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ON MAPPING PROPERTIES OF LAYER POTENTIAL
OPERATORS FOR BRINKMAN EQUATIONS ON

LIPSCHITZ DOMAINS IN RIEMANNIAN MANIFOLDS

MIRELA KOHR, CORNEL PINTEA, and WOLFGANG L. WENDLAND

Abstract. In this paper we present the main properties of layer potential opera-
tors for general Brinkman equations on Lipschitz domains in compact Riemann-
ian manifolds. These properties are used to obtain an existence and solvability
result in Sobolev-Slobodetski spaces for a transmission problem given in terms of
two general Brinkman operators, when the solution is defined in two complemen-
tary Lipschitz or C1 domains on a Riemannian manifold and satisfies prescribed
transmission conditions at the interface between these domains.
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1. INTRODUCTION

The importance of potential theory in the treatment of boundary value
problems for elliptic differential operators is well known. Fabes, Kenig and
Verchota [3] extended the method of layer potential operators developed in
the treatment of the Stokes system on Euclidean smooth domains to Lipschitz
domains in Rn, n ≥ 3, and solved the corresponding Dirichlet problem with L2

boundary data. Mitrea and Taylor developed the potential theory for elliptic
operators on Lipschitz domains in Riemannian manifolds and treated the cor-
responding boundary value problems by using the layer potential methods (see
the series of papers [14]-[17] and also the references therein). In [16] Mitrea
and Taylor studied the Stokes system and the corresponding layer potential
operators on arbitrary Lipschitz domains in a smooth compact Riemannian
manifold, and extended the results in [3] obtained for the Stokes system on
Euclidean Lipschitz domains. They treated the L2-Dirichlet problem for the
Stokes system and also more regular versions of it, by using a technique based
on single-layer potentials. Dindos̆ and Mitrea analyzed in [2] the Poisson
problem for the Stokes system on C1 or even Lipschitz domains in a smooth
compact Riemannian manifold and with data in Sobolev or Besov spaces, by
using a layer potential approach. They extended this approach to operators
with variable-coefficients, and, in addition, to the Poisson problem for the sta-
tionary, nonlinear Navier-Stokes equations on Riemannian manifolds. Variable
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coefficient transmission problems and spectral theory for singular integral op-
erators on Lipschitz domains on non-smooth manifolds have been treated in
[12]. Kohr and Wendland developed in [11] a layer potential approach to show
existence and uniqueness to a transmission problem for a Brinkman-coupled
system in Lipschitz domains in R3 and in some Sobolev spaces. Other applica-
tions of layer potential methods to boundary value problems for the Stokes or
Brinkman operators can be consulted in [9, 10, 18]. Transmission problems for
Stokes and Brinkman operators on Lipschitz and C1 domains in Riemannian
manifolds have been treated in [7, 8], by employing layer potential techniques.
The purpose of this paper is to extend the results in [7, 8] in the setting of
more general Sobolev spaces.

2. PRELIMINARIES

In this section we briefly review some basic results for partial differential
equations in compact boundaryless Riemannian manifolds.

2.1. Differential operators in Riemannian manifolds. Let (M, g) be a
compact boundaryless oriented manifold of dimensionm ≥ 2, which is equipped
with a smooth Riemannian metric tensor

g =
m∑

j,k=1

gjkdxj ⊗ dxk := gjkdxj ⊗ dxk, 1

and let (gjk) be the inverse to (gjk). The volume element in M is given
by dVol =

√
gdx1 . . . dxm, where g := det(gjk). The tangent and cotangent

bundles are TM =
⋃
p∈M TpM and T ∗M =

⋃
p∈M T ∗pM , respectively, and

X(M) is the space of smooth vector fields on M , i.e., the space C∞(M,TM)
of smooth sections of TM . One differential forms on M consist of smooth
sections of Λ1TM = T ∗M . For simplicity, the space of smooth sections of
Λ1TM , namely C∞(M,Λ1TM), is also denoted by Λ1TM . One may naturally
identify Λ1TM with X(M), and Λ1TM carries the pointwise inner product

(2.1) 〈dxj , dxk〉 = gjk, 〈X,Y 〉 = Xjg
jkYk,

where2 X = Xk∂k ∈ TM is identified with the one-form Xrdxr = Xkgkrdxr,
and Xr = gkrX

k, Xk = gkjXj . The exterior derivative and co-derivative
operators are d : C∞(M) → C∞(M,Λ1TM), δ : C∞(M,Λ1TM) → C∞(M),
where d = ∂jdxj , and δ = d∗, respectively. By ∇ we denote the Levi-Civita
connection on M . For X ∈ X(M), the symmetric part of the tensor field

1Hereafter Einstein’s index summation convention is used.
2In (2.1) the notation 〈·, ·〉 is used for the pointwise inner product of both vector fields

and one-forms, but, later, the same notation will also be used for the pairing between a
vector space and its dual. In what follows, Hs(X, Λ1TM |X), for some X ⊂ M , is simply
denoted by Hs(X, Λ1TM). Also 〈·, ·〉X , for some X ⊂ M , stands for the pairing between a

Sobolev space Hs(X, Λ1TM), or H̃−s(X, Λ1TM) (s > 0), and its dual.
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∇X : X(M) × X(M) → C∞(M), (∇X)(Y,Z) = 〈∇YX,Z〉, is denoted by
Def X and is called the deformation of X,

(2.2) (Def X)(Y,Z) =
1
2
{〈∇YX,Z〉+ 〈∇ZX,Y 〉}, ∀ Y, Z ∈ X(M).

A Killing field is a vector field X ∈ X(M), which satisfies Def X = 0. Hereafter
we assume that the manifold M has no nontrivial Killing fields (see [16]).

2.2. The Stokes and Brinkman operators on Riemannian manifolds.
By OPS`cl one denotes the class of classical pseudodifferential operators of
order `. The symbol p(x, ξ) of such an operator P (x,D) admits an asymptotic
expansion of the form p(x, ξ) ∼ p`(x, ξ) + p`−1(x, ξ) + · · · , where pk(x, ξ) is
smooth in x and ξ, positively homogeneous of degree k in ξ ∈ Rm. The term
σ0
P (x, ξ) := p`(x, ξ) is called the principal symbol of P (x,D) (for more details

on pseudodifferential operators on smooth manifolds see [6, 19, 20, 21]).
For s ≥ 0, the Sobolev space Hs(M) := W s,2(M) of scalar functions on M is

obtained by lifting Hs(Rm) := {(I−4)−s/2f : f ∈ L2(Rm)} via a partition of
unity on M and pullback on corresponding local charts, and H0(M) = L2(M).
The spaces Hs(M) and H−s(M) are dual to each other with respect to the
L2(M)-duality. Similarly, Hs(M,Λ1TM) := Hs(M) ⊗ Λ1TM is the space of
one-forms whose local representations have coefficients in Hs(M).

Let us now consider the second-order partial differential operator

(2.3) L : X(M)→ X(M), L := 2Def∗Def = −4+ dδ − 2Ric,

where Def∗ is the adjoint of Def, 4 := −(dδ+ δd) is the Hodge Laplacian and
Ric is the Ricci tensor. This operator is elliptic and extends to a Fredholm
operator of index 0, L : H1(M,Λ1TM)→ H−1(M,Λ1TM). Also let us denote
by P ∈ OPS0

cl(Λ
1TM,Λ1TM) a self-adjoint and non-negative operator with

respect to the L2(M,Λ1TM) - inner product 〈·, ·〉, i.e.

(2.4) 〈Pu,w〉 = 〈u, Pw〉, 〈Pu, u〉 ≥ 0 for all u,w ∈ L2(M,Λ1TM).

The operator BP : C∞(M,Λ1TM)× C∞(M)→ C∞(M,Λ1TM)× C∞(M),

(2.5) BP :=
(
L d
δ 0

)
+
(
P 0
0 0

)
=
(
LP d
δ 0

)
, LP := L+ P,

called the general Brinkman operator, is elliptic in the sense of Agmon-Douglis-
Nirenberg (see [7, 8]). It extends to a Fredholm operator of the same index
zero BP : H1(M,Λ1TM) × L2(M) → H−1(M,Λ1TM) × L2(M). For P = 0
one gets the Stokes operator B0.

2.3. Sobolev spaces on Lipschitz domains and on their boundaries.
Let Ω+ := Ω ⊂ M be a Lipschitz domain and assume that Ω− := M \ Ω is
connected. The sets Ω± are Lipschitz domains. Let Tr± be the non-tangential
boundary trace operators on ∂Ω, (Tr±u)(x) := lim

γ±(x)�y→x
u(y), x ∈ ∂Ω, where
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γ±(x) ⊆ Ω± are appropriate non-tangential approach regions (see e.g. [14]).
For s ≥ 0, let us consider the Sobolev spaces

Hs(Ω±) := {f |Ω± : f ∈ Hs(M)}, H̃s(Ω±) := {f ∈ Hs(M) : suppf ⊆ Ω±},

and denote by H−s(Ω±) =
(
H̃s(Ω±)

)∗ the dual of the space H̃s(Ω±) with re-
spect to the L2(Ω±)-duality. Also, Hs(Ω±,Λ1TM |Ω±) := Hs(Ω±)⊗Λ1TM |Ω± ,
H̃s(Ω±,Λ1TM |Ω±) := H̃s(Ω±)⊗Λ1TM |Ω± are the Sobolev spaces of 1-forms,
and H−s(Ω±,Λ1TM) := (H̃s(Ω±,Λ1TM))∗ is the dual of H̃s(Ω±,Λ1TM).
Also, for β ∈

(
−1

2 ,
1
2

)
, consider the spaces

H̃−1+β(Ω±,Λ1TM) = {f ∈ H−1+β(M,Λ1TM) : supp f ⊆ Ω±},

H1+β(Ω±,LP ) =
{

(u, π, f) : u ∈ H1+β(Ω±,Λ1TM), π ∈ Hβ(Ω±),

f ∈ H̃−1+β(Ω±,Λ1TM) such that LP (u, π) = f |Ω± , δu = 0 in Ω±
}
,

(2.6)

where LP (u, p) := Lu +Pu + dp. Note that H1+β(Ω±,LP ) is a normed space
with respect to the norm

‖(u, π, f)‖H1+β(Ω±,LP ) := ‖u‖H1+β(Ω±,Λ1TM) +‖π‖Hβ(Ω±) +‖f‖H−1+β(M,Λ1TM).

For r ∈ [0, 1], by Hr(∂Ω) and Hr(∂Ω,Λ1TM) one denotes the boundary
Sobolev spaces of scalar functions and 1-forms, respectively, on ∂Ω, and by
H−r(∂Ω) and H−r(∂Ω,Λ1TM) their dual spaces with respect to the L2-
duality. The trace operators have the property below (see e.g. [1, 2, 5, 18]):

Lemma 2.1. For every s ∈
(

1
2 ,

3
2

)
, the restriction operator to the boundary,

C∞(Ω±,Λ1TM) → Hs− 1
2 (∂Ω±,Λ1TM), u 7→ u|∂Ω±, extends to a linear and

bounded operator Tr± : Hs(Ω±,Λ1TM)→ Hs− 1
2 (∂Ω±,Λ1TM), which is onto

and has a bounded right inverse Z± : Hs− 1
2 (∂Ω±,Λ1TM)→ Hs(Ω±,Λ1TM).

For s > 3
2 , Tr± : Hs(Ω±,Λ1TM)→ H1(∂Ω±,Λ1TM) is also bounded.

2.4. The conormal derivative operator on Lipschitz boundaries. Let
r ∈ [0, 1] and ν ∈ H−r(∂Ω,Λ1TM) be the outward unit conormal to ∂Ω,
which is defined with respect to the L2(∂Ω,Λ1TM)-inner product and the
outward unit normal field n ∈ L∞(∂Ω, TM). Note that n is defined a.e., with
respect to the surface element dσ, on ∂Ω. The next result extends the notion
of the conormal derivative operator, given by Mitrea and Wright in [18] for
the Stokes system on Lipschitz domains in Rn, to the Brinkman system on
Lipschitz domains in Riemannian manifolds (see also [2, 7, 8, 16]):

Lemma 2.2. For any β ∈
(
−1

2 ,
1
2

)
, the conormal derivative operator

(2.7) t± : H1+β(Ω±,LP )→ H−
1
2

+β(∂Ω,Λ1TM)
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±〈t±(u, π, f),Φ〉∂Ω := 2
∫

Ω±

〈Def u,Def (Z±Φ)〉dVol

+
∫

Ω±

〈Pu,Z±Φ〉dVol

+
∫

Ω±

〈π, δ(Z±Ψ)〉dVol− 〈f ,Z±Φ〉Ω± ,

(2.8)

∀ Φ ∈ H
1
2
−β(∂Ω,Λ1TM), is well defined and bounded. Also, the Green for-

mula

±〈t±(u, π, f),Tr± v〉∂Ω − 2
∫

Ω±

〈Def u,Def v〉dVol−
∫

Ω±

〈Pu,v〉dVol

=
∫

Ω±

〈π, δv〉dVol− 〈f ,v〉Ω±
(2.9)

holds for all (u, π, f) ∈ H1+β(Ω±,LP ) and v ∈ H1−β(Ω±,Λ1TM).

Proof. Let us observe that all duality pairings in the right-hand side of
(2.8) are well-defined. This shows that t±(u, π, f) ∈ H−

1
2

+β(∂Ω,Λ1TM) and,
in addition,3

‖t±(u, π, f)‖
H− 1

2 +β(∂Ω±,Λ1TM)
≤ c‖(u, π, f)‖H1+β(Ω±,LP )

with some constant c > 0 and for every (u, π, f) ∈ H1+β(Ω±,LP ). This finishes
the proof of the well-posedness and boundedness of the operator (2.7)-(2.8).
The Green formula (2.9) can be obtained with arguments similar to those in
the proof of [8, Lemma 2.2]. �

3. INVERTIBILITY OF THE BRINKMAN OPERATOR

The operator BP : H1(M,Λ1TM) × L2(M) → H−1(M,Λ1TM) × L2(M),
given by (2.5), has kernel {0}×R and range H−1(M,Λ1TM)×L2

∗(M), where
L2
∗(M) := H0

∗ (M) and, for s ≥ 0, Hs
∗(M) := {q ∈ Hs(M) : 〈q, 1〉 = 0}. In

addition, the restriction of BP to H1(M,Λ1TM)×L2
∗(M), denoted by B0

P , is
an injective Fredholm operator of index zero, and hence, it is invertible (see
[7, 8]). Also, the second order pseudodifferential operator

(3.1) LP = 2Def∗Def + P : H1(M,Λ1TM)→ H−1(M,Λ1TM),

is invertible. Then we have the following results (see [8]):

Lemma 3.1. The operator gP : L2
∗(M)→ L2

∗(M), gP := δL−1
P d, is invert-

ible, and the inverse of B0
P : H1(M,Λ1TM) × L2

∗(M) → H−1(M,Λ1TM) ×

3The notation t±P for the conormal derivative operator is more suggestive than t±, but,
in the sequel, we shall omit the subscript P whenever obvious from the context. Also, we
use the notation t±(u, p) instead of t±(u, p,0) whenever LP (u, p) = 0 in Ω±.
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L2
∗(M) is (B0

P )−1 : H−1(M,Λ1TM)× L2
∗(M)→ H1(M,Λ1TM)× L2

∗(M),

(3.2) (B0
P )−1 :=

(
AP BP

CP DP

)
,

where the pseudodifferential operators AP , BP , CP , DP are defined as

AP := L−1
P − L

−1
P dg−1

P δL−1
P , BP := L−1

P dg−1
P ,(3.3)

CP := g−1
P δL−1

P , DP := −g−1
P .(3.4)

Note that AP ∈ OPS−2
cl , BP , CP ∈ OPS−1

cl and DP ∈ OPS0
cl, and the

principal symbols of these operators are given, in local coordinates, by

(
σ0

AP

)
jk

=
1
|ξ|2

δjk −
1
|ξ|4

ξjg
k`ξ`,

(
σ0

BP

)
j

=
i

|ξ|2
ξj ,

(
σ0

CP

)
`

=
i

|ξ|2
g`kξk, σ

0
DP

= 2

(3.5)

for any ξ ∈ Rm \ {0}, where δjk is the Kronecker symbol. In addition, in the
distributional sense, we have on M

(3.6) LPAP + dCP = I, δAP = 0,

where I is the identity operator on H−1(M,Λ1TM). Moreover,

AP − A0 = −A0PAP ∈ OPS−4
cl (Λ1TM,Λ1TM),

CP − C0 = −C0PAP ∈ OPS−3
cl (Λ1TM,R),

(3.7)

where the matrix operator

(3.8) (B0
0)−1 :=

(
A0 B0

C0 D0

)
is the inverse of the operator B0

0 , which defines the Stokes system. Let us now
denote by GP (x, y) and ΠP (x, y) the Schwartz kernels of the operators AP and
CP , respectively. Correspondingly, let G(x, y) and Π(x, y) be the Schwartz
kernels of Φ0 and Ψ0. From (3.6) one obtains on M :

(3.9) (Lx + Px)GP (x, y) + dxΠP (x, y) = Diracy(x), δxGP (x, y) = 0,

where Diracy is the Dirac distribution with mass at y, i.e., GP (x, y) and
ΠP (x, y) determine the fundamental solution of the general Brinkman sys-
tem on M . In addition using the method of Fourier transform and (3.5), one
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obtains in local coordinates4 (see [2])

(GP )rs(x, y) =
1

4π

{
− grs(x) log

[
(e0(x− y, y))1/2

]
+ (e0(x− y, y))−1/2(xθ − yθ)(xη − yη)grθ(x)gsη(x)

}
+ {lower order pseudohomogeneous terms} if m = 2,

(3.10)

(GP )rs(x, y) =
1

m− 2
(e0(x− y, y))−(m−2)/2grs(x)

+ (e0(x− y, y))−m/2(xθ − yθ)(xη − yη)grθ(x)gsη(x)

+ {lower order pseudohomogeneous terms} if m ≥ 3,

(3.11)

(ΠP )s(x, y) =2(e0(x− y, y))−m/2(xτ − yτ )gsτ (x)

+ {lower order pseudohomogeneous terms} if m ≥ 2,
(3.12)

where e0(x− y, y) := grs(y)(xr − yr)(xs − ys).

4. LAYER POTENTIAL OPERATORS

Let us present the principal properties of layer potential operators for the
Brinkman system. As in the previous section, Ω ⊂M is a Lipschitz domain.

4.1. The single-layer potential operator for the Brinkman system. For
r ∈ [0, 1] and f ∈ H−r(∂Ω,Λ1TM), the single-layer potential VP ;∂Ωf is the
Λ1TM -valued function given on M \ ∂Ω by

(4.1) (VP ;∂Ωf)(x) := 〈GP (x, ·), f〉∂Ω, x ∈M \ ∂Ω.

The corresponding pressure potential is given by

(4.2) PsP ;∂Ωf : M \ ∂Ω→ R, (PsP ;∂Ωf)(x) := 〈ΠP (x, ·), f〉∂Ω, x ∈M \ ∂Ω.

Taking into account (3.9), it follows that the layer potentials VP ;∂Ωf and
PsP ;∂Ωf satisfy on M \ ∂Ω the equations

(4.3) δ(VP ;∂Ωf) = 0, (L+ P )VP ;∂Ωf + dPsP ;∂Ωf = 0.

Also, the non-tangential boundary traces V±P ;∂Ωf := Tr±(VP ;∂Ωf) of VP ;∂Ωf
on ∂Ω are well-defined (see [16]). In addition, in view of the decompositions

(GP )rs(x, y) = Grs(x, y) + (GP,0)rs(x, y), (ΠP )s(x, y) = Πs(x, y) + (ΠP,0)s(x, y)

and relations (3.10)-(3.12), one finds that the main properties of the operators
(4.1)-(4.2) are provided by those of the corresponding operators for the Stokes
system. Consequently, from [16, Proposition 3.3, Theorem 3.1], [2, Theorem
2.1], [13, 1], we get:

4Recall that m = dim(M).
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Theorem 4.1. For every r ∈ [0, 1], the operator

VP ;∂Ω : H−r(∂Ω,Λ1TM)→ H
3
2
−r(Ω±,Λ1TM),

is well-defined and bounded. Also,

(4.4) Tr+(VP ;∂Ωf) = Tr−(VP ;∂Ωf) := VP ;∂Ωf , ∀ f ∈ H−r(∂Ω,Λ1TM),

(4.5) VP ;∂Ων = 0, PsP ;∂Ων = c±P ;∂Ω ∈ R in Ω±.

In addition, the single-layer potential operator

(4.6) VP ;∂Ω : H−r(∂Ω,Λ1TM)→ H1−r(∂Ω,Λ1TM)

is well-defined and bounded.

Theorem 4.2. For β ∈
[
0, 1

2

)
the kernel of the layer potential operator

VP ;∂Ω : H−
1
2

+β(∂Ω,Λ1TM)→ H
1
2

+β(∂Ω,Λ1TM)

is KerVP ;∂Ω = Rν, where Rν := {cν : c ∈ R}.

Proof. This result follows from [8, Theorem 5.2] and the (compact) imbed-
ding property H−

1
2

+β(∂Ω,Λ1TM) ↪→ H−
1
2 (∂Ω,Λ1TM). �

Theorem 4.3. ([16]) For any β ∈
(
−1

2 ,
1
2

)
the operator

V0;∂Ω : H−
1
2

+β(∂Ω,Λ1TM)→ H
1
2

+β(∂Ω,Λ1TM)

is Fredholm with index zero and induces an invertible operator

[V0;∂Ω] : H−
1
2

+β(∂Ω,Λ1TM)/Rν → H
1
2

+β(∂Ω,Λ1TM)/Rµ,
[V0;∂Ω] ([g]) := [V0;∂Ωg] ,

(4.7)

where µ ∈ H1(∂Ω,Λ1TM) ↪→ H
1
2
±β(∂Ω,Λ1TM) satisfies the condition

(4.8) 〈ν, µ〉∂Ω = 1.

Theorem 4.4. For any β ∈
(
−1

2 ,
1
2

)
the modified layer potential operator5

for the Stokes system6 Ṽ∂Ω : H−
1
2

+β(∂Ω,Λ1TM) → H
1
2

+β(∂Ω,Λ1TM) given
by Ṽ∂Ω := V∂Ω + 〈·, µ〉∂Ωµ∂Ω is invertible.

Proof. Let us first show that KerṼ∂Ω = {0}. Indeed, from [2, Theorem 2.1]
and (4.8) we find that Ṽ∂Ωg = 0⇔ 〈g, µ〉∂Ω = 0 and V∂Ωg = 0, and hence g =
βν, β ∈ R, and β〈ν, µ〉∂Ω = 0, i.e., g = 0. Now, let G ∈ H

1
2

+β(∂Ω,Λ1TM)

and G̃ := G− 〈ν,G〉∂Ωµ∂Ω ∈ H
1
2

+β
ν (∂Ω,Λ1TM), where

H
1
2

+β
ν (∂Ω,Λ1TM) := {h ∈ H

1
2

+β(∂Ω,Λ1TM) : 〈ν,h〉∂Ω = 0}.

5For P = 0, we use the notations V0;∂Ω := V∂Ω, V0;∂Ω := V∂Ω, Ps0;∂Ω := Ps∂Ω.
6The notation 〈·, ·〉Hs(X,Λ1TM), for some X ⊂ M , stands for the inner product on the

Hilbert space Hs(X, Λ1TM), s ∈ R.
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Also let [G̃] := G̃ + Rµ∂Ω ∈ H
1
2

+β(∂Ω,Λ1TM)/Rµ∂Ω. In view of Theorem
4.3, there exists a unique equivalence class [g0] ∈ H−

1
2

+β(∂Ω,Λ1TM)/Rν such
that [V∂Ω] ([g0]) = [G̃], i.e., [V∂Ωg0] = [G̃]. Hence, V∂Ωg0 − G̃ = α0µ, where
α0 ∈ R. Since 〈ν,V∂Ωg0〉∂Ω = 0 and 〈ν, G̃〉∂Ω = 0 one finds α0 = 0. Thus,
we have obtained an element g0 ∈ H−

1
2

+β(∂Ω,Λ1TM) such that V∂Ωg0 = G̃,
and consider

g := g0 − 〈g0, µ〉∂Ων∂Ω + 〈ν,G〉∂Ων ∈ H−
1
2

+β(∂Ω,Λ1TM).

Then one gets Ṽ∂Ωg = G, i.e., Ṽ∂Ω is onto. �

Theorem 4.5. If either Ω ⊂M is a Lipschitz domain and dim(M) = 2, 3,
or Ω is a C1-domain and dim(M) ≥ 2, then for any β ∈

[
0, 1

2

)
the modified

layer potential operator ṼP ;∂Ω : H−
1
2

+β(∂Ω,Λ1TM)→ H
1
2

+β(∂Ω,Λ1TM)

(4.9) ṼP ;∂Ω := VP ;∂Ω + 〈·, µ〉∂Ωµ

is invertible, where µ ∈ H1(∂Ω,Λ1TM) satisfies the condition (4.8).

Proof. ṼP ;∂Ω = Ṽ∂Ω + VP,0;∂Ω is invertible since Ṽ∂Ω is Fredholm with in-
dex 0, the operator VP,0;∂Ω : H−1/2+β(∂Ω,Λ1TM) → H1/2+β(∂Ω,Λ1TM),
VP,0;∂Ω = VP ;∂Ω−V∂Ω is compact (see Theorem 4.7) and KerṼP ;∂Ω = {0}. �

4.2. The double-layer potential operator for the Brinkman system.
For h ∈ Hr(∂Ω,Λ1TM), r ∈ [0, 1], let WP ;∂Ωh and Pd

P ;∂Ωh : M \ ∂Ω→ R be
the double-layer potential and its associated pressure, given on M \ ∂Ω by

(WP ;∂Ωh)(x) :=
∫
∂Ω

〈
Π>P (y, x)ν(y)− 2

[
(Defy GP (x, ·))ν

]
(y),h(y)

〉
dσ(y)

(Pd
P ;∂Ωh)(x) :=

∫
∂Ω
〈−2[(Defy ΠP (x, ·))ν](y)− ΞP (x, y)ν(y),h(y)〉dσ(y).

The layer potentials WP ;∂Ωh and Pd
P ;∂Ωh satisfy on M \ ∂Ω the equations

(4.10) (L+ P )WP ;∂Ωh + dPd
P ;∂Ωh = 0, δWP ;∂Ωh = 0.

Also, the non-tangential boundary traces W±
P ;∂Ωh := Tr±(WP ;∂Ωh) are well-

defined (see [2]), and the principal value of WP ;∂Ωh for a.e. x ∈ ∂Ω is

(KP ;∂Ωh)(x) := p.v.
∫
∂Ω

〈
Π>P (y, x)ν(y)− 2

[
(Defy GP (x, ·))ν

]
(y),h(y)

〉
dσ(y).

Moreover, the main singularity in the kernel (SP )ks`(x, y)(ν)`(x) of the layer
potential WP ;∂Ωh is provided by the main singularity in the kernel of the
potential W0;∂Ωh for the Stokes system, i.e., in local coordinates (see [2, 7]):

(SP )ks`(x, y)ν`(x) = Sks`(x, y)ν`(x) + (SP,0)ks`(x, y)ν`(x)

=−me0(x− y, y)−(m+2)/2νj(x)(xj − yj)(xθ − yθ)(xη − yη)g`θ(x)gsη(x)

+ {lower order pseudohomogeneous terms}.
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Thus, the properties of the double-layer potential for Brinkman’ system follows
from those of the double-layer potential for Stokes’ system (see [2, 13, 16, 1]):

Theorem 4.6. Let Ω ⊂M be a Lipschitz domain and let r ∈ [0, 1]. Then

WP ;∂Ω : Hr(∂Ω,Λ1TM)→ H
1
2

+r(Ω,Λ1TM)

is well-defined and bounded. For h ∈ Hr(∂Ω,Λ1TM), f ∈ H−r(∂Ω,Λ1TM):

(4.11) Tr+(WP ;∂Ωh) =
(1

2
I+KP ;∂Ω

)
h, Tr−(WP ;∂Ωh) =

(
−1

2
I+KP ;∂Ω

)
h,

t+(VP ;∂Ωf ,PsP ;∂Ωf) =
(
− 1

2
I + K∗P ;∂Ω

)
f ,

t−(VP ;∂Ωf ,PsP ;∂Ωf) =
(1

2
I + K∗P ;∂Ω

)
f ,

(4.12)

where K∗P ;∂Ω is the formal transpose of KP ;∂Ω, i.e., for a.e. x ∈ ∂Ω

(K∗P ;∂Ωf)(x) = p.v.
∫
∂Ω
〈−2[(DefxGP (·, y))ν](x) + ΠP (x, y)ν(x), f(y)〉dσ(y).

In addition, for β ∈
[
0, 1

2

)
, h ∈ H

1
2

+β(∂Ω,Λ1TM) and a.e. on ∂Ω:

t+(WP ;∂Ωh,Pd
P ;∂Ωh) := D+

P ;∂Ωh, t−(WP ;∂Ωh,Pd
P ;∂Ωh) := D−P ;∂Ωh,

(4.13) D+
P ;∂Ωh−D−P ;∂Ωh ∈ Rν.

The following layer potential operators are well-defined and bounded:

KP ;∂Ω : Hr(∂Ω,Λ1TM)→ Hr(∂Ω,Λ1TM)

K∗P ;∂Ω : Hr−1(∂Ω,Λ1TM)→ Hr−1(∂Ω,Λ1TM)

D±P ;∂Ω : Hr(∂Ω,Λ1TM)→ Hr−1(∂Ω,Λ1TM).

(4.14)

Proof. We have to show only the relation (4.13), since the others can be
obtained as those for the Stokes system in [2, 16]. For a double-layer potential
and its associated pressure, u := WP ;∂Ωh and π := Pd

P ;∂Ωh, one has the layer
potential representation formula

u+ = −VP ;∂Ω(t+(u, π)) + WP ;∂Ω(Tr+u) in Ω+,

where u+ := u|Ω+ . A similar representation formula is valid for u in Ω−. By
applying the non-tangential boundary trace operators Tr± to these formulas
and using the jump relations (4.11), one obtains

(4.15)
1
4
h = −VP ;∂Ω(t±(u, π)) + KP ;∂ΩKP ;∂Ωh a.e. on ∂Ω.

Consequently, t+(u, π)−t−(u, π) ∈ KerVP ;∂Ω, where, in view of Theorem 4.2,
KerVP ;∂Ω = Rν. This shows the desired result. �

We use the notations DP ;∂Ω := D+
P ;∂Ω, W0;∂Ω := W∂Ω and K0;∂Ω := K∂Ω.
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4.3. Compactness of the complementary layer potential operators.

Theorem 4.7. If Ω ⊂M is a Lipschitz domain and m = 2, 3, then for any
β ∈

[
0, 1

2

)
the following complementary layer potential operators are compact:

VP,0;∂Ω : H−
1
2

+β(∂Ω,Λ1TM)→ H
1
2

+β(∂Ω,Λ1TM), VP,0;∂Ω = VP ;∂Ω − V∂Ω

KP,0;∂Ω : H
1
2

+β(∂Ω,Λ1TM)→ H
1
2

+β(∂Ω,Λ1TM), KP,0;∂Ω = KP ;∂Ω −K∂Ω

K∗P,0;∂Ω : H−
1
2

+β(∂Ω,Λ1TM)→ H−
1
2

+β(∂Ω,Λ1TM),K∗P,0;∂Ω = K∗P ;∂Ω−K∗∂Ω

DP,0;∂Ω : H
1
2

+β(∂Ω,Λ1TM)→ H−
1
2

+β(∂Ω,Λ1TM),DP,0;∂Ω = DP ;∂Ω−D0;∂Ω.

If Ω is a C1-domain and m ≥ 2, the result is still valid for any β ∈
(
−1

2 ,
1
2

)
.

Proof. This follows by using similar arguments to those in [8, Theorem 5.7];
see also [16, Theorem 3.1], [2, Proposition 3.1]. �

5. TRANSMISSION BOUNDARY VALUE PROBLEM

Let β ∈
[
0, 1

2

)
and Ω+ := Ω ⊂ M , Ω− = M \ Ω be Lipschitz domains. Let

us consider consider F+ ∈ H̃−1+β(Ω+,Λ1TM), F− ∈ H̃−1+β(Ω−,Λ1TM),
G ∈ H

1
2

+β(∂Ω,Λ1TM), H ∈ H−
1
2

+β(∂Ω,Λ1TM) such that

(5.1) 〈ν,G〉∂Ω = 0.

Let P+, P− ∈ OPS0
cl(Λ

1TM,Λ1TM) be self-adjoint on L2(M,Λ1TM), which
satisfy the condition

(5.2) 〈P±w,w〉 ≥ 0 a.e. on M, ∀ w ∈ L2(Ω+,Λ1TM) ∪ L2(Ω−,Λ1TM).

Consequently, P± are non-negative on L2(O,Λ1TM) for any open subset O of
M . In addition, we assume that there exists an open subset O∂Ω ⊂ M such
that ∂Ω ⊂ O∂Ω and∫

O∂Ω

〈P+v,v〉dVol ≥ 0,∀ v ∈ L2(O∂Ω,Λ1TM);
∫
O∂Ω

〈P+v,v〉dVol = 0

imply that v = 0, i.e., P+ is positive definite on L2(O∂Ω,Λ1TM). Note that
the first condition follows directly from (5.2). For example, one may choose
P+ as χ2I, χ > 0.

Let us now consider the transmission problem for the general Brinkman
operators BP+ and BP− , consisting of the continuity and Brinkman equations:

(5.3) δv+ = 0, Lv+ + P+v+ + dp+ = F+|Ω+ in Ω+

(5.4) δv− = 0, Lv− + P−v− + dp− = F−|Ω− in Ω−
and the transmission conditions:

(5.5) Tr+v+−Tr−v− = G, t+(v+, p+,F+)− t−(v−, p−,F−) = H on ∂Ω.

Theorem 5.1. For β ∈
[
0, 1

2

)
the transmission problem (5.3)-(5.5) has at

most one solution ((v+, p+), (v−, p−)) (p+ and p− are unique up to a constant)
with (v+, p+,F+) ∈ H1+β(Ω+,LP+), (v−, p−,F−) ∈ H1+β(Ω−,LP−).
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Proof. This follows with arguments similar to those for [8, Theorem 7.1]. �

5.1. Existence result for the transmission problem. Next, we use a layer
potential method to show the existence of the solution to the transmission
problem (5.3)-(5.5) in an L2-space, when either Ω ⊂M is Lipschitz a domain
and dim(M) = 2, 3, or Ω ⊂ M is a C1-domain and dim(M) ≥ 2. To show
this result in the space H1+β(Ω+,LP+) × H1+β(Ω−,LP−), where β ∈

[
0, 1

2

)
,

consider the potential representations (see also [7, 8] for β = 0):

(5.6) v+ = WP+;∂Ωh + VP+;∂Ωf + UΩ+F+|Ω+ in Ω+,

p+ = Pd
P+;∂Ωh + PsP+;∂Ωf +QΩ+F+|Ω+ in Ω+,(5.7)

(5.8) v− = WP−;∂Ωh + VP−;∂Ωf + UΩ−F−|Ω− in Ω−,

(5.9) p− = Pd
P−;∂Ωh + PsP−;∂Ωf +QP−;Ω−F−|Ω− + λ〈f , µ〉∂Ω in Ω−,

where h ∈ H
1
2

+β(∂Ω,Λ1TM), f ∈ H−
1
2

+β(∂Ω,Λ1TM) are unknown densities,
µ ∈ H1(∂Ω,Λ1TM) satisfies the condition (4.8), and λ ∈ R is a constant. The
choice of this constant will be specified later. Also, UΩ±g and QΩ±g are the
Newtonian potentials∫

Ω±

〈GP±(x, y),g(y)〉dVol(y),
∫

Ω±

〈ΠP±(x, y),g(y)〉dVol(y), x ∈ Ω±.

In particular,
LP±UΩ± + dQΩ± = I, δUΩ± = 0.

Now, using the relations (4.4) and (4.11), which provide the non-tangential
boundary traces of single- and double-layer potentials on both sides of ∂Ω,
and the first of the transmission conditions (5.5), one obtains the equation:

h + KP+,P−;∂Ωh + VP+,P−;∂Ωf =

G− Tr+(UΩ+F+|Ω+) + Tr−(UΩ−F−) a.e. on ∂Ω,
(5.10)

where KP+,P−;∂Ω := KP+,0;∂Ω − KP−,0;∂Ω, VP+,P−;∂Ω = VP+,0;∂Ω − VP−,0;∂Ω.
On the other hand, by imposing the second transmission condition in (5.5) to
the potential representations (5.6) and (5.8), one gets the equation

−f + K∗P+,P−;∂Ωf − λ〈f , µ〉∂Ων + HP+,P−;∂Ωh =

H− t+(UΩ+F+|Ω+ ,QΩ+F+|Ω+) + t−(UΩ−F−|Ω− ,QΩ−F−|Ω−) on ∂Ω,
(5.11)

where t±(UΩ±F±|Ω± ,QΩ±F±|Ω±) is the conormal derivative operator on ∂Ω
due to the Newtonian potential UΩ±F±|Ω± . Also,

K∗P+,P−;∂Ω := K∗P+;∂Ω −K∗P−;∂Ω

and

HP+,P−;∂Ω := D+
P+;∂Ω −D−P−;∂Ω

= (D+
P+;∂Ω −D+

0;∂Ω) + (D+
P−;∂Ω −D−P−;∂Ω)− (D+

P−;∂Ω −D+
0;∂Ω)
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are compact operators on H−
1
2

+β(∂Ω,Λ1TM) and H
1
2

+β(∂Ω,Λ1TM), respec-
tively (see (4.13) and Theorem 4.7). Consequently, the transmission problem
(5.3)-(5.5) reduces to the system of Fredholm integral equations of the second
kind (5.10) and (5.11), which has the equivalent matrix form

(5.12) (IX −AP+,P−)u = w in X ,

where IX is the identity operator on the Hilbert space

(5.13) X = H
1
2

+β(∂Ω,Λ1TM)×H−
1
2

+β(∂Ω,Λ1TM),

and AP+,P− : X → X is the matrix operator

AP+,P− :=
(
−KP+,P−;∂Ω −VP+,P−;∂Ω

HP+,P−;∂Ω K∗P+,P−;∂Ω − λ〈f , µ〉∂Ων

)
.

Also, u := (h, f)> ∈ X is the column matrix of unknowns, and

w :=
(

G− Tr+(UΩ+F+|Ω+) + Tr−(UΩ−F−|Ω−)
−H + t+(UΩ+F+|Ω+ ,QΩ+F|Ω+)− t−(UΩ−F−|Ω− ,QΩ−F|Ω−)

)
∈ X

Moreover, w ∈ Xν , where Xν is the space

(5.14) Xν := H
1
2

+β
ν (∂Ω,Λ1TM)×H−

1
2

+β(∂Ω,Λ1TM),

(5.15) H
1
2

+β
ν (∂Ω,Λ1TM) = {g ∈ H

1
2

+β(∂Ω,Λ1TM) : 〈ν,g〉∂Ω = 0}.

In addition, Xν is an invariant subspace of AP+,P− . Since the operator AP+,P−
is compact, its restriction Xν → Xν , (r,q) 7→ AP+,P−(r,q), is also compact.
Consequently, IXν −AP+,P− : Xν → Xν is a Fredholm operator of index zero,
i.e., the existence of the solution (h, f)> to the equation (5.12) in the Hilbert
space Xν is equivalent with its uniqueness in the same space. According to
this property, let us consider the homogeneous equation

(5.16) (IXν −AP+,P−)u0 = 0, u0 := (h0, f0)> ∈ Xν .

By using an arbitrary solution (h0, f0)> ∈ Xν to this equation, we consider
the layer potential representations (u+, q+) and (u−, q−), given by

u+ = WP+;∂Ωh0 + VP+;∂Ωf0,

q+ = Pd
P+;∂Ωh0 + PsP+;∂Ωf0 in M \ ∂Ω,

u− = WP−;∂Ωh0 + VP−;∂Ωf0 in M \ ∂Ω,

q− = Pd
P−;∂Ωh0 + PsP−;∂Ωf0 + λ〈f0, µ〉∂Ω,Λ1TMν in M \ ∂Ω.
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In view of the Green formula (2.9) and the relations Tr+u+ = Tr−u− and
t+(u+, q+) = t−(u−, q−) on ∂Ω, one obtains the equality∫

Ω+

{
2〈Def u+,Def u+〉+ 〈P+u+,u+〉

}
dVol =

−
∫

Ω−

{
2〈Def u−,Def u−〉+ 〈P−u−,u−〉

}
dVol.

Thus, one gets the equations Def u+ = 0 in Ω+, Def u− = 0 in Ω−, and∫
Ω+

〈P+u+,u+〉dVol = 0,
∫

Ω−

〈P−u−,u−〉dVol = 0.

As in the proof of [8, Theorem 7.1], one gets a constant c0 ∈ R such that

(5.17) u+ = 0 and q+ = c0 in Ω+, u− = 0 and q− = c0 in Ω−.

Now, using (4.4), (4.11) and (5.17), one finds that

(5.18) Tr−u+ = −h0, Tr+u− = h0 on ∂Ω.

In addition, one has

t+(u+, q+)− t−(u+, q+) = −f0 + λ+ν on ∂Ω,

where D+
P+;∂Ωh0 −D−P+;∂Ωh0 := λ+ν ∈ Rν, and, hence,

(5.19) t−(u+, q+) = (c0 − λ+)ν + f0 on ∂Ω.

Also, in view of D+
P−;∂Ωh0 −D−P−;∂Ωh0 := λ−ν ∈ Rν, one finds that

(5.20) t+(u−, q−) = (c0 + λ−)ν − f0 on ∂Ω.

Further, the Green formula (2.9) and (5.18) and (5.20) yield∫
Ω+

{
2〈Def u−,Def u−〉+ 〈P−u−,u−〉

}
dVol = C0,P−〈ν,h0〉∂Ω − 〈f0,h0〉∂Ω,

where C0,P− := c0 + λ−. Similarly, with C0,P+ := c0 − λ+, one has∫
Ω−

{
2〈Def u+,Def u+〉+ 〈P+u+,u+〉

}
dVol = C0,P+〈ν,h0〉∂Ω + 〈f0,h0〉∂Ω.

Since h0 ∈ H
1
2

+β
ν (∂Ω,Λ1TM), both integrals on Ω± from above vanish, and

hence ∫
Ω−

{
2〈Def u+,Def u+〉+ 〈P+u+,u+〉

}
dVol = 0,

which, by means of the positive definiteness of P+ on L2(O∂Ω,Λ1TM), yields
that Tr−u+ = 0 on ∂Ω. According to [2, Theorem 5.6], [8], one has u+ =
0 and q+ = c+ ∈ R in Ω−. The first of these relations and (5.18) imply
h0 = 0 on ∂Ω. Further, from (5.18) one gets Tr+u− = 0 on ∂Ω, and hence
u− = 0, q− = c− ∈ R in Ω+. These relations and (5.20) imply f0 = cν on ∂Ω,
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where c := c0 + λ− − c− ∈ R. Now, let us assume that λ 6= −1 + CP+,P−;∂Ω,
where the constant λ appears in (5.9) and CP+,P−;∂Ω ∈ R such that

(5.21) K∗P+,P−;∂Ων = CP+,P−;∂Ων on ∂Ω.

Then, by using the homogeneous version of the equation (5.11), as well as the
relation h0 = 0 on ∂Ω, one gets c = 0, i.e. f0 = 0 on ∂Ω. Consequently, the
equation (5.16) has only the trivial solution in the space Xν , and hence one
obtains the following existence and uniqueness result:

Theorem 5.2. Let β ∈
[
0, 1

2

)
and λ 6= −1+CP+,P−;∂Ω, where CP+,P−;∂Ω ∈ R

is given by (5.21). If either dim(M) = 2, 3 and Ω ⊂M is a Lipschitz domain,
or dim(M) ≥ 2 and Ω is a C1-domain, then the system (5.10)-(5.11) has a
unique solution (h, f)> ∈ Xν , where Xν is defined in (5.14). In addition, the
potential representations (5.6)-(5.9), provided by h and f , determine the unique
solution ((v+, p+), (v−, p−)) of the transmission problem (5.3)-(5.5) (p+, p−
are unique up to a constant), such that (v+, p+,F+) ∈ H1+β(Ω+,LP+) and
(v−, p−,F−) ∈ H1+β(Ω−,LP−), where H1+β(Ω±,LP±) are defined in (2.6).

Remark 5.3. For β = 0, one obtains the result in [8, Theorem 8.1], and, in
addition, if P+ = χ2I and P− = 0, where χ > 0, one obtains [7, Theorem 6.1].
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