PRE-SCHWARZIAN NORM ESTIMATES OF FUNCTIONS FOR A SUBCLASS OF STRONGLY STARLIKE FUNCTIONS

S. PONNUSAMY and S.K. SAHOO

Abstract

For normalized analytic functions f in the unit disk $\mathbb{D}=\{z \in \mathbb{C}$: $|z|<1\}$, we consider $$
\mathcal{S}^{*}(\alpha, \beta)=\left\{f: \frac{z f^{\prime}(z)}{f(z)} \prec\left(\frac{1+(1-2 \beta) z}{1-z}\right)^{\alpha}, z \in \mathbb{D}\right\},
$$ where $0<\alpha \leq 1$ and $0 \leq \beta<1$. There exists a close connection between Bloch functions and univalent functions. In this paper, we present an optimal, but not sharp, estimate of the Bloch semi-norm of the function $\log f^{\prime}$ for $f \in \mathcal{S}^{*}(\alpha, \beta)$. MSC 2010. Primary 30C45; Secondary 30C55, 33C05. Key words. Pre-Schwarzian derivative, univalent, starlike and strongly starlike functions, subordination.

1. INTRODUCTION

Let \mathcal{A} denote the class of functions f analytic in the unit disk $\mathbb{D}=\{z \in$ $\mathbb{C}:|z|<1\}$ with the normalization $f(0)=0=f^{\prime}(0)-1$ and $\mathcal{L U}$ denote the subclass of \mathcal{A} consisting of all locally univalent functions, namely, $\mathcal{L U}=\{f \in$ $\left.\mathcal{A}: f^{\prime}(z) \neq 0, z \in \mathbb{D}\right\}$. We may regard $\mathcal{L U}$ as a vector space over \mathbb{C}, not in the usual sense, but in the sense of Hornich operations (see [5, 7, 15]) and we define the norm of $f \in \mathcal{L U}$ by

$$
\|f\|=\sup _{z \in \mathbb{D}}\left(1-|z|^{2}\right)\left|\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right| .
$$

Here we note that the quantity $T_{f}:=f^{\prime \prime} / f^{\prime}$ is called the pre-Schwarzian derivative of f. This norm has significance in the theory of Teichmüller spaces (see e.g. [1]). The norm $\|f\|$ is nothing but the Bloch semi-norm of the function $\log f^{\prime}$ (see for example [12]). It is well known that $\|f\| \leq 6$ if f is univalent in \mathbb{D}, and conversely if $\|f\| \leq 1$ then f is univalent in \mathbb{D}, and these bounds are sharp (see [2]). Furthermore, $\|f\|<\infty$ if and only if f is uniformly locally univalent; that is, there exists a constant $\rho=\rho(f), 0<\rho \leq 1$, such that f is univalent in each disk of hyperbolic radius $\tanh ^{-1} \rho$ in \mathbb{D}, i.e. in each Appolonius disk

$$
\left\{w:\left|\frac{w-z}{1-\bar{z} w}\right|<\rho\right\}, \quad z \in \mathbb{D}
$$

[^0](see [15, 16]). The set of all f with $\|f\|<\infty$ is a nonseparable Banach space (see [15, Theorem 1]). For more geometric and analytic properties of f relating the norm, see [8]. Many authors have given norm estimates for classical subclasses \mathcal{S} of univalent functions (see $[4,6,9,10,11,13,17]$).

In addition, let \mathcal{H} denote the class of functions f analytic in the unit disk \mathbb{D} and \mathcal{H}_{a} be the subclass $\{f \in \mathcal{H}: f(0)=a\}$ of it, for $a \in \mathbb{C}$.

We say that a function $\varphi \in \mathcal{H}$ is subordinate to $\psi \in \mathcal{H}$ and write $\varphi \prec \psi$ or $\varphi(z) \prec \psi(z)$, if there is a function $\omega \in \mathcal{H}_{0}$ with $|\omega(z)|<1$ satisfying $\varphi=\psi \circ \omega$. Note that the condition $\varphi \prec \psi$ is equivalent to the conditions $\varphi(\mathbb{D}) \subset \psi(\mathbb{D})$ and $\varphi(0)=\psi(0)$ when ψ is univalent.

In this paper, we consider the subclass $\mathcal{S}^{*}(\alpha, \beta)$ of \mathcal{A} defined by

$$
\mathcal{S}^{*}(\alpha, \beta)=\left\{f \in \mathcal{A}: \frac{z f^{\prime}(z)}{f(z)} \prec h_{\alpha, \beta}(z) \equiv\left(\frac{1+(1-2 \beta) z}{1-z}\right)^{\alpha}\right\},
$$

for $0<\alpha \leq 1$ and $0 \leq \beta<1$.
Since functions in $\mathcal{S}^{*}(\alpha, \beta)$ belong to $\mathcal{S}^{*}(1,0) \equiv \mathcal{S}^{*}, \mathcal{S}^{*}(\alpha, \beta) \subsetneq \mathcal{S}$ for $0<$ $\alpha \leq 1$ and $0 \leq \beta<1$.

The class $\mathcal{S}^{*}(\alpha, \beta)$ has been studied by Wesołowski in [14]. With $0<\alpha \leq 1$ and $0<\beta<1$, we have

$$
h_{\alpha, \beta}\left(\mathrm{e}^{\mathrm{i} \theta}\right)=(\beta+\mathrm{i}(1-\beta) \cot (\theta / 2))^{\alpha}
$$

from which we easily see that the univalent function $h_{\alpha, \beta}(z)$ maps \mathbb{D} onto a convex domain bounded by the curve given by

$$
w=\left(\frac{\beta}{\cos \phi}\right)^{\alpha} \mathrm{e}^{\mathrm{i} \alpha \phi}, \quad-\pi / 2<\phi<\pi / 2,
$$

where ϕ and θ satisfy the relation $(1-\beta) \cot (\theta / 2)=\beta \tan \phi$. In particular, functions in the class $\mathcal{S}^{*}(\alpha) \equiv \mathcal{S}^{*}(\alpha, 0)$ are called the strongly starlike functions of order α; equivalently, $f \in \mathcal{S}^{*}(\alpha)$ if and only if $\left|\arg \left(z f^{\prime}(z)\right) / f(z)\right|<\pi \alpha / 2$, for $z \in \mathbb{D}$. Every strongly starlike function f of order $\alpha<1$ is bounded (see [3]). Further, this class of functions has been studied by many authors, for example Sugawa (see [13]). In the same paper Sugawa has presented the sharp norm estimate for $f \in \mathcal{S}^{*}(\alpha)$. The aim of this article is to generalize the result of Sugawa [13, Theorem 1.1] in the following form:

MAIN THEOREM. Let $0<\alpha<1$ and $0 \leq \beta<1$. If $f \in \mathcal{S}^{*}(\alpha, \beta)$, then

$$
\begin{equation*}
\|f\| \leq L(\alpha, \beta)+2 \alpha \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
L(\alpha, \beta)=\frac{4(1-\beta)(k-\beta)\left(k^{\alpha}-1\right)}{(k-1)(k+1-2 \beta)} \tag{2}
\end{equation*}
$$

and k is the unique solution of the following equation in $x \in(1, \infty)$:

$$
\begin{array}{r}
(1-\alpha) x^{\alpha+2}+\beta(3 \alpha-2) x^{\alpha+1}+\left[(1-2 \beta)(1+\alpha)+2 \beta^{2}(1-\alpha)\right] x^{\alpha} \\
-\alpha \beta(1-2 \beta) x^{\alpha-1}-x^{2}+2 \beta x=(1-\beta)^{2}+\beta^{2} . \tag{3}
\end{array}
$$

For $\alpha=1$, it is well known that $\|f\| \leq 6-4 \beta$ and equality holds if and only if $f(z)=\bar{\mu} \Phi(\mu z)$, where $\Phi(z)=z /(1-z)^{2(1-\beta)}$ and μ is a unimodular constant (see [17]). Moreover, if $\alpha=1$ as well as $\beta=0$, it is known that $\|f\| \leq 6$; and equality holds for the Koebe function $k(z)=z /(1-z)^{2}$. Now we shall prove the main theorem by using the method adopted by Sugawa [13].

2. PROOF OF THE MAIN THEOREM

Let $p(z)=P_{f}(z)=z f^{\prime}(z) / f(z)$ and f belong to the class $\mathcal{S}^{*}(\alpha, \beta)$. Then, by the definition, $p(z)$ is subordinate to the univalent function

$$
q(z)=\left(\frac{1+(1-2 \beta) z}{1-z}\right)^{\alpha}, \quad z \in \mathbb{D}
$$

and therefore, there exists an analytic function $\omega: \mathbb{D} \rightarrow \mathbb{D}$ with $\omega(0)=0$ such that

$$
\begin{equation*}
p=q \circ \omega=\left(\frac{1+(1-2 \beta) \omega}{1-\omega}\right)^{\alpha} . \tag{4}
\end{equation*}
$$

Let $F \in \mathcal{A}$ be the function with $P_{F}=q$, i.e.

$$
F(z)=z \exp \left(\int_{0}^{z} \frac{q(t)-1}{t} \mathrm{~d} t\right) .
$$

We split the proof into two cases. Assume first that $0 \leq \beta \leq 1 / 2$. Logarithmic differentiation of (4) yields that

$$
1+\frac{z f^{\prime \prime}}{f^{\prime}}-\frac{z f^{\prime}}{f}=\frac{2 \alpha(1-\beta) z \omega^{\prime}}{(1-\omega)(1+(1-2 \beta) \omega)}
$$

We thus have

$$
\begin{equation*}
T_{f}(z)=\frac{2 \alpha(1-\beta) \omega^{\prime}(z)}{(1-\omega(z))(1+(1-2 \beta) \omega(z))}+\frac{p(z)-1}{z} . \tag{5}
\end{equation*}
$$

By triangle inequality and Schwarz-Pick lemma, we obtain

$$
\begin{aligned}
\left|T_{f}(z)\right| & \leq \frac{2 \alpha(1-\beta)\left|\omega^{\prime}(z)\right|}{\left|1-2 \beta \omega(z)-(1-2 \beta) \omega^{2}(z)\right|}+\frac{|p(z)-1|}{|z|} \\
& \leq \frac{2 \alpha(1-\beta)\left(1-|\omega(z)|^{2}\right)}{\left(1-|z|^{2}\right)\left(|1-2 \beta \omega(z)|-(1-2 \beta)|\omega(z)|^{2}\right)}+\frac{|q(\omega(z))-1|}{|z|} \\
& \leq \frac{2 \alpha(1-\beta)\left(1-|\omega(z)|^{2}\right)}{\left(1-|z|^{2}\right)\left(1-2 \beta|\omega(z)|-(1-2 \beta)|\omega(z)|^{2}\right)}+\frac{|q(\omega(z))-1|}{|z|} \\
& \leq \frac{2 \alpha(1-\beta)(1+|\omega(z)|)}{\left(1-|z|^{2}\right)(1+(1-2 \beta)|\omega(z)|)}+\frac{|q(\omega(z))-1|}{|z|} .
\end{aligned}
$$

Using a similar argument, namely the triangle inequality (as we did in the denominator above), we see that

$$
\begin{aligned}
|q(z)-1| & =\left|\int_{0}^{z} q^{\prime}(t) \mathrm{d} t\right| \\
& =\left|\int_{0}^{z}\left(\frac{1+(1-2 \beta) t}{1-t}\right)^{\alpha} \frac{2 \alpha(1-\beta)}{(1-t)(1+(1-2 \beta) t)} \mathrm{d} t\right| \\
& \leq \int_{0}^{|z|}\left(\frac{1+(1-2 \beta) t}{1-t}\right)^{\alpha} \frac{2 \alpha(1-\beta)}{(1-t)(1+(1-2 \beta) t)} \mathrm{d} t \\
& =q(|z|)-1 .
\end{aligned}
$$

So, using this inequality and the fact $|\omega(z)| \leq|z|$, we get

$$
\begin{aligned}
\left|T_{f}(z)\right| & \leq \frac{2 \alpha(1-\beta)(1+|\omega(z)|)}{\left(1-|z|^{2}\right)(1+(1-2 \beta)|\omega(z)|)}+\frac{q(|\omega(z)|)-1}{|z|} \\
& \leq \frac{2 \alpha(1-\beta)(1+|z|)}{\left(1-|z|^{2}\right)(1+(1-2 \beta)|z|)}+\frac{q(|z|)-1}{|z|} \\
& =T_{F}(|z|),
\end{aligned}
$$

where the second inequality is strict provided $\omega(z) / z$ is not a unimodular constant. Therefore, we see that $\|f\| \leq\|F\|$.

Since

$$
\left(1-t^{2}\right) T_{F}(t)=\frac{2 \alpha(1-\beta)(1+t)}{1+(1-2 \beta) t}+\frac{1-t^{2}}{t}(q(t)-1) \rightarrow 2 \alpha \text { as } t \rightarrow 1^{-}
$$

the equality $\|f\|=\|F\|$ holds only if $\left|T_{f}\left(z_{0}\right)\right|=T_{F}\left(\left|z_{0}\right|\right)$ for some $z_{0} \in \mathbb{D}$. Hence we conclude that equality holds if $P_{f}(z)=q(\mu z)$ for some unimodular constant μ.

We next consider the case $1 / 2 \leq \beta<1$. If we use triangle inequality again without multiplying the factors in the denominator, we obtain

$$
|q(z)-1| \leq q(|z|)-1
$$

Now using the same argument as in the first case, we get

$$
\begin{aligned}
\left(1-|z|^{2}\right)\left|T_{f}(z)\right| & \leq \frac{2 \alpha(1-\beta)\left(1-\left|\omega^{2}(z)\right|\right)}{|1-\omega(z)||1+(1-2 \beta) \omega(z)|}+\frac{1-|z|^{2}}{|z|^{2}}(q(|\omega(z)|)-1) \\
& \leq \frac{2 \alpha(1-\beta)(1+|\omega(z)|)}{1+(1-2 \beta)|\omega(z)|}+\frac{1-|z|^{2}}{|z|}(q(|\omega(z)|)-1) \\
& \leq \frac{2 \alpha(1-\beta)(1+|z|)}{1+(1-2 \beta)|z|}+\frac{1-|z|^{2}}{|z|}(q(|z|)-1) \\
& =\left(1-|z|^{2}\right) T_{F}(|z|) .
\end{aligned}
$$

This shows that $\|f\| \leq\|F\|$ and the inequality is sharp (as in the argument of the previous case). Thus, it is enough to compute $\|F\|$. Now, we write

$$
L(\alpha, \beta)=\sup _{0<t<1} \frac{1-t^{2}}{t}(q(t)-1)=\sup _{x>1} g(x),
$$

where

$$
g(x)=\frac{4(1-\beta)(x-\beta)\left(x^{\alpha}-1\right)}{(x-1)(x+1-2 \beta)}
$$

with the substitution $x=[1+(1-2 \beta) t] /(1-t)$. Logarithmic derivative of $g(x)$ yields

$$
\frac{g^{\prime}(x)}{g(x)}=-\frac{h(x)}{(x-\beta)\left(x^{\alpha}-1\right)(x-1)(x+1-2 \beta)},
$$

where $h(x)$ is given by

$$
\begin{aligned}
h(x) & =(1-\alpha) x^{\alpha+2}+\beta(3 \alpha-2) x^{\alpha+1}+\left[(1+\alpha)(1-2 \beta)+2 \beta^{2}(1-\alpha)\right] x^{\alpha} \\
& -\alpha \beta(1-2 \beta) x^{\alpha-1}-x^{2}+2 \beta x-(1-\beta)^{2}-\beta^{2} .
\end{aligned}
$$

Differentiations give easily the following:

$$
\begin{aligned}
h^{\prime}(x) & =(1-\alpha)(\alpha+2) x^{\alpha+1}+\beta(3 \alpha-2)(\alpha+1) x^{\alpha} \\
& +\alpha\left[(1+\alpha)(1-2 \beta)+2 \beta^{2}(1-\alpha)\right] x^{\alpha-1} \\
& -\alpha \beta(\alpha-1)(1-2 \beta) x^{\alpha-2}-2 x+2 \beta \\
h^{\prime \prime}(x) & =(1-\alpha)(\alpha+2)(\alpha+1) x^{\alpha}+\alpha \beta(3 \alpha-2)(\alpha+1) x^{\alpha-1} \\
& +\alpha(\alpha-1)\left[(1+\alpha)(1-2 \beta)+2 \beta^{2}(1-\alpha)\right] x^{\alpha-2} \\
& -\alpha \beta(\alpha-1)(\alpha-2)(1-2 \beta) x^{\alpha-3}-2 \\
h^{\prime \prime \prime}(x) & =(1-\alpha)(\alpha+1)(\alpha+2) \alpha x^{\alpha-1} \\
& +\alpha \beta(3 \alpha-2)(\alpha+1)(\alpha-1) x^{\alpha-2} \\
& +\alpha(\alpha-1)(\alpha-2)\left[(1+\alpha)(1-2 \beta)+2 \beta^{2}(1-\alpha)\right] x^{\alpha-3} \\
& -\alpha \beta(\alpha-1)(\alpha-2)(\alpha-3)(1-2 \beta) x^{\alpha-4} \\
& =\alpha(1-\alpha) x^{\alpha-4} \phi(x),
\end{aligned}
$$

where $\phi(x)=(\alpha+1)(\alpha+2) x^{3}-\beta(3 \alpha-2)(\alpha+1) x^{2}-(\alpha-2)[(1+\alpha)(1-2 \beta)+$ $\left.2 \beta^{2}(1-\alpha)\right] x+\beta(1-2 \beta)(\alpha-2)(\alpha-3)$.

It follows that
$\phi^{\prime}(x)=3(\alpha+1)(\alpha+2) x^{2}+2 \beta(2-3 \alpha)(1+\alpha) x+(2-\alpha)\left[(1+\alpha)(1-2 \beta)+2 \beta^{2}(1-\alpha)\right]$
and

$$
\phi^{\prime \prime}(x)=6(\alpha+1)(\alpha+2) x+2 \beta(2-3 \alpha)(1+\alpha) .
$$

Since $\phi^{\prime \prime \prime}(x)=6(\alpha+1)(\alpha+2)>0, \phi^{\prime \prime}(x)$ is increasing for all $x>1$. So we have

$$
\phi^{\prime \prime}(x) \geq \phi^{\prime \prime}(1)=6 \alpha^{2}(1-\beta)+16 \alpha+12+4 \beta+2 \alpha(1-\beta)>0 .
$$

This implies that $\phi^{\prime}(x)$ is increasing for $x>1$ and so

$$
\phi^{\prime}(x) \geq \phi^{\prime}(1)=2(1+\alpha)(\alpha+2+2(1-\alpha \beta))+2 \beta^{2}(1-\alpha)(2-\alpha)>0
$$

So $\phi(x)$ is also increasing for $x>1$ and hence,

$$
\phi(x) \geq \phi(1)=4(1-\beta)(1+\alpha+\beta+\beta(1-\alpha))>0
$$

Therefore, $h^{\prime \prime \prime}(x)>0$ and so $h^{\prime \prime}(x)$ is increasing for $x>1$. Since $h^{\prime \prime}(x)$ is increasing in $(1, \infty)$ and

$$
h^{\prime \prime}(1)=-2 \alpha(1-\beta)[\alpha(1-\beta)+\beta]<0,
$$

we see that $h^{\prime \prime}(x)$ has a unique zero in $(1, \infty)$, say $x=x_{1}$. Since $h^{\prime}(1)=0$ and $h^{\prime}(x)$ is increasing on $\left(x_{1}, \infty\right)$ and decreasing on $\left(1, x_{1}\right)$, we obtain that $h^{\prime}(x)$ has a unique zero, say $x_{2}\left(x_{2}>x_{1}\right)$ in $(1, \infty)$. Since $h(1)=0$, by the same argument we conclude that $h(x)$ has a unique zero, say $k=k(\alpha, \beta)>x_{2}$ in $(1, \infty)$. Thus $h(x)<0$ in $(1, k)$ and $h(x)>0$ in (k, ∞), equivalently, $g^{\prime}(x)$ is positive for $x \in(1, k)$ and negative for $x>k$. This shows that $g(x)$ assumes its maximum at $x=k$ and hence we have (2). Since k is the zero of $h(x)$, it is the unique solution of the equation (3). Thus we have established (1).

REmARK 1. Here we calculate some bounds for $L(\alpha, \beta)$ and $k(\alpha, \beta)$ although these are not better estimates. Since $g(x)$ attains its maximum at $k>1$, we note that

$$
L(\alpha, \beta)=g(k)>\lim _{x \rightarrow 1^{+}} g(x)=2 \alpha(1-\beta)
$$

Finally we observe that $g(x)$ satisfies the second order differential equation

$$
A(x) g^{\prime \prime}(x)+B(x) g^{\prime}(x)+C(x) g(x)=0
$$

where

$$
\begin{aligned}
A(x)= & x(x-1)(x+1-2 \beta)(x-\beta)^{2} \\
B(x)= & 4 x(x-\beta)^{3}+(1-\alpha)(x-1)(x+1-2 \beta)(x-\beta)^{2} \\
& -2 x(x-1)(x+1-2 \beta)(x-\beta) \\
C(x)= & 2(1-\alpha)(x-\beta)^{3}-2 x(x-\beta)^{2} \\
& -(1-\alpha)(x-1)(x+1-2 \beta)(x-\beta)+2 x(x-1)(x+1-2 \beta)
\end{aligned}
$$

This observation is to justify the close connection between these bounds and special functions.

REFERENCES

[1] Astala, K. and Gehring, F.W., Injectivity, the BMO norm and the universal Teichmüller space, J. Analyse Math., 46 (1986), 16-57.
[2] Becker, J. and Pommerenke, Ch., Schlichtheitskriterien und Jordangebiete, J. Reine Angew. Math., 354 (1984), 74-94.
[3] Brannan, D.A. and Kirwan, W.E., On some classes of bounded univalent functions, J. London Math. Soc., 1(2) (1969), 431-443.
[4] Choi, J.H., Kim, Y.C., Ponnusamy, S. and Sugawa, T., Norm estimates for the Alexander transforms of convex functions of order alpha, J. Math. Anal. Appl., 303 (2005), 661-668.
[5] Hornich, H., Ein Banachraum analytischer Funktionen in Zusammenhang mit den schlichten Funktionen, Monatsh. Math., 73 (1969), 36-45.
[6] Kim, Y.C., Ponnusamy, S. and Sugawa, T., Geometric properties of nonlinear integral transforms of certain analytic functions, Proc. Japan Acad. Ser. A Math. Sci., 80 (2004), 57-60.
[7] Kim, Y.C., Ponnusamy, S. and Sugawa, T., Mapping properties of nonlinear integral operators and pre-Schwarzian derivatives, J. Math. Anal. Appl., 299 (2004), 433-447.
[8] KIm, Y.C. and Sugawa, T., Growth and coefficient estimates for uniformly locally univalent functions on the unit disk, Rocky Mountain J. Math., 32 (2002), 179-200.
[9] Kim, Y.C. and Sugawa, T., Norm estimates of the pre-Schwarzian derivatives for certain classes of univalent functions, Proc. Edinburgh Math. Soc., 49 (2006), 131-143.
[10] Okuyama, Y., The norm estimates of pre-Schwarzian derivatives of spiral-like functions, Complex Var. Elliptic Equ., 42 (2000), 225-239.
[11] Parvatham, R., Ponnusamy, S. and Sahoo, S.K., Norm estimates for Bernadi integral transforms of functions defined by subordination, Hiroshima Math. J., 38 (2008), 19-29.
[12] Pommerenke, Ch., Univalent Functions, Vandenhoeck \& Ruprecht, Göttingen, 1975.
[13] Sugawa, T., On the norm of the pre-Schwarzian derivatives of strongly starlike functions, Ann. Univ. Mariae Curie-Skłodowska, Sectio A, 52 (1998), 149-157.
[14] WesoŁowski, A., Certains results concernant la class $\mathcal{S}^{*}(\alpha, \beta)$, Ann. Univ. Mariae Curie-Skłodowska, Sectio A, 25 (1971), 121-130.
[15] Yamashita, S., Banach spaces of locally schlicht functions with the Hornich operations, Manuscripta Math., 16 (1975), 261-275.
[16] Yamashita, S., Almost locally univalent functions, Monatsh. Math., 81 (1976), 235240.
[17] Yamashita, S., Norm estimates for function starlike or convex of order alpha, Hokkaido Math. J., 28 (1999), 217-230.

Received June 13, 2008
Accepted November 23, 2008

Indian Institute of Technology Madras
Department of Mathematics
Chennai - 600 036, India
E-mail: samy@iitm.ac.in
E-mail: swadesh@iitm.ac.in

[^0]: The authors thank Prof. Parvatham for useful discussion on this topic and for bringing this problem to our attention.

