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NEWTON–LIKE METHOD FOR NONSMOOTH
SUBANALYTIC VARIATIONAL INCLUSIONS

IOANNIS K. ARGYROS and SAÏD HILOUT

Abstract. We present a new result for the local convergence of Newton–type
method to a unique solution of a nonsmooth subanalytic variational inclusions
in finite dimensional spaces. Under a center–type conditions [1]–[4] and using
the same or less computational cost, we extend the applicability of Newton’s
method [8], [10].
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1. INTRODUCTION

In this study we are concerned with the problem of approximating a locally
unique solution x? of the generalized equation

(1) 0 ∈ F (x) +G(x),

where F is a nonsmooth subanalytic function from an open subsetD of X = Rn

into X , G is a set–valued map from X to the subsets of X with closed graph.
A large number of problems in applied mathematics and engineering are

solved by finding the solutions of generalized equation (1), introduced by
Robinson [15].

In the particular case G = {0}, (1) is a nonlinear equation in the form

(2) F (x) = 0.

For example, dynamic systems are mathematically modeled by differential or
difference equations, and their solutions usually represent the states of the
systems, which are determined by solving equation (2).

Such a study can be of interest in the case G 6= {0}, for example, to
variational inequalities for saddle points (see [17], p. 560). Let A and B
be nonempty, closed and convex subsets of Rn and Rm respectively, and let
L : Rn × Rm −→ R be some C1 convex–concave on A × B. The point (x̄,ȳ)
∈ A×B is a saddle point if the following hold:

(3) L(x, ȳ) ≥ L(x̄, ȳ) ≥ L(x̄, y), for allx ∈ A and y ∈ B.

The saddle point condition (3) is equivalent to

(4) 0 ∈ f(x, y) +G(x, y),
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where f and G are defined on A × B by f(x, y) = (∇xL(x, y),−∇yL(x, y))
and by G(x, y) = NA(x) × NB(y), with NA (resp. NB) the normal cone
to the set A (resp. B). Hence, the variational problem (3) corresponds to
generalized equation in formulation (1) and then the saddle point (x̄, ȳ) can
be approximated by the method investigated in this paper. Another example
of application to variational inclusions (see [2]). Let K be a convex set of Rn

and ϕ is a function from K to Rn. The variational inequality problem consists
in seeking k0 in K such that

(5) for each k ∈ K, (ϕ(k0), k − k0) ≥ 0,

where (., .) denotes the usual scalar product on Rn. Let IK denote the convex
indicator function of K and ∂ the subdifferential operator. Then the problem
(5) is equivalent to

(6) 0 ∈ ϕ(k0) +H(k0),

with H = ∂IK (also called the normal cone of K). The variational inequality
problem (5) is equivalent to (6) which is a generalized equation in formulation
(1). Consequently, we can also approximate the solution k0 of variational
inequality (5) using our algorithm (8).

Most of the numerical approximation methods require the expensive compu-
tation of the Fréchet–derivative F ′(x) of operator F at each step, for example
Newton’s method:

(7) 0 ∈ F (xn) + F ′(xn) (xn+1 − xn) +G(xn+1), (x0 ∈ D, n ≥ 0).

A comprehensive bibliography of these methods is given in [2], [3]. In this
study, we are interested in numerical method for solving generalized equation
(1) when the involved function F is nonsmooth and subanalytic. We proceed
by replacing in method (7) the term F ′(xn) by ∆F (xn), where ∆F (x) ∈
∂F (x), ∂F (x) denotes the Clarke Jacobian of F at the point x ∈ D.

In this paper, for approximating x?, we consider Newton–like method

(8) 0 ∈ F (xn) + ∆F (xn) (xn+1 − xn) +G(xn+1), (x0 ∈ D, n ≥ 0).

In the nonlinear equations case (i.e., G = {0} in (1)), the method (8) becomes

(9) 0 = F (xn) + ∆F (xn) (xn+1 − xn), (x0 ∈ D, n ≥ 0),

which considered by Bolte et al. [10] for globally subanalytic mappings.
Here, we are motivated by the works in [10], [8]. Using a center–type con-

ditions [2], [3], we extend the applicability of Newton’s method [10], [8]. We
prove that Newton’s method (8) for globally subanalytic mappings converges
superlinearly.

The structure of this paper is the following. In section 2, we collect a
number of basic definitions on subanalyticity of sets and functions and re-
call a fixed points theorem for set–valued maps. In section 3 we show an
existence–convergence theorem of sequence given by (8). Some remarks are
also presented.
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2. BACKGROUND MATERIAL

In order to make the paper as self–contained as possible we reintroduce
some definitions and some results on fixed point theorems [5]–[17]. Let us
begin with some notations that will used throughout this paper. We let Z be
a Banach space equiped with the norm ‖ · ‖. The distance from a point x to
a set A in Z is defined by dist (x,A) = inf

y∈A
‖ x − y ‖, with the convention

dist (x, ∅) = +∞ (according to the general convention inf ∅ = +∞). Given a
subset C of Z, we denote by e(C,A) the Hausdorff–Pompeiu excess of C into
A, defined by

e(C,A) = sup
x∈C

dist (x,A),

with the conventions e(∅, A) = 0 and e(C, ∅) = +∞ whenever C 6= ∅. For a
set–mapping Λ : X ⇒ X , we denote by gph Λ the set {(x, y) ∈ X × X , y ∈
Λ(x)} and Λ−1(y) the set {x ∈ X , y ∈ Λ(x)}. The norm in the Banach space
X will be denoted by ‖ · ‖ and the closed ball centered at x with radius r by
IBr(x). For each n ∈ IN, we define τn : Rn −→ Rn by

(10) τn(x1, x2, · · · , xn) =
(

x1√
1 + x2

1

,
x2√

1 + x2
2

, · · · , xn√
1 + x2

n

)
.

We also need to define the pseudo–Lipschitzian concept of set–valued maps,
introduced by Aubin [7] and also known as Lipschitz–like property [14]:

Definition 1. A set–valued Γ is pseudo–Lipschitz around (x, y) ∈ gph Γ
with modulus M if there exist constants a and b such that

(11) sup
z∈Γ(y′)∩IBa(y)

dist (z,Γ(y′′)) ≤M ‖ y′ − y′′ ‖, for all y′ and y′′ in IBb(x).

In the term of excess, we have an equivalent definition of pseudo–
Lipschitzian property replacing the inequality (11) by

(12) e(Γ(y′) ∩ IBa(y), (y′′)) ≤M ‖ y′ − y′′ ‖, for all y′ and y′′ in IBb(x).

Pseudo–Lipschitzian property play a crutial role in many aspects of vari-
ational analysis and applications [14], [17]. Let us note that the Lipschitz–
like of Γ is equivalent to the metric regularity of Γ−1, which is a basic well–
posedness property in optimization problems. Other characterization is by
Mordukhovich [14] via the concept of coderivative D?Γ(x/y), i.e.,

(13) v ∈ D?Γ(x/y)(u)⇐⇒ (v,−u) ∈ Ngph Γ(x, y).

Then the Mordukhovich criterion says that Γ is pseudo–Lipschitz around
(x, y) if and only if

(14) ‖ D?Γ(x/y) ‖+= sup
u∈IB1(0)

sup
v∈D?Γ(x/y)(u)

‖ v ‖< ∞.

For some characterizations and applications of the Lipschitz–like property
the reader is referred to [7], [12], [14], [16], [17] and the references given there.
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We recall the following definition of semianalyticity subsets and subanalyt-
icity functions [9], [10] [11], [18].

Definition 2. (a) A subset A of Rn is called semianalytic if each point of
Rn admits a neighborhood V for which A ∩ V assumes the following form:

(15)
i=p⋃
i=1

i=q⋂
i=1

{x ∈ V : fij(x) = 0, gij(x) > 0},

where the functions fij , gij : V −→ R are real–analytic for all 1 ≤ i ≤ p,
1 ≤ j ≤ q.

(b) A subset A of Rn is called subanalytic if each point of Rn admits a
neighborhood V such that:

(16) A ∩ V = {x ∈ Rn : (x, y) ∈ B},
where B is a bounded semianalytic subset of Rn × Rm for some m ≥ 1.

(c) A subset A of Rn is called globally subanalytic if its image by τn defined
by (10) is a subanalytic subset of Rn.

(d) F : Rn −→ Rn is called subanalytic, if its graph is a subanalytic subset
of Rn × Rn.

(e) F : Rn −→ Rn is called globally subanalytic, if its graph is a globally
subanalytic subset of Rn × Rn.

We need also the following fixed point theorem [12].

Lemma 1. Let φ be a set–valued map from X into the closed subsets of X .
We suppose that for η0 ∈ X , r ≥ 0 and 0 ≤ λ < 1 the following properties hold

(1) dist (η0, φ(η0)) ≤ r(1− λ).
(2) e(φ(x1) ∩ IBr(η0), φ(x2)) ≤ λ ‖ x1 − x2 ‖, ∀x1, x2 ∈ IBr(η0).

Then φ has a fixed point in IBr(η0). That is, there exists x ∈ IBr(η0) such
that x ∈ φ(x). If φ is single–valued, then x is the unique fixed point of φ in
IBr(η0).

Finally, we recall a definition concerning directional differentiability and
Clarke’s Jacobian in finite dimensional spaces.

Definition 3. (a) A mapping F : D ⊆ Rn −→ Rn is said to be direction-
ally differentiable at x ∈ D along direction d if the following limit

(17) F ′(x; d) := lim
t↓0

F (x+ t d)− F (x)
t

exists.
Note that every definable locally Lipschitz mapping F admits directional

derivatives.
(b) For F : D ⊆ Rn −→ Rn a locally Lipschitz continuous function, the

limiting Jacobian of F at x ∈ D is defined by

(18) ∂F (x) = {M ∈ L(Rn,Rn) : ∃uk ∈ D, lim
k→∞

F ′(uk) =M}.
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(c) Let F : D ⊆ Rn −→ Rn be a locally Lipschitz continuous function.
Clarke’s Jacobian of F at x ∈ D is defined by

(19) ∂◦F (x) = co ∂F (x),

where coA is the closed convex envelope of A ⊆ Rn.

3. LOCAL CONVERGENCE OF METHOD (8)

Before presenting our main result of convergence of method (8), we give a
variant of the result for subanalytic mappings established by Bolte, Daniilidis
and Lewis [10, Lemma 3.3]:

Lemma 2. Let F : D ⊆ Rn −→ Rn be a locally Lipschitz subanalytic
function and x ∈ D. Then, there exists a positive rational number γ and a
constant Cx > 0, such that:

(20) ‖ F (y)− F (x)−∆(y) (y − x) ‖≤ Cx ‖ y − x ‖1+γ

where ∆(y) is any element of ∂◦F (y).
In particular, there exists a positive rational number γ?, and a constant

Cx? > 0, such that:

(21) ‖ F (y)− F (x?)−∆(y) (y − x?) ‖≤ Cx? ‖ y − x? ‖1+γ?

where ∆(y) is any element of ∂◦F (y).

We will be concerned with the existence and the convergence of the sequence
defined by (8) to the solution x? of (1). The main result of this study is as
follows.

Theorem 1. Let F : D ⊆ X −→ X be a locally Lipschitz subanalytic
function. Let x? be a locally unique solution of (1). Let Cx? and γ? be constants
given by (21).

Assume:
(P1) There exists K? > 0, such that for all x in D

‖ ∆F (x)−∆F (x?) ‖≤ K? ‖ x− x? ‖
for all ∆F (x) ∈ ∂◦F (x) and ∆F (x?) ∈ ∂◦F (x?);
(P2) For all ∆F (x?) ∈ ∂◦F (x?), the set–valued map (G+ ∆F (x?) (.− x?))−1

is pseudo–Lipschitz around (−F (x?), x?) with constants M , a and b (these
constants are given in Definition 1).

Then, for every constant C satisfying

(22) C ≥ C0 = M Cx? ,

there exists δ > 0 with

(23) δ < δ0 = min
{
a; γ?

√
1
C

; 1+γ?

√
b

2Cx?
;

√
b

4K?

}
such that for every starting point x0 in IBδ(x?) (with x0 6= x?), the sequence
(xk) defined by (8) converges to x?.
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Moreover (xk) satisfies the following inequality for k ≥ 0:

(24) ‖ xk+1 − x? ‖≤ C ‖ xk − x? ‖1+γ? .

We need to introduce some notations [5], [6]. First, define the set–valued
maps Q : X ⇒ X and ψk : X ⇒ X by

(25) Q(x) = F (x?) + ∆F (x?) (x− x?) +G(x), ψk(x) = Q−1(Zk(x)), k ≥ 0

where Zk is a mapping from X to X defined by

(26) Zk(x) = F (x?)− F (xk) + ∆F (x?) (x− x?)−∆F (xk) (x− xk), k ≥ 0.

Remark 1. The proof of Theorem 1 is given by induction on k. We first
state a result involving the starting point x0. Let us note that the point x1 is
a fixed point of ψ0 if and only if 0 ∈ F (x1) + ∆F (x0) (x1− x0) +G(x1). Once
xk is computed, we show that the function ψk has a fixed point xk+1 in X .
This process is useful to prove the existence of a sequence (xk) satisfying (8).

Proposition 1. Under the assumptions of Theorem 1, and for every dis-
tinct starting points x0 in IBδ(x?) (with x0 6= x?), the set–valued map ψ0 has
a fixed point x1 in IBδ(x?) satisfying

(27) ‖ x1 − x? ‖≤ C ‖ x0 − x? ‖1+γ?

where C and δ are given by Theorem 1.

Proof. By hypothesis (P2) we have

(28) e(Q−1(y′) ∩ IBa(x?), Q−1(y′′)) ≤M ‖ y′ − y′′ ‖, ∀y′, y′′ ∈ IBb(0).

Moreover, by Lemma 2 (see (21)) we obtain the following

‖ Z0(x∗) ‖ = ‖ F (x0)− F (x?)−∆f(x0) (x0 − x?) ‖

≤ Cx? ‖ x0 − x? ‖1+γ? .
(29)

By (23) we have Z0(x?) ∈ IBb(0).
Hence from (28) one gets

e

(
Q−1(0) ∩ IBδ(x?), ψ0(x?)

)
= e

(
Q−1(0) ∩ IBδ(x?), Q−1[Z0(x?)]

)
≤ M Cx? ‖ x0 − x? ‖1+γ?

= C0 ‖ x0 − x? ‖1+γ? .

(30)

According to the definition of excess e and using (30), we have

(31) dist (x?, ψ0(x?)) ≤ e
(
Q−1(0) ∩ IBδ(x?), ψ0(x?)

)
,

and

(32) dist (x?, ψ0(x?)) ≤ C0 ‖ x0 − x? ‖1+γ? .
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Since C > C0, there exists λ ∈ [0, 1[ such that C (1− λ) ≥ C0, and

(33) dist (x?, ψ0(x?)) ≤ C (1− λ) ‖ x0 − x? ‖1+γ? .

Identifying η0, φ and r in Lemma 1 by x?, ψ0 and r0 = C ‖ x0−x? ‖1+γ?

respectively, we can deduce from the inequality (33) that the first assumption
in Lemma 1 is satisfied.

We prove now that the second assumption of Lemma 1 is verified.
Using (23), we have r0 ≤ δ ≤ a, and moreover for x ∈ IBδ(x?) we get in

turn

‖ Z0(x) ‖ = ‖ F (x?)− F (x0) + ∆F (x?)(x− x?)−∆F (x0)(x− x0) ‖
≤ ‖ F (x0)− F (x?)−∆F (x0)(x0 − x?) ‖

+ ‖ (∆F (x0)−∆F (x?))(x− x?) ‖
≤ ‖ F (x0)− F (x?)−∆F (x0)(x0 − x?) ‖

+ ‖ ∆F (x0)−∆F (x?) ‖‖ x− x? ‖ .
Using Lemma 2 and (P2) we obtain

‖ Z0(x) ‖ ≤ Cx? ‖ x0 − x? ‖1+γ? +K? ‖ x0 − x? ‖ ‖ x− x? ‖

≤ Cx? δ
1+γ? +K? δ2.

(34)

Then by (23), we deduce that for all x ∈ IBδ(x?) we have Z0(x) ∈ IBb(0).
Then it follows that for all x′, x′′ ∈ IBr0(x?) we have

e(ψ0(x′) ∩ IBr0(x?), ψ0(x′′)) ≤ e(ψ0(x′) ∩ IBδ(x?), ψ0(x′′)),

which yields by (28) and (P2):

e(ψ0(x′) ∩ IBr0(x?), ψ0(x′′)) ≤ M ‖ Z0(x′)− Z0(x′′) ‖
= M ‖ (∆F (x0)−∆F (x?)) (x′′ − x′) ‖
≤ M K? ‖ x0 − x? ‖ ‖ x′′ − x′ ‖
≤ M K? δ ‖ x′′ − x′ ‖ .

(35)

Without loss of generality, we may suppose that δ ≤ λ

MK?
. The second

condition of Lemma 1 is satisfied. By Lemma 1 we can deduce the existence
of a fixed point x1 ∈ IBr0(x?) for the map ψ0. The proof of Proposition 1 is
complete. �

Proof. (Proof of Theorem 1) Keep η0 = x?, and for k ≥ 1, set:

r := rk = C ‖ x? − xk ‖1+γ? .

By Remark 1, the application of Proposition 1 to the map ψk gives the
desired result. �

Remark 2. In order for us to compare our results with the corresponding
ones in [8], let us introduce conditions used in [8] to prove a result similar to
Theorem 1:
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(P1)? There exists K > 0, such that ∀x ∈ D, ∀∆F (x) ∈ ∂◦F (x),
‖ ∆F (x) ‖≤ K;

(P2)? For all ∆F (x?) ∈ ∂◦F (x?), the set–valued map (G+∆F (x?) (.−x?))−1

is pseudo–Lipschitz around (−F (x?), x?) with constants M , a and b (These
constants are given in Definition 1), and 2M K < 1.

The condition (P2)? used in [8] is stronger than our condition (P2) (we do
not use in our hypothesis (P2) the additional condition 2M K < 1). More-
over, the constant K given in (P1)? is not easy to compute. This is another
motivation for introducing our center–condition (P1) [2], [3].

Another advantage of our method, we give in our Theorem 1 a finer error
estimate on the distances ‖ xk+1−x? ‖ (k ≥ 0) than that given in [8, Theorem
3.1]. The convergence in [8] is given by:

(36) ‖ xk+1 − x? ‖≤ ρ ‖ xk − x? ‖1+γ (k ≥ 0)

where γ is given by strong estimate (20) in Lemma 2 and ρ is a positive
constant. In our Theorem 1, we obtain a finer estimate than (36):

(37) ‖ xk+1 − x? ‖≤ C ‖ xk − x? ‖1+γ? (k ≥ 0)

by using only γ? given by center–estimate (21).
Hence, the claims us ade in the introduction have been justified.

Remark 3. We can enlarge the radius of convergence in Theorem 1 even
further as follows: using inequalities (34), (29), we can improve δ given by
(23) by considering the constant δ′:

δ′ < δ′0 = min
{
a; γ?

√
1
C

; 1+γ?

√
b

Cx?
; δ1

}
where δ1 is given by δ1 = max {η > 0 : Cx? η1+γ∗ + 2K? η2 − b < 0}.

CONCLUSION

We provided a Newton–like method to approximate an unique solution
for nonsmooth subanalytic variational inclusions in finite dimensional spaces.
Moreover, we obtain a local convergence result (see Theorem 1) using center–
type conditions and Lipschitz–like concept for set–valued maps.

Under some ideas given in [2, 3] for nonlinear equations, and using some
observations (see Remarks 2 and 3), we provided a finer analysis than [8] with
finer error estimate on the distances ‖ xn − x? ‖ (n ≥ 1).

These observations are very important in computational mathematics [2, 3].
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