
MATHEMATICA, Tome 52 (75), No 1, 2010, pp. 15–29

A NOTE ON APPROXIMATION PROPERTIES OF
DERIVATIVES OF SCHOENBERG SPLINES

HEINER GONSKA, MICHAEL WOZNICZKA, and FRANK ZEILFELDER

Abstract. We analyze approximation properties of derivatives of variation-di-
minishing Schoenberg splines with emphasis on the case of purely equidistant
knots. New direct inequalities regarding simultaneous approximation up to the
second derivative are obtained in terms of the classical second order modulus of
smoothness. For adequate polynomial degree and sufficiently smooth functions
these quantitative estimates imply a simultaneous approximation order which is
quadratic with respect to mesh size. These results remain valid if we drop the
general requirement of data given outside the basic interval. Numerical tests
verify our theoretical error bounds.
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1. INTRODUCTION

Given integers d ∈ N0 := {0, 1, 2, . . . }, m ∈ N := {1, 2, 3, . . . }, and a strictly
increasing sequence of real numbers (ti)m−1

i=1 , which naturally partitions the
real axis R into m right-open intervals {Ti}m−1

i=0 , a (d− 1)-times continuously
differentiable function s ∈ Cd−1(R) is a spline of degree at most d with minimal
defect at its breakpoints (ti) if on each segment Ti it is a polynomial of degree
at most d. These splines form an (m+d)-dimensional linear space Πd,(ti) which
contains the set Πd of polynomials with maximum degree d. Extending the
sequence of breakpoints to a sequence of knots

(1) t := (t−d+1 ≤ · · · ≤ t0 < · · · < tm ≤ · · · ≤ tm+d−1),

it is possible to recursively define a basis {Ni,d,t}m−1
i=−d of Πd,(ti) by

(2) Ni,d,t(x) :=



ti+d+1−x
ti+d+1−ti+1

Ni+1,d−1,t(x) , i = −d,
x−ti
ti+d−tiNi,d−1,t(x)

+ ti+d+1−x
ti+d+1−ti+1

Ni+1,d−1,t(x)
, −d+ 1 ≤ i ≤ m− 2,

x−ti
ti+d−tiNi,d−1,t(x) , i = m− 1,

We are obliged to Prof. Ioan Raşa for clarifying some details about higher-order convexity
and to Prof. Valery A. Zheludev for sending us a copy of his survey [34] which also includes
an extensive bibliography of English and Russian language literature on approximation by
local splines.
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for d ≥ 1 and all x ∈ R, where Ni,0,t is the characteristic function of the i-th
segment, i.e.,

(3) Ni,0,t(x) :=

{
1 , x ∈ Ti,
0 , x ∈ R \ Ti.

The B(asis)-splines {Ni,d,t} are normalized to sum to one identically. Hence,
any spline s ∈ Πd,(ti) has a unique representation

(4) s =
m−1∑
i=−d

aiNi,d,t

as affine combination of points ai ∈ R, −d ≤ i ≤ m− 1.
Details on the theoretical and historical background of splines and the excel-

lent approximation properties of spline functions are presented in the sterling
books by de Boor [6], Nürnberger [25], and Schumaker [28]. As a consequence
of their aesthetic visual appearance and the availability of efficient evaluation,
manipulation, and rendering routines, splines have also been widely used in
Computer Aided Geometric Design (CAGD) [1, 2, 5, 8, 14], particularly in
the modeling of parametric curves and surfaces.

Lyche and Schumaker [21] construct explicit local spline operators for real-
valued functions f defined on intervals by fixing the coefficients ai in (4) with
the aid of linear functionals λi, i.e.

(5) ai = λi(f),

such that smooth functions f are approximated with a reasonable order of
accuracy. This class of approximation schemes includes Schoenberg’s classical
variation-diminishing method [27], specified by

(6) Sd,t : R[t̄0,t̄m] 3 f 7→
m−1∑
i=−d

f (ξi,d,t)Ni,d,t ∈ Πd,(ti)[t0, tm]

for d ≥ 1, where Greville’s abscissae {ξi,d,t}m−1
i=−d are given by

(7) ξi,d,t :=
1
d

d∑
j=1

ti+j

and [t̄0, t̄m] := [ξ−d,d,t, ξm−1,d,t] ⊇ [t0, tm]. We point out that the domain
[t̄0, t̄m] coincides with the basic interval [t0, tm] if and only if t−d+1 = t0 and
tm = tm+d−1. This traditional setting is also called the clamped case, since it
implies

Sd,t(f ; t0) = f(t0), DSd,t(f ; t0) =
f(ξ−d+1,d,t)− f(t0)

ξ−d+1,d,t − t0
,(8)

Sd,t(f ; tm) = f(tm), DSd,t(f ; tm) =
f(tm)− f(ξm−2,d,t)

tm − ξm−2,d,t
.(9)
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Two prominent instances of clamped Schoenberg splines constitute
(a) piecewise linear interpolants for d = 1,
(b) Bernstein polynomials [3, 19] with respect to [t0, tm] for m = 1.
Schoenberg’s approach unifies these effective techniques and, moreover, en-
ables control of the trade-off between accuracy and smoothness of the ap-
proximant in terms of polynomial degree d and knots t. This relation can
be deduced from direct estimates of the approximation error ‖Sd,tf − f‖[0,1]

involving the upper bound

(10) Sd,t
(
(e1 − x)2;x

)
≤ min

{
t̄m − t̄0

2d
,
d+ 1

12
‖t‖2

}
of the operator’s second moment established by Marsden [23] for d ≥ 2 and
x ∈ [t0, tm]. Here and below, ‖t‖ := max−d+1≤i≤m+d−2{ti+1 − ti} denotes the
mesh size of the sequence t, and er, r ∈ N0, is the monomial function mapping
every real number to its r-th power.

For later reference, we recall some basic and well known properties of
Schoenberg’s operator.

Remark 1 (Marsden [22], Schoenberg [27]).

(i) Sd,t : R[t̄0,t̄m] → R[t0,tm] is discretely defined, linear and positive.
(ii) Sd,tL = L for all linear polynomials L ∈ Π1.
(iii) For d ≥ 2, the first derivative of Sd,tf , f ∈ R[t̄0,t̄m], exists and is given by

(11) DSd,tf =
m−1∑

i=−d+1

f(ξi,d,t)− f(ξi−1,d,t)
ξi,d,t − ξi−1,d,t

Ni,d−1,t.

In the sequel, we restrict our view to knot sequences t which are uniform
with respect to the basic interval [t0, tm] = [0, 1], that is, ti = i

m , 0 ≤ i ≤ m.
If, moreover, t−d+1 = t0 and tm = tm+d−1, we refer to Sd,t as clamped uniform
Schoenberg operator and alternatively use the notation Sd,m. In this particular
case, the following classical Voronovskaya-type result conveys a saturation rate
which is quadratic with respect to mesh size h := ‖t‖ = 1

m for the class C2[0, 1].

Theorem 1 (Marsden [22], Schoenberg [27]). Let d ≥ 2, f ∈ C2[0, 1], and
x ∈ (0, 1). Then it holds

(12)
m2

d+ 1
[Sd,m(f ;x)− f(x)]

m
d
→∞

−−−−→ 1
24
f ′′(x).

Furthermore, one can state

Theorem 2 (Marsden [22]). Let r ∈ {0, 1}, d ≥ r + 1, and f ∈ Cr[0, 1].
Then it holds

(13) ‖DrSd,mf −Drf‖[0,1]

m+d→∞−−−−−−→ 0.
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Thus, for degree d ≥ 2, clamped uniform Schoenberg splines simultaneously
approximate continuously differentiable real functions and their first deriva-
tives with arbitrary precision as m + d, the number of data points, tends to
infinity.

However, while Bernstein polynomials approximate all derivatives of smooth
functions simultaneously and uniformly [18], and preserve convexity of any or-
der [16], Schoenberg splines generally do not possess these desirable features.

Example 1 (cf. Beutel et al. [4], Marsden [22]). For degree d = 3, segments
m ≥ 3, and points x ∈

[
0, 1

m

]
we obtain

(14) S3,m(e2;x) =
x

m

(
− 1

18
m2x2 +mx+

1
3

)
by carrying out some elementary computations involving the B-spline recur-
rence (2), (3). It follows that

DS3,m(e2;x) =
1
m

(
−1

6
m2x2 + 2mx+

1
3

)
,(15)

D2S3,m(e2;x) = 2− m

3
x.(16)

Thus, we have ∣∣∣∣DS3,m

(
e2;

1
m

)
−De2

(
1
m

)∣∣∣∣ =
1

6m
,(17) ∣∣∣∣D2S3,m

(
e2;

1
m

)
−D2e2

(
1
m

)∣∣∣∣ =
1
3

,(18)

and

(19) D3S3,m(e2; 0) = −m
3
< 0 = D3e2(0).

Equations (17) and (18) show that we generally cannot expect the uniform
approximation error with respect to the first and the second derivative to be-
have better than O(h) and O(1), respectively. (19) disproves (local) convexity
preservation of order 3.

An alternative to the clamped uniform approach is to consider purely equidis-
tant knots ti = i

m , −d+1 ≤ i ≤ m+d−1. In this case, adopting a notion com-
monly used in CAGD for qualifying corresponding parametric spline curves [5],
we refer to Qd,m := Sd,t as floating uniform Schoenberg operator. Instead of
Ni,d,t we also write Ni,d,m, and – like in the clamped uniform setting – we put
h := ‖t‖ = 1

m . Greville’s abscissae specialize to ξi,d,m := ξi,d,t =
(
i+ d+1

2

)
h,

−d ≤ i ≤ m − 1. Consequently, Qd,m is defined for functions given on the
domain [0̄, 1̄] = [−d−1

2 h, 1 + d−1
2 h] which, for d ≥ 2, constitutes a proper

superset of the basic interval [0, 1]. For d = 1, both floating and clamped
uniform Schoenberg approximation collapse to piecewise linear interpolation,
i.e., Q1,m = S1,m. However, higher-degree floating uniform Schoenberg splines
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generally do not share endpoint interpolation properties with their clamped
counterparts.

Besides these putative disadvantages, the choice of purely equidistant knots
entails certain benefits over the traditional construction involving coalescing
boundary knots. Indeed, the following statement shows that, except for trivial
cases, the optimal error of simultaneous approximation asymptotically behaves
like O(h2).

Theorem 3 (cf. Zheludev [33], Theorem 2). Let r ∈ N0, d ≥ r + 2,
f ∈ Cr+2[0̄, 1̄], and x ∈ [0, 1]. Then it holds

(20)
m2

d+ 1
[DrQd,m(f ;x)−Drf(x)] m→∞−−−−−−→

uniformly
Dr

[
1
24
f ′′(x)

]
.

It is the purpose of this paper to complement this result with quantitative
direct estimates in terms of the classical second order modulus of smoothness.

2. PRELIMINARIES AND AUXILIARY RESULTS

Definition 1. Let a, b ∈ R, a ≤ b, and f ∈ R[a,b]. For r ∈ N0 and δ ∈ R≥0

the r-th modulus of smoothness of f with respect to [a, b] is specified by

(21) ωr,[a,b](f ; δ) := sup
0≤ε≤δ

a≤x≤b−rε

|∆r
εf(x)| ,

where ∆r
εf(x) denotes the r-th forward difference of f(x) with step size ε, i.e.,

∆0
εf(x) = f(x) and ∆r

εf(x) = ∆r−1
ε f(x+ ε)− ∆r−1

ε f(x) for r ≥ 1.

In regard to our further reasoning, we summarize some fundamental char-
acteristics of these moduli.

Remark 2 (cf. Schumaker [28], p. 55f, and references specified therein).
Let I ⊂ R be a compact interval, f ∈ RI , r, s ∈ N0, and δ ∈ R≥0. Then we
have:

(i) RI 3 f 7→ ωr,I(f ; δ) ∈ R is a seminorm.
(ii) R≥0 3 δ 7→ ωr,I(f ; δ) ∈ R is non-decreasing.
(iii) ωr+s,I(f ; δ) ≤ 2sωr,I(f ; δ).
(iv) ωr+s,I(f ; δ) ≤ δsωr,I(f (s); δ), if f ∈ Cs(i).

Definition 2. Let I ⊂ R, J ⊆ I be compact intervals, F ⊆ RI , and r ∈ N0.
(i) A function f ∈ RI is said to be r-convex if its r-th divided differences

∆r[θ0, . . . , θr]f are non-negative for all distinct nodes θi ∈ I, 0 ≤ i ≤ r.
(ii) We denote the set of all r-convex functions f ∈ RI by Kr(i).
(iii) An operator A : F → RJ is called r-convex if A(F ∩Kr(i)) ⊆ Kr(J).

Remark 3.

(i) 0-, 1-, and 2-convex functions are also referred to as non-negative, non-
decreasing, and convex (from below), respectively.
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(ii) Let I ⊂ R be a compact interval, r ∈ N0, and f ∈ Cr(i). In this case,
the mean value theorem stated by Schwarz [29] guarantees existence of
a point ξ ∈ I such that r!∆r[θ0, . . . , θr]f = Drf(ξ) for all distinct nodes
θi ∈ I, 0 ≤ i ≤ r. Conversely, Hopf proves in his thesis [13, p. 16]
that r! limθ0,...,θr→θ ∆r[θ0, . . . , θr]f = Drf(θ) for all θ ∈ I (cf. [7], [31,
p. 18f]). As a consequence, any function f ∈ Cr(i) is r-convex if and only
if Drf(x) ≥ 0 for all x ∈ I.

(iii) 0-convex operators are usually called positive.
(iv) Knoop and Pottinger [16] introduce the notion of almost r-convex oper-

ators generalizing the classical term used by Lupaş [20].

The subsequent quantitative Korovkin-type statement improves earlier re-
sults established by Knoop and Pottinger [16], and Gonska [10]. It is the key
ingredient for the inequalities of Section 3.

Theorem 4 (Kacsó [15]). Let I ⊂ R and J ⊆ I be compact intervals, and
let r ∈ N0. If L : Cr(i) → Cr(J) is a linear and (almost) r-convex operator
with L(Πr−1(i)) ⊆ Πr−1(J), then we have

|DrL(f ;x)−Drf(x)| ≤ |αL,r(x)− 1| |Drf(x)|

+ βL,r(x)
δ ω1,I (Drf ; δ)

+
[
αL,r(x) + γL,r(x)

2δ2

]
ω2,I (Drf ; δ)

(22)

for all f ∈ Cr(i), x ∈ J , and δ ∈
(

0, length (i)
2

]
, where

αL,r(x) := DrL
(

1
r! er;x

)
,(23)

βL,r(x) :=
∣∣∣DrL

(
1

(r+1)! er+1 − 1
r! x er;x

)∣∣∣ ,(24)

γL,r(x) := DrL
(

2
(r+2)! er+2 − 2

(r+1)! x er+1 + 1
r! x

2 er;x
)

.(25)

Here, DrL operates on the function in a variable t, independent of x.

Remark 4.

(i) The case r = 0 is a remarkable result due to Păltănea [26]. There it
is stated that the upper bound on δ can be eliminated for operators L
which preserve linear polynomials.

(ii) From the proof given by Kacsó [15] it is obvious that, likewise, the re-
striction on δ is not necessary in the general case if αL,r = 1 and βL,r = 0,
identically.

Our next objective is to justify the applicability of Theorem 4 to floating
uniform Schoenberg splines.
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Lemma 1. For r ∈ N0, r ≤ d − 1, the r-th derivative of Qd,mf , f ∈ R[0̄,1̄],
exists and is given by

(26) DrQd,mf =
m−1∑

i=−d+r

r!∆r
hf(ξi−r,d,m)Ni,d−r,m,

where ∆r
hf(ξi−r,d,m) := ∆r[ξi−r,d,m, . . . , ξi,d,m]f .

Proof. Considering r = 0, it suffices to observe that

(27) f(ξi,d,m) = 0!∆0
hf(ξi−0,d,m).

Let r0 ∈ N0, r0 ≤ d− 2. Assuming (26) for r = r0, verifying

(28)
∆r0
h f(ξi−r0,d,m)− ∆r0

h f(ξi−r0−1,d,m)
ξi,d−r0,m − ξi−1,d−r0,m

= (r0 + 1)∆r0+1
h f(ξi−(r0+1),d,m),

and utilizing (11), we conclude

Dr0+1Qd,mf = D
m−1∑

i=−d+r0

r0! ∆r0
h f(ξi−r0,d,m)Ni,d−r0,m

=
m−1∑

i=−d+r0+1

(r0 + 1)! ∆r0+1
h f(ξi−(r0+1),d,m)Ni,d−(r0+1),m.

(29)

This completes the proof. �

Taking into account the positivity of Schoenberg’s operator, we immediately
obtain

Corollary 1. Qd,m is r-convex for all r ∈ N0, r ≤ d− 1.

In view of the operator’s linear precision, indeed, all requirements of Theo-
rem 4 in regard to L = Qd,m are satisfied for r ∈ {0, 1, 2} and d ≥ r+ 1. It re-
mains to compute or estimate the quantities αQd,m,r(x), βQd,m,r(x), γQd,m,r(x)
for x ∈ [0, 1].

It is a classical, but perhaps not commonly known fact that the moments of
floating uniform Schoenberg operators of sufficiently high degree are constant.

Proposition 1 (Marsden and Riemenschneider [24], Zheludev [33]). Let
x ∈ [0, 1]. Then it holds

Qd,m
(
(e1 − x)0;x

)
= 1,(30)

Qd,m
(
(e1 − x)1;x

)
= 0,(31)

Qd,m
(
(e1 − x)2;x

)
= d+1

12 h2, d ≥ 2,(32)

Qd,m
(
(e1 − x)3;x

)
= 0, d ≥ 3,(33)

Qd,m
(
(e1 − x)4;x

)
= (d+1)(5d+3)

240 h4, d ≥ 4.(34)

Simple calculations lead to
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Corollary 2. For x ∈ [0, 1], we have

Qd,m(e0;x) = 1,(35)

Qd,m(e1;x) = x,(36)

Qd,m(e2;x) = x2 + d+1
12 h

2, d ≥ 2,(37)

Qd,m(e3;x) = x3 + d+1
4 h2x, d ≥ 3,(38)

Qd,m(e4;x) = x4 + d+1
2 h2x2 + (d+1)(5d+3)

240 h4, d ≥ 4.(39)

Corollary 3. Let r ∈ {0, 1, 2}, d ≥ r + 1, and x ∈ [0, 1]. Then it holds

αQd,m,r(x) = 1,(40)

βQd,m,r(x) = 0.(41)

Moreover, if d ≥ r + 2, we have

γQd,m,r(x) = d+1
12 h

2.(42)

It is also possible to find explicit representations of the monomials’ images
under lower degree operators. After elementary but tedious computations
involving the B-spline recurrence (2), (3) one actually arrives at

Proposition 2. For x ∈ [ih, (i+ 1)h], 0 ≤ i ≤ m− 1, we have

Q1,m(e2;x) = (2i+ 1)hx− (i2 + i)h2,(43)

Q2,m(e3;x) =
(
3i+ 3

2

)
hx2 −

(
3i2 + 3i− 1

4

)
h2x+

(
i3 + 3

2 i
2 + 1

2 i
)
h3,(44)

Q3,m(e4;x) = (4i+ 2)hx3 −
(
6i2 + 6i− 1

)
h2x2(45)

+
(
4i3 + 6i2 + 2i

)
h3x−

(
i4 + 2i3 + i2 − 1

3

)
h4.

Corollary 4. Let r ∈ {0, 1, 2} and d = r + 1. Then for x ∈ [ih, (i+ 1)h],
0 ≤ i ≤ m− 1, we have

(46) γQd,m,r(x) = −
[
x−

(
i+ 1

2

)
h
]2 + d+2

12 h
2 ≤ d+2

12 h
2.

The given upper bound is sharp.

Proof. For r = 0, we get

γQ1,m,0(x) = Q1,m

(
2
2! e2 − 2

1! x e1 + 1
0! x

2 e0;x
)

= (2i+ 1)hx− (i2 + i)h2 − 2x2 + x2

= −
[
x−

(
i+ 1

2

)
h
]2 + 3

12h
2

≤ 3
12h

2.

(47)

Similarly, we obtain

γQ2,m,1(x) = −
[
x−

(
i+ 1

2

)
h
]2 + 4

12h
2 ≤ 4

12h
2,(48)

γQ3,m,2(x) = −
[
x−

(
i+ 1

2

)
h
]2 + 5

12h
2 ≤ 5

12h
2.(49)

The upper bounds are sharp for x =
(
i+ 1

2

)
h. �
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3. MAIN RESULTS

The apparatus established in the previous section permits us to formulate

Theorem 5. Let r ∈ {0, 1, 2}, f ∈ Cr[0̄, 1̄], and δ ∈ R>0. Then we have

(50) ‖DrQd,mf −Drf‖[0,1] ≤


(

1 + d+2
24

h2

δ2

)
ω2,[0̄,1̄](Drf ; δ) , d = r + 1,(

1 + d+1
24

h2

δ2

)
ω2,[0̄,1̄](Drf ; δ) , d ≥ r + 2.

There are several ways to eliminate the free parameter δ in (50). Putting
δ := h

2 leads to

Corollary 5. Let r ∈ {0, 1, 2} and f ∈ Cr[0̄, 1̄]. Then we have

(51) ‖DrQd,mf −Drf‖[0,1] ≤

{(
1 + d+2

6

)
ω2,[0̄,1̄]

(
Drf ; h2

)
, d = r + 1,(

1 + d+1
6

)
ω2,[0̄,1̄]

(
Drf ; h2

)
, d ≥ r + 2.

Depending on the situation, other choices of δ might be more adequate. A
different approach gives rise to

Corollary 6. Let r ∈ {0, 1, 2}, d ≥ r+ 1, and f ∈ Cr[0̄, 1̄]. Then it holds

(52) ‖DrQd,mf −Drf‖[0,1] ≤ ω2,[0̄,1̄]

(
Drf ; 1+(d−1)h

2

)
.

Proof. We observe that

(53) ω2,[0̄,1̄](Drf ; δ) ≤ ω2,[0̄,1̄]

(
Drf ; 1+(d−1)h

2

)
.

Letting δ →∞ in (50) proves the assertion. �

For sufficiently smooth functions we obtain normwise estimates.

Corollary 7. Let r ∈ {0, 1, 2} and f ∈ Cr+2[0̄, 1̄]. Then we have

(54) ‖DrQd,mf −Drf‖[0,1] ≤

{
d+2
24 h

2
∥∥Dr+2f

∥∥
[0̄,1̄]

, d = r + 1,
d+1
24 h

2
∥∥Dr+2f

∥∥
[0̄,1̄]

, d ≥ r + 2.

Proof. Taking into account that

(55) ω2,[0̄,1̄](D
rf ; δ) ≤ δ2

∥∥Dr+2f
∥∥

[0̄,1̄]

for all f ∈ Cr+2[0̄, 1̄] and letting δ → 0 in (50) completes the proof. �

Optimality of constants will be discussed elsewhere. Here, we only give

Example 2 (Piecewise Linear Interpolation). Let d = 1 and r = 0.
(i) For f ∈ C [0, 1] estimate (52) takes on the form

(56) ‖Q1,mf − f‖[0,1] ≤ ω2,[0,1]

(
f ; 1

2

)
.

The constant 1 in front of the second order modulus of smoothness cannot be
replaced by any other constant strictly less than 1 (cf. Whitney [32], p. 69, for
m = 1).
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(ii) For f ∈ C2[0, 1] inequality (54) reads

(57) ‖Q1,mf − f‖[0,1] ≤
1
8h

2
∥∥D2f

∥∥
[0,1]

.

This estimate is also given in [6, p. 31f]. There, piecewise linear interpolation
is also shown to be nearly optimal in the sense that the error of approximation
can, at best, be halved by going over to a best possible approximation to f from
Π1,( i

m)[0, 1].

4. HESTENES EXTENSION

So far, we have basically neglected the fact that floating uniform Schoen-
berg splines generally depend on data outside the basic interval. We address
this problem with the aid of the subsequent extension operator introduced by
Hestenes [12] as generalization of a reflection principle considered by Lichten-
stein [17].

Definition 3 (Hestenes [12]). For r ∈ N0, f ∈ R[0,1], and x ∈ [−1, 2] let

(58) Hr(f ;x) :=


∑r

j=0 ηj,rf
(
− x

2j

)
, x < 0,

f(x) , 0 ≤ x ≤ 1,∑r
j=0 ηj,rf

(
1 + 1−x

2j

)
, 1 < x,

where the coefficients ηj,r are uniquely determined as solution of the Vander-
monde system

(59)
r∑
j=0

ηj,r

(
− 1

2j

)i
= 1, 0 ≤ i ≤ r.

Fundamental properties of Hestenes’ extension operator include the follow-
ing.

Remark 5 (cf. Hestenes [12] and Sperling [30], p. 147f).

(i) Hr : R[0,1] → R[−1,2] is a pointwise discretely defined and linear operator.
(ii) HrP = P for all polynomials P ∈ Πr.
(iii) Hr (Cs[0, 1]) ⊆ Cs[−1, 2] for all s ∈ N0, s ≤ r.

The key observation of this section is

Proposition 3 (Global Smoothness Preservation). Let I be a compact in-
terval with [0, 1] ⊆ I ⊆ [−1, 2], r ∈ N0, f ∈ Cr[0, 1], and δ ∈

(
0, 1

2

]
. Then we

have

(60) ω2,I (DrHr+2f ; δ) ≤ Cr ω2,[0,1] (Drf ; δ)

for some constant Cr ∈ R≥0 which is independent of f and δ.



11 Derivatives of Schoenberg splines 25

Proof. For arbitrary g ∈ Cr+2[0, 1] we have
ω2,I (DrHr+2f ; δ)

≤ ω2,I (DrHr+2(f − g); δ) + ω2,I (DrHr+2g; δ)

≤ 4 ‖DrHr+2(f − g)‖I + δ2
∥∥Dr+2Hr+2g

∥∥
I

≤ max

1,
r∑
j=0

|ηj,r+2|

(4 ‖Dr(f − g)‖[0,1] + δ2
∥∥Dr+2g

∥∥
[0,1]

)
.

Following Gonska and Kovacheva [11], it is possible to choose g ∈ Cr+2[0, 1]
such that

‖Dr(f − g)‖[0,1] ≤
3
4
ω2,[0,1] (Drf ; δ) ,(61) ∥∥Dr+2g

∥∥
[0,1]
≤ 3

2
δ−2 ω2,[0,1] (Drf ; δ) .(62)

It follows that

(63) ω2,I (DrHr+2f ; δ) ≤ 9
2

max

1,
r∑
j=0

|ηj,r+2|

ω2,[0,1] (Drf ; δ) .

Putting Cr := 9
2 max

{
1,
∑r

j=0 |ηj,r+2|
}

clearly proves the assertion. �

Corollary 8. Let I be a compact interval with [0, 1] ⊆ I ⊆ [−1, 2], r ∈ N0,
and A : Cr(i)→ Cr[0, 1] an arbitrary operator. If the estimate

(64) ‖DrAf −Drf‖[0,1] ≤ Γr(δ)ω2,I (Drf ; δ)

is correct for all f ∈ Cr(i) and certain quantities δ ∈
(
0, 1

2

]
, Γr(δ) ∈ R≥0

which do not depend on f , then the inequality

(65) ‖DrAHr+2g −Drg‖[0,1] ≤ Cr Γr(δ)ω2,[0,1] (Drg; δ)

holds for all g ∈ Cr[0, 1], where Cr is given as in Proposition 3.

Proof. Under the given prerequisites, the claim follows from
‖DrAHr+2g −Drg‖[0,1] = ‖DrAHr+2g −DrHr+2g‖[0,1]

≤ Γr(δ)ω2,I (DrHr+2g; δ)

≤ Cr Γr(δ)ω2,[0,1] (Drg; δ) . �

This leads to

Theorem 6. Let r ∈ {0, 1, 2}, f ∈ Cr[0, 1], and δ ∈
(
0, 1

2

]
. If, moreover,

m ≥ d−1
2 , then [0̄, 1̄] ⊆ [−1, 2] and we have

‖DrQd,mHr+2f −Drf‖[0,1]

≤ Cr


(

1 + d+2
24

h2

δ2

)
ω2,[0,1](Drf ; δ) , d = r + 1,(

1 + d+1
24

h2

δ2

)
ω2,[0,1](Drf ; δ) , d ≥ r + 2,

(66)
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where Cr is given as in Proposition 3.

Thus, the order of simultaneous approximation by floating uniform Schoen-
berg splines can be retained if there is only discrete data available in the basic
interval [0, 1].

Explicit upper bounds on the constants Cr can be found in Sperling [30],
p. 162. Due to their huge size, however, they seem to be of theoretical interest
only.

5. NUMERICAL RESULTS

We finish our analysis with some numerical tests. Given m+ 3 data points
at the adequate Greville abscissae, we compare the accuracy of Bernstein
polynomials with those of cubic clamped and floating uniform Schoenberg
splines up to the second derivative. The operatorsQ3,mH2 andQ3,mH3 require
4 and 6 additional data points, respectively. All computations are performed
in double precision floating-point arithmetic (cf. Goldberg [9]).

Table 1 – Uniform approximation

Size ‖Lf − f‖[0,1], where f = [e1(1− e1)]2 and L is

m Sm+2,1 S3,m Q3,m Q3,mH2

1 2,55 · 10−2 2,55 · 10−2 6,67 · 10−1 1,15 · 10−1

10 9,19 · 10−3 1,63 · 10−3 3,37 · 10−3 2,37 · 10−3

100 1,21 · 10−3 2,99 · 10−5 3,33 · 10−5 3,23 · 10−5

1000 1,25 · 10−4 3,29 · 10−7 3,33 · 10−7 3,32 · 10−7

10000 − 3,33 · 10−9 3,33 · 10−9 3,33 · 10−9

Table 2 – Uniform approximation of the first derivative

Size ‖DLf −Df‖[0,1], where f = [e1(1− e1)]2 and L is

m Sm+2,1 S3,m Q3,m Q3,mH2

1 1,48 · 10−1 1,48 · 10−1 2,00 · 10−0 3,44 · 10−1

10 7,00 · 10−2 3,11 · 10−2 2,00 · 10−2 1,61 · 10−2

100 9,61 · 10−3 3,31 · 10−3 2,00 · 10−4 1,96 · 10−4

1000 9,96 · 10−4 3,33 · 10−4 2,00 · 10−6 2,00 · 10−6

10000 − 3,33 · 10−5 2,00 · 10−8 2,00 · 10−8

While Bernstein polynomials always show a linear rate of convergence, we
observe that clamped uniform Schoenberg splines lose one degree of approxima-
tion with each further derivative. Clearly, floating uniform Schoenberg splines
outperform both competitors. The quadratic order of approximation is even
retained, if we exclusively sample data from inside the basic interval [0, 1], as
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Table 3 – Uniform approximation of the second derivative

Size
‚‚D2Lf −D2f

‚‚
[0,1]

, where f = [e1(1− e1)]2 and L is

m Sm+2,1 S3,m Q3,m Q3,mH2 Q3,mH3

1 2,30 · 10−0 2,30 · 10−0 5,00 · 10−0 2,69 · 10−0 2,22 · 10−0

10 9,94 · 10−1 5,04 · 10−1 5,00 · 10−2 7,02 · 10−1 5,00 · 10−2

100 1,35 · 10−1 3,24 · 10−1 5,00 · 10−4 7,45 · 10−2 5,00 · 10−4

1000 1,39 · 10−2 3,32 · 10−1 5,00 · 10−6 7,50 · 10−3 5,00 · 10−6

10000 − 3,33 · 10−1 5,00 · 10−8 7,50 · 10−4 5,17 · 10−8

long as the extension is constructed to be smooth enough. For comparison, we
have depicted the columns for Q3,mH2 and Q3,mH3, with the smoother images
coming from H3. Apparently the choice of H3 suffices to guarantee quadratic
convergence in the second derivative for the special function f = [e1(1− e1)]2.
For a twice continuously differentiable function this can be derived from the
first inequality in Theorem 6 for d = 3 only for H4 = H2+2. It is therefore
desirable to further investigate how pessimistic the inequalities of Theorem 6
are in the general case.
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