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PRE-SCHWARZIAN NORM ESTIMATES OF FUNCTIONS
FOR A SUBCLASS OF STRONGLY STARLIKE FUNCTIONS

S. PONNUSAMY and S.K. SAHOO

Abstract. For normalized analytic functions f in the unit disk D = {z ∈ C :
|z| < 1}, we consider

S∗(α, β) =


f :

zf ′(z)

f(z)
≺

„
1 + (1− 2β)z

1− z

«α

, z ∈ D
ff
,

where 0 < α ≤ 1 and 0 ≤ β < 1. There exists a close connection between Bloch
functions and univalent functions. In this paper, we present an optimal, but not
sharp, estimate of the Bloch semi-norm of the function log f ′ for f ∈ S∗(α, β).
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1. INTRODUCTION

Let A denote the class of functions f analytic in the unit disk D = {z ∈
C : |z| < 1} with the normalization f(0) = 0 = f ′(0) − 1 and LU denote the
subclass of A consisting of all locally univalent functions, namely, LU = {f ∈
A : f ′(z) 6= 0, z ∈ D}. We may regard LU as a vector space over C, not in
the usual sense, but in the sense of Hornich operations (see [5, 7, 15]) and we
define the norm of f ∈ LU by

‖f‖ = sup
z∈D

(1− |z|2)
∣∣∣∣f ′′(z)f ′(z)

∣∣∣∣ .
Here we note that the quantity Tf := f ′′/f ′ is called the pre-Schwarzian

derivative of f . This norm has significance in the theory of Teichmüller spaces
(see e.g. [1]). The norm ‖f‖ is nothing but the Bloch semi-norm of the
function log f ′ (see for example [12]). It is well known that ‖f‖ ≤ 6 if f is
univalent in D, and conversely if ‖f‖ ≤ 1 then f is univalent in D, and these
bounds are sharp (see [2]). Furthermore, ‖f‖ <∞ if and only if f is uniformly
locally univalent; that is, there exists a constant ρ = ρ(f), 0 < ρ ≤ 1, such
that f is univalent in each disk of hyperbolic radius tanh−1 ρ in D, i.e. in each
Appolonius disk {

w :
∣∣∣∣ w − z1− z̄w

∣∣∣∣ < ρ

}
, z ∈ D
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(see [15, 16]). The set of all f with ‖f‖ < ∞ is a nonseparable Banach
space (see [15, Theorem 1]). For more geometric and analytic properties of
f relating the norm, see [8]. Many authors have given norm estimates for
classical subclasses S of univalent functions (see [4, 6, 9, 10, 11, 13, 17]).

In addition, let H denote the class of functions f analytic in the unit disk
D and Ha be the subclass {f ∈ H : f(0) = a} of it, for a ∈ C.

We say that a function ϕ ∈ H is subordinate to ψ ∈ H and write ϕ ≺ ψ or
ϕ(z) ≺ ψ(z), if there is a function ω ∈ H0 with |ω(z)| < 1 satisfying ϕ = ψ◦ω.
Note that the condition ϕ ≺ ψ is equivalent to the conditions ϕ(D) ⊂ ψ(D)
and ϕ(0) = ψ(0) when ψ is univalent.

In this paper, we consider the subclass S∗(α, β) of A defined by

S∗(α, β) =
{
f ∈ A :

zf ′(z)
f(z)

≺ hα,β(z) ≡
(

1 + (1− 2β)z
1− z

)α}
,

for 0 < α ≤ 1 and 0 ≤ β < 1.
Since functions in S∗(α, β) belong to S∗(1, 0) ≡ S∗, S∗(α, β) ( S for 0 <

α ≤ 1 and 0 ≤ β < 1.
The class S∗(α, β) has been studied by Weso lowski in [14]. With 0 < α ≤ 1

and 0 < β < 1, we have

hα,β(eiθ) = (β + i(1− β) cot(θ/2))α

from which we easily see that the univalent function hα,β(z) maps D onto a
convex domain bounded by the curve given by

w =
(

β

cosφ

)α
eiαφ, −π/2 < φ < π/2,

where φ and θ satisfy the relation (1 − β) cot(θ/2) = β tanφ. In particular,
functions in the class S∗(α) ≡ S∗(α, 0) are called the strongly starlike functions
of order α; equivalently, f ∈ S∗(α) if and only if | arg(zf ′(z))/f(z)| < πα/2,
for z ∈ D. Every strongly starlike function f of order α < 1 is bounded (see
[3]). Further, this class of functions has been studied by many authors, for
example Sugawa (see [13]). In the same paper Sugawa has presented the sharp
norm estimate for f ∈ S∗(α). The aim of this article is to generalize the result
of Sugawa [13, Theorem 1.1] in the following form:

MAIN THEOREM. Let 0 < α < 1 and 0 ≤ β < 1. If f ∈ S∗(α, β), then

(1) ‖f‖ ≤ L(α, β) + 2α,

where

(2) L(α, β) =
4(1− β)(k − β)(kα − 1)

(k − 1)(k + 1− 2β)

and k is the unique solution of the following equation in x ∈ (1,∞):

(1− α)xα+2 + β(3α− 2)xα+1 + [(1− 2β)(1 + α) + 2β2(1− α)]xα

−αβ(1− 2β)xα−1 − x2 + 2βx = (1− β)2 + β2.
(3)
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For α = 1, it is well known that ‖f‖ ≤ 6 − 4β and equality holds if and
only if f(z) = µΦ(µz), where Φ(z) = z/(1 − z)2(1−β) and µ is a unimodular
constant (see [17]). Moreover, if α = 1 as well as β = 0, it is known that
‖f‖ ≤ 6; and equality holds for the Koebe function k(z) = z/(1−z)2. Now we
shall prove the main theorem by using the method adopted by Sugawa [13].

2. PROOF OF THE MAIN THEOREM

Let p(z) = Pf (z) = zf ′(z)/f(z) and f belong to the class S∗(α, β). Then,
by the definition, p(z) is subordinate to the univalent function

q(z) =
(

1 + (1− 2β)z
1− z

)α
, z ∈ D,

and therefore, there exists an analytic function ω : D→ D with ω(0) = 0 such
that

(4) p = q ◦ ω =
(

1 + (1− 2β)ω
1− ω

)α
.

Let F ∈ A be the function with PF = q, i.e.

F (z) = z exp
(∫ z

0

q(t)− 1
t

dt
)
.

We split the proof into two cases. Assume first that 0 ≤ β ≤ 1/2. Logarithmic
differentiation of (4) yields that

1 +
zf ′′

f ′
− zf ′

f
=

2α(1− β)zω′

(1− ω)(1 + (1− 2β)ω)
.

We thus have

(5) Tf (z) =
2α(1− β)ω′(z)

(1− ω(z))(1 + (1− 2β)ω(z))
+
p(z)− 1

z
.

By triangle inequality and Schwarz-Pick lemma, we obtain

|Tf (z)| ≤ 2α(1− β)|ω′(z)|
|1− 2βω(z)− (1− 2β)ω2(z)|

+
|p(z)− 1|
|z|

≤ 2α(1− β)(1− |ω(z)|2)
(1− |z|2)(|1− 2βω(z)| − (1− 2β)|ω(z)|2)

+
|q(ω(z))− 1|

|z|

≤ 2α(1− β)(1− |ω(z)|2)
(1− |z|2)(1− 2β|ω(z)| − (1− 2β)|ω(z)|2)

+
|q(ω(z))− 1|

|z|

≤ 2α(1− β)(1 + |ω(z)|)
(1− |z|2)(1 + (1− 2β)|ω(z)|)

+
|q(ω(z))− 1|

|z|
.
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Using a similar argument, namely the triangle inequality (as we did in the
denominator above), we see that

|q(z)− 1| =
∣∣∣∣∫ z

0
q′(t) dt

∣∣∣∣
=

∣∣∣∣∫ z

0

(
1 + (1− 2β)t

1− t

)α 2α(1− β)
(1− t)(1 + (1− 2β)t)

dt
∣∣∣∣

≤
∫ |z|

0

(
1 + (1− 2β)t

1− t

)α 2α(1− β)
(1− t)(1 + (1− 2β)t)

dt

= q(|z|)− 1.

So, using this inequality and the fact |ω(z)| ≤ |z|, we get

|Tf (z)| ≤ 2α(1− β)(1 + |ω(z)|)
(1− |z|2)(1 + (1− 2β)|ω(z)|)

+
q(|ω(z)|)− 1

|z|

≤ 2α(1− β)(1 + |z|)
(1− |z|2)(1 + (1− 2β)|z|)

+
q(|z|)− 1
|z|

= TF (|z|),

where the second inequality is strict provided ω(z)/z is not a unimodular
constant. Therefore, we see that ‖f‖ ≤ ‖F‖.

Since

(1− t2)TF (t) =
2α(1− β)(1 + t)

1 + (1− 2β)t
+

1− t2

t
(q(t)− 1)→ 2α as t→ 1−,

the equality ‖f‖ = ‖F‖ holds only if |Tf (z0)| = TF (|z0|) for some z0 ∈ D.
Hence we conclude that equality holds if Pf (z) = q(µz) for some unimodular
constant µ.

We next consider the case 1/2 ≤ β < 1. If we use triangle inequality again
without multiplying the factors in the denominator, we obtain

|q(z)− 1| ≤ q(|z|)− 1.

Now using the same argument as in the first case, we get

(1− |z|2)|Tf (z)| ≤ 2α(1− β)(1− |ω2(z)|)
|1− ω(z)| |1 + (1− 2β)ω(z)|

+
1− |z|2

|z|
(q(|ω(z)|)− 1)

≤ 2α(1− β)(1 + |ω(z)|)
1 + (1− 2β)|ω(z)|

+
1− |z|2

|z|
(q(|ω(z)|)− 1)

≤ 2α(1− β)(1 + |z|)
1 + (1− 2β)|z|

+
1− |z|2

|z|
(q(|z|)− 1)

= (1− |z|2)TF (|z|).
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This shows that ‖f‖ ≤ ‖F‖ and the inequality is sharp (as in the argument of
the previous case). Thus, it is enough to compute ‖F‖. Now, we write

L(α, β) = sup
0<t<1

1− t2

t
(q(t)− 1) = sup

x>1
g(x),

where

g(x) =
4(1− β)(x− β)(xα − 1)

(x− 1)(x+ 1− 2β)
with the substitution x = [1 + (1 − 2β)t]/(1 − t). Logarithmic derivative of
g(x) yields

g′(x)
g(x)

= − h(x)
(x− β)(xα − 1)(x− 1)(x+ 1− 2β)

,

where h(x) is given by

h(x) = (1− α)xα+2 + β(3α− 2)xα+1 + [(1 + α)(1− 2β) + 2β2(1− α)]xα

− αβ(1− 2β)xα−1 − x2 + 2βx− (1− β)2 − β2.

Differentiations give easily the following:

h′(x) = (1− α)(α+ 2)xα+1 + β(3α− 2)(α+ 1)xα

+ α[(1 + α)(1− 2β) + 2β2(1− α)]xα−1

− αβ(α− 1)(1− 2β)xα−2 − 2x+ 2β
h′′(x) = (1− α)(α+ 2)(α+ 1)xα + αβ(3α− 2)(α+ 1)xα−1

+ α(α− 1)[(1 + α)(1− 2β) + 2β2(1− α)]xα−2

− αβ(α− 1)(α− 2)(1− 2β)xα−3 − 2
h′′′(x) = (1− α)(α+ 1)(α+ 2)αxα−1

+ αβ(3α− 2)(α+ 1)(α− 1)xα−2

+ α(α− 1)(α− 2)[(1 + α)(1− 2β) + 2β2(1− α)]xα−3

− αβ(α− 1)(α− 2)(α− 3)(1− 2β)xα−4

= α(1− α)xα−4φ(x),

where φ(x) = (α+1)(α+2)x3−β(3α−2)(α+1)x2− (α−2)[(1+α)(1−2β)+
2β2(1− α)]x+ β(1− 2β)(α− 2)(α− 3).

It follows that

φ′(x) = 3(α+1)(α+2)x2+2β(2−3α)(1+α)x+(2−α)[(1+α)(1−2β)+2β2(1−α)]

and
φ′′(x) = 6(α+ 1)(α+ 2)x+ 2β(2− 3α)(1 + α).

Since φ′′′(x) = 6(α + 1)(α + 2) > 0, φ′′(x) is increasing for all x > 1. So we
have

φ′′(x) ≥ φ′′(1) = 6α2(1− β) + 16α+ 12 + 4β + 2α(1− β) > 0.
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This implies that φ′(x) is increasing for x > 1 and so

φ′(x) ≥ φ′(1) = 2(1 + α)(α+ 2 + 2(1− αβ)) + 2β2(1− α)(2− α) > 0.

So φ(x) is also increasing for x > 1 and hence,

φ(x) ≥ φ(1) = 4(1− β)(1 + α+ β + β(1− α)) > 0.

Therefore, h′′′(x) > 0 and so h′′(x) is increasing for x > 1. Since h′′(x) is
increasing in (1,∞) and

h′′(1) = −2α(1− β)[α(1− β) + β] < 0,

we see that h′′(x) has a unique zero in (1,∞), say x = x1. Since h′(1) = 0 and
h′(x) is increasing on (x1,∞) and decreasing on (1, x1), we obtain that h′(x)
has a unique zero, say x2 (x2 > x1) in (1,∞). Since h(1) = 0, by the same
argument we conclude that h(x) has a unique zero, say k = k(α, β) > x2 in
(1,∞). Thus h(x) < 0 in (1, k) and h(x) > 0 in (k,∞), equivalently, g′(x) is
positive for x ∈ (1, k) and negative for x > k. This shows that g(x) assumes
its maximum at x = k and hence we have (2). Since k is the zero of h(x), it
is the unique solution of the equation (3). Thus we have established (1). 2

Remark 1. Here we calculate some bounds for L(α, β) and k(α, β) although
these are not better estimates. Since g(x) attains its maximum at k > 1, we
note that

L(α, β) = g(k) > lim
x→1+

g(x) = 2α(1− β).

Finally we observe that g(x) satisfies the second order differential equation

A(x)g′′(x) +B(x)g′(x) + C(x)g(x) = 0,

where

A(x) = x(x− 1)(x+ 1− 2β)(x− β)2,
B(x) = 4x(x− β)3 + (1− α)(x− 1)(x+ 1− 2β)(x− β)2

−2x(x− 1)(x+ 1− 2β)(x− β),
C(x) = 2(1− α)(x− β)3 − 2x(x− β)2

−(1− α)(x− 1)(x+ 1− 2β)(x− β) + 2x(x− 1)(x+ 1− 2β).

This observation is to justify the close connection between these bounds and
special functions.
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