`b is a closed loop in Σ. This convention will help us handling
the relation for points of Σ to be on the same sheet. Indeed, by fixing one
point of Σ (out of the two) over P = α1 ∩ β1, we can select one inverse image
for any intersection point x in the grid: connect P with x in T 2−α1−β1−∪b`b

and lift this path starting at the chosen point over P ; the endpoint will be
independent of the chosen path, and provides an equivalence class of points of
Σ which we regard to be one of the sheets. With these preparations, now we
are ready to identify the generators and the differential of (ĈF(D), ∂) down in
the extended grid.

P
Fig. 5.1 – An example of an extended grid diagram. The heavy lines correspond to old α–
and β–curves, while the lighter ones are the new curves. The branch points are symbolized
by circles, and the dashed lines show the arcs `b connecting the basepoints. The lower left

corner is P , the lines passing through it are the chosen curves α1 and β1.
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The generators. Associate two symbols q± to every intersection point q (of
the α– and β–curves) in the extended grid. For two points q, q′ which are
either in the same vertical or in the same horizontal line, define vqq′ as the
intersection number of the joining line segment with ∪b`b.

Definition 5.3. We define the set G of generators as the set of unordered
3n–tuples x = {xε1

1 , . . . , xε3n
3n } of intersection points as follows

(1) for all i the symbol xi stands for an intersection point in the extended
grid and εi ∈ {±1} is a sign;

(2) every new α– and β–curve in the extended grid admits a unique co-
ordinate of x;

(3) every old α– and β–curve in the extended grid admits exactly two
coordinate of x;

(4) if xεi
i and x

εj

j are two coordinates of x on the same old α–curve then
εi · εj = −(−1)vxixj , and

(5) if xεi
i and x

εj

j are two coordinates of x on the same old β–curve then
εi · εj = −(−1)vxixj

Remark 5.4. The requirements in (4) and (5) ensure that the two points
xεi

i and x
εj

j are on two distinct components of the inverse image of an old
curve.

Proposition 5.5. The set of intersection points Tα ∩ Tβ of the adapted
diagram D for Y is in 1-1 correspondence with the set G of generators defined
above.

Proof. Indeed, consider an element x ∈ Tα ∩ Tβ. By definition, x has a
coordinate from each α– and each β–curve in D. Consider the image of the
coordinates of x under the branched cover map f (and still denote the resulting
f(x) by x). Since the inverse image of a new curve is connected, we get a single
coordinate on each new curve. Since the inverse image of an old curve has two
components in D, we get two coordinates on each old curve. As it is pointed
out above, conditions (4) and (5) of Definition 5.3 exactly describe the fact
that the two coordinates are on different components of the inverse image of
the old curve. �

Therefore the generators described above serve as generators of the Hee-
gaard Floer chain complex ĈF(D).

The differential. Suppose that x ∈ G is a generator. Next we define a
differential ∂′ as

∂′x =
∑
y∈G

r(x,y) · y,

where r(x,y) = |Recto(x,y)| mod 2, and Recto(x,y) denotes the set of empty
rectangles connecting x and y, and whose definition will be given presently.
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First we define Rect(x,y) (the set of rectangles connecting x and y), and
Recto(x,y) will be a subset of Rect(x,y).

First of all, Rect(x,y) = ∅ unless x and y differ exactly at two coordinates.
Suppose now that x and y differ at the ith and jth coordinate, where the

coordinates are (xεi
i , x

εj

j ) and (yε′i
i , y

ε′j
j ), resp. If the corresponding four points

(xi, yi, xj , yj) are not all distinct, then we define Rect(x,y) = ∅. If the four
points (xi, yi, xj , yj) are all distinct, then they determine two rectangles R1

and R2 in the extended grid diagram: consider those rectangles in the torus
which have these four points as vertices (there are four such on the torus), and
select those two for which the surface orientation induces the orientation on the
horizontal (α–) arcs the direction from the x–coordinate to the y–coordinate.

For the various cases we discuss whether the rectangle is in Rect(x,y) and
whether it is empty in a case-by-case basis. In case (A) (shown by Figure 5.2)

Fig. 5.2 – Various squares in the extended grid diagram: case (A).

we require

Condition 5.6. (1) εi = (−1)vxiyi ε′i, εj = (−1)vxjyj ε′j , εi = (−1)vxiyj ε′j and
εj = (−1)vyixj ε′i and

(2) the rectangle is empty, that is, it does not contain any branch point zi

or wj and a further property is satisfied: the line segments `b partition the
rectangle into smaller domains, and each gets a sign by an alternating fashion,
where the domains containing points among the vertices xi, xj , yi, yj have the
sign ε of the vertex. If there is a further coordinate k with xk = yk in the
rectangle, then for r ∈ Recto(x,y) we require the exponent εk of xk to have
the opposite sign of the smaller domain it sits in.

(These requirements imply that (i) the rectangle in the grid is the projection
of a rectangle in Σ ⊂ Y and (ii) in Σ the corresponding rectangle does not
contain a basepoint or further coordinates of x and y, that is, it is empty.)
This finishes the list of properties we require from r to be in Recto(x,y) in
case (A).

For case (B) (given by Figure 5.3) the conditions are changed a little bit: For
the horizontal segments we keep the old conditions (i.e., for relations between
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Fig. 5.3 – Various squares in the extended grid diagram: case (B).

signs of xi, yj , and between yi, xj). For the vertical ones, however, we need
to modify the condition slightly: if xi and yi are on an old α–curve then the
condition is the same as before, while in case these points are on a new α–
curve, the relation is replaced by its opposite: εi = −(−1)vxiyi ε′i. The exact
same modification applies for the pair yj , xj . For case (C) (of Figure 5.4)
we change the roles of horizontal and vertical in the above modification, and
finally for case (D) (as shown by Figure 5.5) we apply the modification for
both the horizontal and vertical segments.

Fig. 5.4 – Various squares in the extended grid diagram: case (C).

With this definition at hand, since the set G of generators has been identified
with Tα ∩ Tβ , we get a map

∂′ : ĈF(D) → ĈF(D).

The content of the next proposition is that this is exactly the differential
definining the Heegaard Floer groups.

Proposition 5.7. The map ∂′ defined above using only the combinatorics
of the extended grid is equal to the boundary map ∂ of the chain complex
defininig the Heegaard Floer homology group ĤF(D).
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Fig. 5.5 – Various squares in the extended grid diagram: case (D).

Proof. Recall that the boundary map ∂ (although it is defined using holo-
morphic geometry) can be computed by counting the empty bigons and rectan-
gles connecting intersection points in D. Since D contains only rectangles and
octagons (and all octagons admit basepoints), we need to identify the empty
rectangles of D connecting generators with objects down in the extended grid.

We only need to show that an empty rectangle in D projects injectively to
an element encountered above in the extended grid. The fact that all such
projections are considered by the above description is rather simple.

Suppose therefore that D is an empty rectangle in D with four corner points
P1, P2, P3, P4. The map f is obviously injective on the sides of the rectangle:
suppose f is not injective on the side connecting, say, P1 and P2, and assume
first that P1 is connected to P2 on an old curve. Since f is a bijection between
one of the old curves in Y mapping to the old curve in the toric diagram of S3,
this means that when passing from P1 to P2 we use the entire old curve. On the
other hand, any curve contains a basepoint on its either side (cf. Lemma 4.3),
hence the noninjectivity contradicts the emptyness of D. Similarly, if f is not
injective on the side connecting P1 and P2 on a new curve, then it must pass
by an octagon on each side, having a basepoint in it, contradicting emptyness
again. This final argument completes the proof. �

5.2. Triple branched covers. It is a classic result in 3–dimensional topology
that any closed oriented 3–manifold Y can be presented as a simple 3–fold
branched cover of S3 [3, 4]. The manifold Y can be recovered from the branch
set L (which is a link in S3), together with the representation p : π1(S3−L) →
S3 defininig the triple cover over the complement of L. Since π1(S3 − L) is
generated by the meridians of L, and in a simple branched cover meridians are
mapped into transposition, we only need to record these images. Consider a
projection of L and imagine the basepoint of the fundamental group π1(S3−L)
of the complement is high over this plane; then along an arc of the projection
the meridian is constant, and the image of this meridian can be coded by
coloring the arc (by choosing, say (12) to be red, (23) to be white and (13) to
be green). (The result will be a three-colored projection of the link L.)
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Therefore the branched cover can be coded by a three-colored link projec-
tion, which we can assume to be in a grid. So as before, consider a grid pre-
sentation of L, that is, a genus-1 Heegaard decomposition of S3 with n parallel
α– and β–curves and with wi’s and zj ’s describing the link L. The branched
cover then naturally defines a Heegaard decomposition of Y by pulling back
the decomposition of S3, and the inverses of the α– and β–curves lift to a
Heegaard diagram of Y . Let the inverse image of the Heegaard torus of S3

be denoted by Σ ⊂ Y . Since Σ is a simple 3–fold branched cover of the torus
in 2n points, its genus can be easily computed to be equal to n + 1. Since an
α–curve in the torus ⊂ S3 bounds a disk in the corresponding handlebody, it
lifts to three disjoint copies in Σ (and similarly with the β–curves). An annu-
lar region Ai,i+1 between two neighbouring α–curves αi and αi+1 in the grid
diagram (containing two branch points) lifts to a two–component surface: one
of the components is an annulus and the other is a 4–punctured sphere. As we
did in the case of double branched cover, for every such annular α–region in
the grid we introduce a new α–curve αi+ 1

2
in the torus, which is parallel to the

two boundary α–curves of the annulus, but separates the two branch points.
It follows then that the inverse image of this new curve in Σ has two compo-
nents, one of these components is in the annular component of f−1(Ai,i+1),
while the other one (which double covers the newly chosen α–curve αi+ 1

2
) is

in the 4–punctured sphere component. As before, this α–curve separates the
4–punctured sphere into two pairs-of-pants.

Consider now the grid diagram for L together with these newly chosen
half–indexed α– and β–curves, i.e., take the extended grid as before. Notice
that both the α– and the β–curves partition the torus into 2n annuli, each
annulus containing a single branch point, resulting in a 2n–pointed Heegaard
diagram for S3. Every domain in this diagram is a rectangle. Consequently
in the branched cover every domain is either a rectangle or an octagon: over
a rectangle ⊂ T 2 ⊂ S3 with no basepoint we have three rectangles of D
representing Y , while over a rectangle ⊂ T 2 ⊂ S3 containing a basepoint the
Heegaard diagram D has a rectangle and an octagon. Notice that by putting
the basepoints into the octagons in Σ, this time we do not get a multi-pointed
Heegaard diagram, since not every component of the complement of the α–
(or β–) curves in D (representing Y ) will admit a basepoint in this way: the
annular components do not contain octagons, hence do not contain basepoints
either. To fix this problem, either we put in more basepoints, or we delete
some of the α– (and symmetrically the β–) curves. We choose to do this
latter, by applying the following two conventions: (a) for the new α–curves
we only consider one component of the inverse image of αi+ 1

2
in Σ, namely

the one which double covers the curve downstairs; (b) for the old α–curves
we only keep the two components of the inverse image of the right endcircle
of the annulus which are in the 4–punctured sphere, and do not consider the
one in the annular component. To do this step in a coherent way, we fix a
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starting old α– and β–circle α1 and β1 as before, and orient both. Using the
orientation, then every annular region has a rightmost end, and the choice
described above can be done coherently.

In conclusion, we get a multi-pointed Heegaard diagram of Y with the
properties that

• every domain in the decomposition is either a rectangle or an octagon,
and each octagon contains a basepoint; in particular, the decomposi-
tion is nice.

• the α– and β–curves both give a pair-of-pants decomposition of Σ;
• each pair-of-pants contains a unique octagon and a number of rectan-

gles;
• an α– and a β–curve either meets exactly once (in case at least one of

them is an old curve), or exactly twice (that can happen only if both
are new curves).

Notice that over an intersection point of αi and βj in the torus there are
either two or one intersection points in D, depending on the choice of the
deleted curves. We also lose the property that elementary domains in D map
to elementary domains down in the extended grid.

The three-coloring of the link L (which we disregarded up to this point)
induces a three–coloring of the annuli of the grid as follows. First disregard
the new curves. (Recall that we follow the convention that vertical lines pass
over horizontals in the link.) In a vertical annulus of the grid the line segment
of the link has the same color, let this color be associated to the annulus, and
to its right end circle.

The coloring of the horizontal annuli (determined by the old curves) is a
little more involved. We say that a conjugate of a color c1 by another color
c2 is c1 if c1 = c2, and is the third color c3 if c1 6= c2. (This rule is modeled
on the conjugation rule of transpositions in the symmetric group S3 on three
letters.) Now consider a row in the grid (after the torus has been cut open
along the chosen α1 and β1 and is considered as a square in the plane), and
take the color of a horizontal segment of L in this annulus. Then move to the
left end of the row (the annulus became after we cut it open along α1 and β1),
and whenever we cross a vertical segment of L, conjugate our color with the
color of this vertical segment. The resulting color will be the color of the row.
Now define the color of an old curve to be the color of the annulus left to it
(below it for the horizontal case), and for a new curve the color of it is the
color of the annulus containing it. Similarly, the color of a dashed cutting arc
`b is the color of its endpoint (or equivalently, the color of the column it lies
in).

Now take an intersection point x of an α– and a β–curves αi and βj in
the extended grid. The triple branch cover provides three points of Σ over x,
but since we deleted some of the α– and β–curves in the diagram upstairs,
not all three inverse images of x are intersection points in D. In fact, the
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color-convention is chosen so, that if the colors of αi and βj are the same, then
there are two intersection points over x, and if the two colors are different then
there is a unique intersection point upstairs.

The generators. Next we identify the set of intersection points of D down
in the extended grid. For any intersection point x of the curves αi and βj of
colors c1 and c2 in the extended grid designate either

• two point when c1 = c2, and the colors of the two points are the
remainig two colors c and c′, in notation xc and xc′ ; or

• one point if c1 6= c2, in which case the color of this point is the third
color, in notation xc3 .

For the intersection points xi, xj ∈ T 2 on the same α– (or β–) curves let Ixixj

denote the oriented interval joining xi with xj on the grid. We define the
set G of generators as the set of unordered 3n–tuples x = {xc1

1 , . . . , xc3n
3n } of

intersection points as follows
• for all i the symbol xi stands for an intersection point in the extended

grid and ci ∈ {R, W,G} is a color, which is allowed at that particular
intersection point;

• every new α– and β–curve in the extended grid admits a unique co-
ordinate of x;

• every old α– and β–curve in the extended grid admits exactly two
coordinates of x;

• if xci
i and x

cj

j are two coordinates of x on the same old α– or β–curve
then ci is distinct from the result of conjugating cj with all the colors
of the dashed lines `b intersecting the interval Ixjxi .

Lemma 5.8. Consider the adapted diagram D of Y corresponding to the
triple branched cover f : Y → S3 as above. Then the intersection points Tα∩Tβ

are in 1-1 correspondence with the elements of G.

Proof. As in the case of double branched covers, the additional requirements
above ensure that points with projection on the same old curve are in different
inverse images. �

Similarly to the double branched cover case, the differential can be also de-
scribed in terms of the extended grid (we leave to work out the details to the
reader). We note finally that if the 3–manifold Y is given by a surgery presenta-
tion then in [1] there is a simple algorithm which determines the three–colored
link along which the branched cover construction (with the coloring coding
the representation of the fundamental group of the complement) provides Y .
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[7] Ozsváth, P. and Szabó, Z., Holomorphic disks and topological invariants for closed
three-manifolds, Ann. of Math., 159 (2004) 1027–1158.

[8] Perutz, T., Hamiltonian handleslides for Heegaard Floer homology, Proceedings of
Gökova Geometry-Topology Conference 2007, pp. 15–35. GGT Gökova 2008.

[9] Reidemeister, K., Zur dreidimensionalen Topologie, Abh. Math. Semin. Hamb.
Univ., 9 (1933), 189–194.

[10] Sarkar, S. and Wang, J., An algorithm for computing some Heegaard Floer ho-
mologies, arXiv:math/0607777.

[11] Singer, J., Three-dimensional manifolds and their Heegaard diagrams, Trans. Amer.
Math. Soc., 35 (1933), 88–111.

Received November 16, 2009
Accepted December 7, 2009

Hungarian Academy of Sciences
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