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THEORETICAL ASPECTS AND SIMULATION
OF A GENERALIZED SURPLUS PROCESS

WITH A LOGARITHMIC BARRIER

ALIN V. ROŞCA

Abstract. In this article we consider a generalization of the classical Lundberg
surplus process. In the presence of the logarithmic dividend barrier we assume
that the company also receives interest on its reserve with a constant interest
rate. We derive equations for the survival probability and the expected sum of
discounted dividend payments. We give important theoretical results concerning
the existence and uniqueness of the corresponding solutions. We use Monte Carlo
(MC), Quasi-Monte Carlo (QMC) techniques and the direct simulation approach
in order to estimate these quantities. We also perform numerical tests, in which
we compare the accuracy of these algorithms.
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1. INTRODUCTION

Let us consider at the beginning the classical Lundberg risk model that
describes the surplus process of an insurance portfolio, which assumes inde-
pendent and identically distributed claims Xj , j = 1, 2, . . ., having the same
distribution function F (y). The claims occur according to a homogeneous
Poisson process N(t), with intensity λ, which counts the claims up to time t.
The risk process is described by the following relation:

(1) Rt = u+ ct−
N(t)∑

j=1

Xj ,

where c is a constant premium intensity. For more details on risk theory
see Gerber [9], Asmussen [4], Embrechts et al. [8] and Grandell [11]. We
assume that the expected value of the individual claim amounts µ = E(Xj)
is finite, and the net profit condition c > λµ is fulfilled, which “guarantees”
survival of the insurance company (see [4] or [11]). In the sequel we consider
a generalization of the classical Lundberg surplus process. The company also
receives interest on its reserve Rt with a constant interest rate i > 0. Hence
the risk process Rt, at time t, is described as follows:

(2) dRt = cdt+ iRtdt− dYt,
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where Yt =
∑N(t)

j=1 Xj . Accordingly to [19], we obtain

(3) Rt = ueit + c

∫ t

0
eisds−

∫ t

0
ei(t−s)dYs,

where R0 = u is the initial capital.
In the paper [15] a modification of the classical model was introduced:

Whenever the surplus process Rt defined in relation (1) reaches a logarith-
mic time-dependent barrier bt of the form

(4) bt = ln(eb + at), b ≥ 0, a > 0,

dividends are paid out to shareholders, with intensity c− dbt, and the surplus
stays on the barrier, until the occurrence of the next claim. In our generalized
model, with interest paid on the company’s reserve, the dividends will be paid
with intensity (c+iRt)−dbt. Thus, the dynamics of the risk process Rt defined
in (2) with the logarithmic barrier (4), are given by

(5)
{

dRt = (c+ iRt)dt− dYt, if Rt < bt (bellow barrier)
dRt = dbt − dYt, if Rt = bt (on the barrier).

Together with the initial capital R0 = u, 0 ≤ u < b < ∞, this determines
entirely the risk process {Rt, t ≥ 0} (see Figure 1.1).

Reserve Rt

Tim
e t



Ruinu

Dividends

Premiums

Claims

Time t

Dividend barrier b t

b

Fig. 1.1 – A sample path of the surplus process Rt

Two crucial quantities in the risk theory are the probability of survival

(6) φ(u, b) = P (Rt ≥ 0, ∀t ≥ 0|R0 = u, b0 = b),

or, alternatively, the probability of ruin ψ(u, b) = 1−φ(u, b), and the expected
sum of discounted dividend payments V (u, b), which will be defined later in
this paper.

Dividend barrier models have a long history in risk theory, going back to
Finetti [7]. Gerber [10] was the one who introduced the linear dividend bar-
rier, in order to overcome the deficiency of horizontal barrier models that lead
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to ruin with probability 1. He derived an upper bound for the probability
of ruin by martingale methods, and in [10], he obtained exact solutions for
the probability of ruin and for the expected sum of discounted dividend pay-
ments V (u, b), in terms of infinite series, in the special case of exponentially
distributed claim amounts. This result was generalized to arbitrary Erlang
claim distributions by Siegl and Tichy [18], who proposed a suitable solution
algorithm. The convergence of this algorithm was proved by Albrecher and
Tichy in [3]. More general dividend barrier models were recently introduced
by Albrecher and Kainhofer in [1]. In paper [2] a generalized version of a non-
linear dividend barrier model of an insurance portfolio was introduced and
investigated.

As we have already mentioned, we introduced in our paper [15] a general
dividend barrier model based on a logarithmic dividend barrier. For this
model, we derived the integro-differential equations for the probability of sur-
vival φ(u, b) and for the expected sum of discounted dividend payments V (u, b)
and we gave theoretical results concerning the existence and uniqueness of the
corresponding solutions. We also developed Monte Carlo (MC) and Quasi-
Monte Carlo (QMC) algorithms, in order to obtain these quantities for the
logarithmic dividend barrier model.

In this article, we investigate theoretically and numerically the generalized
version of the logarithmic dividend barrier model from [15], in which we assume
that the company also receives interest on its reserve Rt. In Section 2 we derive
new equations for the survival probability φ(u, b) and for the expected sum
of discounted dividend payments V (u, b), which extend the equations from
[15]. In Section 3 we present important theoretical results concerning the
existence and uniqueness of the corresponding solutions. In the last section,
detailed numerical results are presented for estimating these solutions. We
develop Monte Carlo (MC) and Quasi-Monte Carlo (QMC) algorithms, and
we perform numerical tests using these algorithms. The direct simulation
approach for our generalized risk process is also presented.

2. FORMULATION OF THE INTEGRO-DIFFERENTIAL MODEL

In this section we derive the integro-differential equation for the two quan-
tities of interest, φ(u, b) and V (u, b). We consider the generalized risk model
(2) extended by a logarithmic dividend barrier

(7) bt = ln(eb + at), b ≥ 0, a > 0.

Following a procedure developed by Gerber in [10], we prove the following
theoretical result.

Theorem 1. The survival probability φ(u, b) defined in (1) can be expressed
as the solution of the following integro-differential equation

(8) (c+ iu)
∂φ

∂u
+
a

eb

∂φ

∂b
− λφ(u, b) + λ

∫ u

0
φ(u− y, b)dF (y) = 0,
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with the boundary condition

(9)
∂φ

∂u

∣∣∣
u=b

= 0.

Proof. A way to get the above equation for φ(u, b) is to use a differential
argument (see e.g. [6]). We consider the infinitesimal time interval (0, dt).
Then, we consider Rt within time interval (0, dt) and split the four possible
cases as follows:

(1) no claim in (0, dt),
(2) one claim in (0, dt) but the amount X1 to be paid does not cause ruin,
(3) one claim in (0, dt) and the amount X1 to be paid causes ruin,
(4) more than one claim occurs in (0, dt).

From Hipp [12] we know that the classical risk process Rt under a constant
interest rate i, modified by us with the logarithmic dividend barrier, is a
Markov process with stationary and independent increments. Hence, we get

φ(u, b) = (1− λdt+ o(dt))φ(u+ cdt+ iudt, ln(eb + adt))(10)

+ (λdt+ o(dt))
∫ u+cdt+iudt

0
φ(u+ cdt+ iudt− y, ln(eb + adt))dF (y)

+ (λdt+ o(dt)) · 0 + o(dt),

provided that u < b. As usual o(dt)
dt → 0 as dt→ 0.

By the Taylor expansion of the function φ in a neighborhood of the point (u, b)
we get

φ(u+ cdt+ iudt, ln(eb + adt)) = φ(u, b) + (cdt+ iudt)
∂φ

∂u
(11)

+ (ln(eb + adt)− b)
∂φ

∂b
+ o(dt).

By the Taylor expansion of the function φ in a neighborhood of the point
(u− y, b) and by collecting the terms of order dt, we obtain

φ(u+ cdt+ iudt− y, ln(eb + adt)) = φ(u− y, b) + (cdt+ iudt)
∂φ

∂u
(12)

+ (ln(eb + adt)− b)
∂φ

∂b
+ o(dt).

Substituting (11) and (12) in the equality (10), we obtain

φ(u, b) = λdt

∫ u+cdt+iudt

0

[
φ(u− y, b) + (cdt+ iudt)

∂φ

∂u

+ (ln(eb + adt)− b)
∂φ

∂b

]
dF (y)

+ (1− λdt)
[
φ(u, b) + (cdt+ iudt)

∂φ

∂u
+ (ln(eb + adt)− b)

∂φ

∂b

]
+ o(dt).
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Dividing by dt and letting dt→ 0, we get

(13) (c+ iu)
∂φ

∂u
+
a

eb

∂φ

∂b
− λφ(u, b) + λ

∫ u

0
φ(u− y, b)dF (y) = 0.

In the case u = b, we obtain the following equation

(14)
a

eb

∂φ

∂u
+
a

eb

∂φ

∂b
− λφ(u, b) + λ

∫ u

0
φ(u− y, b)dF (y) = 0.

From relations (13) and (14) we get the boundary condition ∂φ
∂u

∣∣∣
u=b

= 0. ¤

Furthermore, we have the natural requirement

(15) lim
b→∞

φ(u, b) = φ(u),

where φ(u) is the survival probability in the absence of the barrier.
For 0 ≤ u < b, we define the time of ruin of the surplus process Rt as follows

(16) T (u, b) = inf{t : Rt < 0|R0 = u, b0 = b}.
Let i > 0 be the risk less interest rate. We define the quantity

(17) D(u, b) =
∫ T (u,b)

0
e−itdD(t),

which represents the present value of all dividends until the time of ruin T (u, b).
The term D(t) expresses the aggregate dividends paid to shareholders by time
t and is defined as

(18) dD(t) =
(
eit(c+ iu)− a

eb + at

)
dt, whenever Rt = bt.

Finally, the expected sum of discounted dividend payments is

(19) V (u, b) = E[D(u, b)].

Theorem 2. The expected sum of discounted dividend payments V (u, b) can
be expressed as the solution of the following integro-differential equation

(20) (c+ iu)
∂V

∂u
+
a

eb

∂V

∂b
− (λ+ i)V (u, b) + λ

∫ u

0
V (u− y, b)dF (y) = 0,

with the boundary condition

(21)
∂V

∂u

∣∣∣
u=b

= 1.

Proof. Let us consider the infinitesimal time interval (0, dt). Conditioning
on the occurrence of the first claim within this interval, and denoting by T1
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the occurrence time of this claim, we obtain by the strong Markov property
of the Markov risk process Rt with constant interest rate i

V (u, b) = E(e−idtV (Rdt, bdt)) = e−idtE(V (Rdt, bdt))

(22)

= e−idt{P (T1 > dt)E(V (u+ cdt+ iudt, ln(eb + adt)))

+ P (T1 ≤ dt)E(V (u+ cdt+ iudt−X1, ln(eb + adt)))}
= e−idt{(1− λdt+ o(dt))V (u+ cdt+ iudt, ln(eb + adt))

+ (λdt+ o(dt))
∫ u+cdt+iudt

0
V (u+ cdt+ iudt− y, ln(eb + adt))dF (y)}.

We have

(23) e−idt = 1− idt+ o(dt).

By using the Taylor expansion of the function V in a neighborhood of the
point (u, b) and collecting the terms of order dt, we obtain

V (u+ cdt+ iudt, ln(eb + adt)) = V (u, b) + (cdt+ iudt)
∂V

∂u
(24)

+ (ln(eb + adt)− b)
∂V

∂b
+ o(dt).

By the Taylor expansion of the function V in a neighborhood of the point
(u− y, b) and collecting the terms of order dt, we get

V (u+ cdt+ iudt− y, ln(eb + adt)) = V (u− y, b) + (cdt+ iudt)
∂V

∂u
(25)

+ (ln(eb + adt)− b)
∂V

∂b
+ o(dt).

Replacing (24) and (25) into (22), we obtain

V (u, b) = (1− idt)λdt
∫ u+cdt+iudt

0

[
V (u− y, b) + (cdt+ iudt)

∂V

∂u

+ (ln(eb + adt)− b)
∂V

∂b

]
dF (y) + o(dt)

+ (1− idt)(1− λdt)
[
V (u, b) + (cdt+ iudt)

∂V

∂u

+ (ln(eb + adt)− b)
∂V

∂b

]
+ o(dt).

Dividing by dt and letting dt→ 0, we finally get

(c+ iu)
∂V

∂u
+
a

eb

∂V

∂b
− (λ+ i)V (u, b) + λ

∫ u

0
V (u− y, b)dF (y) = 0.

In the case u = b the boundary condition (21) can be deduced by similar
arguments. ¤



7 Generalized surplus process with a logarithmic barrier 83

There has been some interest in the actuarial field for models where divi-
dends are paid also after a ruin event. In our model with a logarithmic barrier,
if we allow that the dividends are paid after a ruin event, then we obtain a
similar equation with (20) for the expected value W (u, b) of the discounted
dividend payments

(26) (c+ iu)
∂W

∂u
+
a

eb

∂W

∂b
− (λ+ i)W (u, b) + λ

∫ u

0
W (u− y, b)dF (y) = 0,

with the boundary condition

(27)
∂W

∂u

∣∣∣
u=b

= 1.

3. THEORETICAL RESULTS FOR THE BOUNDARY VALUE PROBLEM

It is known that, even for the particular situation of the exponentially dis-
tributed claim amounts, the problem of obtaining analytical results is not so
easy. Next we present some theoretical results concerning the solution of the
boundary value problems developed in the previous section.

We first give two important theoretical results in which we prove that the
boundary value problem (20) and (21) has a unique bounded solution.

Theorem 3. A function (u, b) 7→ V (u, b) is the solution of the integro-
differential equation

(28) (c+ iu)
∂V

∂u
+
a

eb

∂V

∂b
− (λ+ i)V (u, b) + λ

∫ u

0
V (u− y, b)dF (y) = 0,

with the boundary condition

(29)
∂V

∂u

∣∣∣
u=b

= 1,

if and only if it is a fixed point of the following operator

Ag(u, b) =

(30)

∫ t∗

0
λe−(λ+i)t

∫ (u+ c
i
)eit− c

i

0
g
(
(u+

c

i
)eit − c

i
− y, ln(eb + at)

)
dF (y)dt

+
∫ ∞

t∗
λe−(λ+i)t

∫ ln(eb+at)

0
g(ln(eb + at)− y, ln(eb + at))dF (y)dt

+
∫ ∞

t∗
λe−λt

∫ t

t∗
e−is

(
eis(c+ iu)− a

eb + as

)
dsdt,

where t∗ is the unique positive solution of the equation

(u+
c

i
)eit − c

i
= ln(eb + at),

and (u, b) 7→ g(u, b) is a bounded function with 0 ≤ u < b <∞.
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Proof. In our demonstration we follow an idea from [19].
Let V (u, b) be the expected sum of the discounted dividend payments. Then

the function (u, b) 7→ V (u, b) satisfies the differential equation (20) according
to Theorem 2. Along this proof, we will use the representation (3) of the risk
process Rt.

There can happen two situations of interest:

(1) the first claim is before the process hits the dividend barrier,
(2) the first claim is after the process hits the barrier (in which case we

have an aditional term representing the discounted sum of dividend
payments until the first claim occurs).

If we condition on the time of occurrence T1 and the amount X1 of the first
claim, we can express V (u, b), by using the total probability formula, as follows:

V (u, b) = E(e−iT1V (RT1 , bT1))

= E(e−iT1V (ueiT1 + c

∫ T1

0
eisds−X1, ln(eb + aT1)))

=
∫ t∗

0
e−itE(V (ueit + c

∫ t

0
eisds−X1, ln(eb + at)))λe−λtdt

+
∫ ∞

t∗
e−itE(V (ln(eb + at)−X1, ln(eb + at)))λe−λtdt

+
∫ ∞

t∗
λe−λt

∫ t

t∗
e−is

(
c+ i

(
ueis + c

eis

i
− c

i

)− a

eb + as

)
dsdt

=
∫ t∗

0
λe−(λ+i)t

∫ ueit+c
R t
0 eisds

0
V (ueit + c

∫ t

0
eisds− y, ln(eb + at))dF (y)dt

+
∫ ∞

t∗
λe−(λ+i)t

∫ ln(eb+at)

0
V (ln(eb + at)− y, ln(eb + at))dF (y)dt

+
∫ ∞

t∗
λe−λt

∫ t

t∗
e−is

(
(c+ iu)eis − a

eb + as

)
dsdt

=
∫ t∗

0
λe−(λ+i)t

∫ (u+ c
i
)eit− c

i

0
V

((
u+

c

i

)
eit − c

i
− y, ln(eb + at)

)
dF (y)dt

+
∫ ∞

t∗
λe−(λ+i)t

∫ ln(eb+at)

0
V (ln(eb + at)− y, ln(eb + at))dF (y)dt

+
∫ ∞

t∗
λe−λt

∫ t

t∗
e−is

(
(c+ iu)eis − a

eb + as

)
dsdt

= AV (u, b).

Hence the expected sum of the discounted dividend payments (u, b) 7→ V (u, b),
that can be expressed as the solution of the integro-differential equation (28),
is a fixed point of the operator (30). ¤
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Theorem 4. The integro-differential equation

(c+ iu)
∂V

∂u
+
a

eb

∂V

∂b
− (λ+ i)V (u, b) + λ

∫ u

0
V (u− y, b)dF (y) = 0,

with the boundary condition ∂V
∂u

∣∣∣
u=b

= 1 has a unique bounded solution.

Proof. First we show that the operator A, defined in Theorem 3, is a con-
traction. For any two bounded functions g1 and g2 we have

|Ag1(u, b)−Ag2(u, b)|

=
∣∣∣
∫ t∗

0
λe−(λ+i)t

∫ (
u+ c

i

)
eit− c

i

0
g1

((
u+

c

i

)
eit − c

i
− y, ln(eb + at)

)
dF (y)dt

+
∫ ∞

t∗
λe−(λ+i)t

∫ ln(eb+at)

0
g1(ln(eb + at)− y, ln(eb + at))dF (y)dt

+
∫ ∞

t∗
λe−λt

∫ t

t∗
e−is

(
eis(c+ iu)− a

eb + as

)
dsdt

−
∫ t∗

0
λe−(λ+i)t

∫ (
u+ c

i

)
eit− c

i

0
g2

((
u+

c

i

)
eit − c

i
− y, ln(eb − at)

)
dF (y)dt

−
∫ ∞

t∗
λe−(λ+i)t

∫ ln(eb+at)

0
g2(ln(eb + at)− y, ln(eb + at))dF (y)dt

−
∫ ∞

t∗
λe−λt

∫ t

t∗
e−is

(
eis(c+ iu)− a

eb + as

)
dsdt

∣∣∣.

Using some known integral properties and the distribution function properties,
we obtain

|Ag1(u, b)−Ag2(u, b)|

≤
∣∣∣
∫ t∗

0
λe−(λ+i)t

∫ (
u+ c

i

)
eit− c

i

0
g1

((
u+

c

i

)
eit − c

i
− y, ln(eb + at)

)
dF (y)dt

−
∫ t∗

0
λe−(λ+i)t

∫ (
u+ c

i

)
eit− c

i

0
g2

((
u+

c

i

)
eit − c

i
− y, ln(eb + at)

)
dF (y)dt

∣∣∣

+
∣∣∣
∫ ∞

t∗
λe−(λ+i)t

∫ ln(eb+at)

0
g1(ln(eb + at)− y, ln(eb + at))dF (y)dt

−
∫ ∞

t∗
λe−(λ+i)t

∫ ln(eb+at)

0
g2(ln(eb + at)− y, ln(eb + at))dF (y)dt

∣∣∣

≤
∫ t∗

0

∣∣λe−(λ+i)t
∣∣
∫ ∞

0
‖g1 − g2‖∞dF (y)dt

+
∫ ∞

t∗

∣∣λe−(λ+i)t
∣∣
∫ ∞

0
‖g1 − g2‖∞dF (y)dt
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=
∫ t∗

0

∣∣λe−(λ+i)t
∣∣‖g1 − g2‖∞dt+

∫ ∞

t∗

∣∣λe−(λ+i)t
∣∣‖g1 − g2‖∞dt

= ‖g1 − g2‖∞
∫ ∞

0
λe−(λ+i)tdt =

λ

λ+ i
‖g1 − g2‖∞,

where ‖g(u, b)‖∞ = sup0≤u<b<∞ |g(u, b)|.
As λ

λ+i < 1, it follows that the operator A is a contraction. Hence, according
to Banach’s Theorem, the fixed point of the operator is unique.

Applying Theorem (3), we finally obtain that equation (28) has a unique
bounded solution. ¤

Proceeding in a similar way, we can show that the equation (26), with the
boundary condition (27), has also a unique bounded solution W .

Theorem 5. The solution of the integro-differential equation

(31) (c+ iu)
∂φ

∂u
+
a

eb

∂φ

∂b
− λφ(u, b) + λ

∫ u

0
φ(u− y, b)dF (y) = 0,

with the boundary condition

(32)
∂φ

∂u

∣∣∣
u=b

= 0,

is a fixed point of the following operator

Aφ(u, b) =
∫ t∗

0
λe−λt

∫ (
u+ c

i

)
eit− c

i

0
φ
((
u+

c

i

)
eit − c

i
− y, ln(eb + at)

)
dF (y)dt

(33)

+
∫ ∞

t∗
λe−λt

∫ ln(eb+at)

0
φ(ln(eb + at)− y, ln(eb + at))dF (y)dt.

Proof. Let φ(u, b) be the survival probability. Then, (u, b) 7→ φ(u, b) satisfies
the differential equation (31) according to Theorem 1.

But, if we condition on the time of occurrence T1 and the amount X1 of the
first claim, we can express φ(u, b), by using the total probability law (see [5]),
as follows

φ(u, b) = E(φ(RT1 , bT1))

= E(φ(ueiT1 + c

∫ T1

0
eisds−X1, ln(eb + aT1)))

=
∫ t∗

0
E

(
φ
((
u+

c

i

)
eit − c

i
−X1, ln(eb + at)

))
λe−λtdt

+
∫ ∞

t∗
E(φ(ln(eb + at)−X1, ln(eb + at)))λe−λtdt
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=
∫ t∗

0
λe−λt

∫ (
u+ c

i

)
eit− c

i

0
φ
((
u+

c

i

)
eit − c

i
− y, ln(eb + at)

)
dF (y)dt

+
∫ ∞

t∗
λe−λt

∫ ln(eb+at)

0
φ(ln(eb + at)− y, ln(eb + at))dF (y)dt

= Aφ(u, b).

Hence, the survival probability (u, b) 7→ φ(u, b), that can be expressed as the
solution of the integro-differential equation (31), is a fixed point of the operator
(33). ¤

Remark 6. Unfortunately, we cannot apply the same approach using the
contraction property to prove the uniqueness of the solution. However, we can
still obtain a numerical solution for φ(u, b), by stochastic simulation of the risk
process Rt with the logarithmic barrier.

4. NUMERICAL METHODS FOR ESTIMATING THE SOLUTION

4.1. The contracting operator approach. In this paragraph, we present a
procedure for approximating the solution of the integro-differential equation
(28), based on operator (30). Following a technique used in Tichy [20], the
fixed point of the operator (30) can be obtained using the successive approxi-
mations method. We start with an arbitrary bounded function (u, b) 7→ f(u, b)
and apply the contracting integral operator A to f(u, b), k times. The num-
ber of iterations k in the method should be chosen according to the desired
accuracy of the solution. Thus we have

g(k)(u, b) = Akg(0)(u, b),

g(0)(u, b) = f(u, b).

Hence, we obtain a 2k-dimensional integral for g(k)(u, b), which we calculate
using the MC and QMC methods. For this we need to transform the integra-
tion domain of the operator (30) into the unit square [0, 1]2. We consider the
following change of variables:

(1) For the first double integral

t = − ln(1− x1(1− e−(λ+i)t∗))
λ+ i

,(34)

y = F−1
(
x2 · F

((
u+

c

i

)
eit − c

i

))
.(35)

(2) For the second double integral

t = t∗ − ln(1− z1)
λ+ i

,(36)

y = F−1
(
z2 · F (ln(eb + at))

)
.(37)
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We consider the following notation for the inhomogeneous term of operator A
defined in (30)

(38) p(u, b) :=
∫ ∞

t∗
λe−λt

∫ t

t∗
e−is

(
eis(c+ iu)− a

eb + as

)
dsdt.

Thus the operator A becomes

Ag(u, b) = p(u, b) +
λ

λ+ i
·
[
(
1− e−(λ+i)t∗)

(39)

·
∫

[0,1]2
g
((
u+

c

i

)
eit − c

i
− y, ln(eb + at)

)
F

((
u+

c

i

)
eit − c

i

)
dx1dx2

+ e−(λ+i)t∗
∫

[0,1]2
g(ln(eb + at)− y, ln(eb + at))F (ln(eb + at))dz1dz2

]
,

where t and y are determined according to formulas (34) and (35), for the first
integral, and according to formulas (36) and (37), for the second integral.

For a given choice of the pair (u, b), the MC estimator is

(40) ṼMC(u, b) =
1
N

N∑

n=1

g(k)
n (u, b),

where each g(k)
n (u, b) (n = 1, . . . N) is calculated recursively by

g(0)
n (u, b) = f(u, b),(41)

g(j)
n (u, b) = p(u, b) +

λ

λ+ i
·
[
(
1− e−(λ+i)t∗)F

((
u+

c

i

)
eit

(j)
1,n − c

i

)
(42)

· g(j−1)
n

((
u+

c

i

)
eit

(j)
1,n − c

i
− y

(j)
1,n, ln(eb + at

(j)
1,n)

)

+ e−(λ+i)t∗F (ln(eb + at
(j)
2,n))

· g(j−1)
n (ln(eb + at

(j)
2,n)− y

(j)
2,n, ln(eb + at

(j)
2,n))

]
,

for j = 1, . . . , k. The values t(j)1,n, y(j)
1,n, t(j)2,n and y

(j)
2,n, j = 1, . . . , k, are deter-

mined as described below. We first consider the random points (x(1)
n , . . . , x

(2k)
n )

and (z(1)
n , . . . , z

(2k)
n ) uniformly distributed on [0, 1]2k. Then t

(j)
1,n and y

(j)
1,n,

j = 1, . . . , k, are determined according to relations (34) and (35), with x1

and x2 being the values x(j)
n and x

(j+k)
n , respectively, whereas t(j)2,n and y

(j)
2,n,

j = 1, . . . , k, are determined using relations (36) and (37), with z1 and z2

being the values z(j)
n and z(j+k)

n , respectively.
The procedure is described in the following algorithm:
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Algorithm 7. Monte Carlo Algorithm for estimating the solution V (u, b)
of equation (28)

Input data:

• the initial reserve u of the insurance company, and the initial value b
of the logarithmic barrier;

• the parameters λ, δ, µ, a, c;
• the integers N , k;
• the bounded function f ;

FOR n = 1, . . . , N DO
Generate the random points (x(1)

n , . . . , x
(2k)
n ) and (z(1)

n , . . . , z
(2k)
n )

uniformly distributed on [0, 1]2k.
Calculate the values t(j)1,n and y(j)

1,n, j = 1, . . . , k, according to relations
(34) and (35), with x1 and x2 being the values x(j)

n and x(j+k)
n ,

respectively.
Compute the values t(j)2,n and y(j)

2,n, j = 1, . . . , k, using relations (36) and
(37), with z1 and z2 being the values z(j)

n and z(j+k)
n , respectively.

Calculate recursively g(k)
n (u, b), using formulas (41) and (42).

END FOR

Compute the MC estimate

ṼMC(u, b) =
1
N

N∑

n=1

g(k)
n (u, b).

Output data: The value ṼMC(u, b), which approximates the expected sum of
discounted dividend payments V (u, b).

For a given choice of the pair (u, b), the QMC estimator is

(43) ṼQMC(u, b) =
1
N

N∑

n=1

g(k)
n (u, b),

where each g
(k)
n (u, b) (n = 1, . . . N) is calculated recursively using formulas

(41) and (42).
In the case of QMC method, the values t(j)1,n, y(j)

1,n, t(j)2,n and y(j)
2,n, j = 1, . . . , k,

in formulas (41) and (42), are determined as follows. We first consider the
low-discrepancy sequences of points on [0, 1]2k, x = (x1, . . . , xN ) for the first
integral and z = (z1, . . . , zN ) for the second integral. Each point of the se-
quence x is of the form xn = (x(1)

n , . . . , x
(2k)
n ) (n = 1, . . . , N), and each point

of the sequence z is of the form zn = (z(1)
n , . . . , z

(2k)
n ) (n = 1, . . . , N).
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The values t(j)1,n and y
(j)
1,n, j = 1, . . . , k, are determined next according to

relations (34) and (35), with x1 and x2 being the values x(j)
n and x

(j+k)
n , re-

spectively, whereas t(j)2,n and y
(j)
2,n, j = 1, . . . , k, are determined using relations

(36) and (37), with z1 and z2 being the values z(j)
n and z(j+k)

n , respectively.
A similar Quasi-Monte Carlo Algorithm can be written for estimating the

solution V (u, b) of equation (28).

Following an idea from Albrecher and Kainhofer [1], one can combine the
two double integrals from operator (30) into one integral, by a suitable change
of variables. We denote

(44) ymin(u, b, t) = min
((
u+

c

i

)
eit − c

i
, ln(eb + at)

)
,

and consider the following change of variables

t = − ln(1− v1)
λ+ i

,(45)

y = F−1
(
v2 · F

(
ymin(u, b, t)

))
.(46)

Then, the operator A, defined in (30), can be expressed as

Ag(u, b) =
λ

λ+ i

∫

[0,1]2
F (ymin(u, b, t))g(ymin(u, b, t)− y, ln(eb + at))dv1dv2

(47)

+ p(u, b).

Like in the previous procedure, we start with an initial bounded function
g(0)(u, b) = f(u, b) and apply k times the integral operator A onto g(0)(u, b) =
f(u, b), g(k)(u, b) = Akg(0)(u, b). Thus, we obtain an approximation of the
fixed point of the operator A, which is the solution of the integro-differential
equation (28).

The MC estimator for V (u, b) is

(48) V̂MC(u, b) =
1
N

N∑

n=1

g(k)
n (u, b),

where each g(k)
n (u, b) (n = 1, . . . N) is calculated recursively by

g(0)
n (u, b) = f(u, b),(49)

g(j)
n (u, b) =

λ

λ+ i
F (ymin(u, b, t(j)n ))(50)

· g(j−1)
n (ymin(u, b, t(j)n )− y(j)

n , ln(eb + at(j)n )) + p(u, b),

for j = 1, . . . , k. The values t(j)n , y(j)
n , j = 1, . . . , k, are determined as de-

scribed below. We first consider the random point (v(1)
n , . . . , v

(2k)
n ) uniformly
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distributed on [0, 1]2k. Next the values t(j)n and y
(j)
n , j = 1, . . . , k, are deter-

mined according to relations (45) and (46), with x1 and x2 being the values
v

(j)
n and v(j+k)

n , respectively.
This procedure is formulated in the following algorithm:

Algorithm 8. Monte Carlo Algorithm for estimating the solution V (u, b)
of equation (28), in the case of modified operator

Input data:
• the initial reserve u of the insurance company, and the initial value b

of the logarithmic barrier;
• the parameters λ, δ, µ, a, c;
• the integers N , k;
• the bounded function f ;

FOR n = 1, . . . , N DO
Generate the random point (v(1)

n , . . . , v
(2k)
n ) uniformly distributed on

[0, 1]2k.
Determine the values t(j)n and y(j)

n , j = 1, . . . , k, according to relations
(45) and (46), with x1 and x2 being the values v(j)

n and v(j+k)
n ,

respectively.
Calculate recursively g(k)

n (u, b), using formulas (49) and (50).
END FOR
Compute the MC estimate

V̂MC(u, b) =
1
N

N∑

n=1

g(k)
n (u, b).

Output data: The value V̂ (u, b), which approximates the expected sum of dis-
counted dividend payments V (u, b).

The QMC estimator for V (u, b) is

(51) V̂QMC(u, b) =
1
N

N∑

n=1

g(k)
n (u, b),

where each g
(k)
n (u, b) (n = 1, . . . N) is calculated recursively, using formulas

(49) and (50).
In the case of QMC method, the values t(j)n , y(j)

n , j = 1, . . . , k, in formulas
(49) and (50), are determined as follows. We first consider the low-discrepancy
sequence of points on [0, 1]2k, v = (v1, . . . , vN ). Each point of the sequence v
is of the form and vn = (v(1)

n , . . . , v
(2k)
n ) (n = 1, . . . , N). Next the values t(j)n

and y
(j)
n , j = 1, . . . , k, are determined according to relations (45) and (46),

with x1 and x2 being the values v(j)
n and v(j+k)

n , respectively.
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A similar Quasi-Monte Carlo Algorithm can be written for estimating the
solution V (u, b) of equation (28).

4.2. The direct simulation approach. As we know, there are no analytical
solutions for the survival probability φ(u, b) or for the expected sum of dis-
counted dividend payments V (u, b), which are the most important quantities
in risk theory models. That is why estimates obtained through the direct sim-
ulation of the risk process (see [14]) are needed to measure the accuracy of the
estimates calculated using the MC and QMC algorithms that we developed in
the previous paragraph.

We simulate N paths of the risk process (1) as follows:
• Start with the initial values t0 = 0, r0 = u, b0 = b, where u is the

initial reserve of the insurance company and b is the initial value of
the logarithmic barrier bt.

• As the number of claims from the interval [0, t] are Poisson distributed
with parameter λ, it follows that the time between successive claims
(inter-arrival time) is exponentially distributed with intensity λ and
independent of the past. For k ≥ 0, we generate an exponentially
distributed random variable tk with parameter λ and set the time
tk+1 := tk + tk, which is the time when the (k + 1)-th claim occurs.

• For k ≥ 0 we generate the claim amount yk, from a random variable
with distribution function F (y). In order to do this, one can use the
inversion method (see [16] and [17]).

• We set the new reserve after a claim rk+1 := min{(rk + c
i

)
eitk −

c
i , ln(ebk+atk)}−yk. Due to the dividend barrier’s structure, we can re-
set the origin to time tk+1 in every step, by setting bk+1 = ln(ebk +atk).

Counting the trajectories that survive and dividing this number by the total
number N of simulated trajectories, we obtain an unbiased estimator for the
survival probability φ(u, b)

(52) φ̂(u, b) =
1
N

N∑

j=1

1A(Tj),

where A is the set of all trajectories Tj , for which ruin does not occur (i. e.
rk > 0, ∀k).

It can happen that Rt → ∞, as t → ∞, without the reserve Rt ever be-
coming negative. Hence, the reserve process stops with probability less than
1. Therefore it is necessary to stop the process at some time instance. This
can be done at time tmax, for suitably large tmax. Stopping the process at this
time, we actually overestimate the true survival probability. However, if the
stopping time tmax is chosen large enough, this bias becomes negligible. In
our simulations, we have increased tmax until practically no difference in the
value of (52) was observable by further increasing tmax.
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Instead of considering as stopping criterion a finite time tmax one can employ
an upper absorbing horizontal barrier at rmax > u, as stopping criteria, for
trajectories not leading to ruin. Hence, we stop every realization of a path at
time T = min{Truin, inf{t|Rt ≥ rmax}}, where Truin is the time of ruin. Using
this stopping criterion we again overestimate the survival probability φ(u, b).
However, if the threshold rmax is chosen large enough, this effect becomes
negligible.

For simulating the expected sum V (u, b) of discounted dividend payments,
we proceed as for the generation of N paths of the risk process (1). Whenever
the process hits the dividend barrier, i.e.,

(
rk + c

i

)
eitk − c

i > ln(ebk + atk), we
need to calculate the amount of dividends that are paid out until the (k+1)-th
claim occurs:

vk+1 := vk + e−itk+1

∫ tk

t∗
e−is

(
(c+ irk)eis − a

ebk + as

)
ds, k ≥ 0,

v0 := 0,

where t∗ is the unique positive solution of the equation
(
rk + c

i

)
eit − c

i =
ln(ebk +at). The process is stopped whenever the ruin occurs (i.e., ∃k > 0 such
that rk < 0) or at sufficiently large time instance tmax, after which the expected
value of discounted dividend payments is negligible, due to the discount factor.
Then the expected value of discounted dividend payments is estimated by

(53) V (u, b) =
1
N

N∑

l=1

v(l),

where v(l) is the final value of vi for trajectory l.

4.3. Numerical results. In this section we present the numerical results that
are obtained using exponentially distributed claim amounts (F (y) = 1−e−µy).
Note that in this case the solution t∗ of the equation

(54)
(
u+

c

i

)
eit − c

i
= ln(eb + at)

needs to be calculated numerically.
The parameters are set to c = 1.5, δ = 0.1, a = 1 and λ = µ = 1. The

values for u and b will be specified later.
The MC estimates of φ(u, b) are obtained from the direct simulation, using

N = 1000 and N = 5000 paths. The corresponding “true” or “exact” value
of φ(u, b) is obtained, in the lack of an analytical solution, by a long direct
simulation of 100 000 paths, for each choice of the pair (u, b) that we analyze.
As stopping criteria for the direct simulation of the survival probability φ(u, b),
we employed a finite time tmax = 100.

The estimates ṼMC(u, b) and ṼQMC(u, b), given by formulas (40) and (43),
respectively, are obtained using N = 200 and N = 400 paths. For the esti-
mates V̂MC(u, b) and V̂QMC(u, b), given by formulas (48) and (51), respectively,
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we used a double number of paths N . In the lack of an analytical solution, the
corresponding “exact” value for V (u, b) is obtained by a long direct simulation
of 10000 paths, for each choice of the pair (u, b) that we analyze.

In the calculations of ṼMC(u, b), ṼQMC(u, b), V̂MC(u, b) and V̂QMC(u, b), we
considered a recursion depth of k = 5, leading us to a 10-dimensional integral.
We choose the function f(u, b) to be constant, the value of the function being
equal to the expected value of discounted dividend payments, obtained in a
short direct simulation of the risk process, with N = 10.

We employed Halton sequences and SQRT sequences (see [13]), for our QMC
calculations.

As stopping criteria for the direct simulation of the expected value of dis-
counted dividend payments, it turned out that a choice of tmax = 200 is
sufficient for our estimations. As the inter-arrival times are exponentially
distributed with mean 1, there are necessary, on average, 200 exponentially
distributed times and 200 claim occurrences until the process is stopped.

The exact values for the survival probability φ(u, b) and for the expected
sum of discounted dividend payments V (u, b), along with the absolute value
of the errors for the corresponding estimates φ̂(u, b), ṼMC(u, b), ṼQMC(u, b),
V̂MC(u, b) and V̂QMC(u, b) are given for each choice of u and b.

4.3.1. Simulation results for survival probability. The survival probability φ(u, b)
is estimated using the direct simulation approach. Table 1 presents the ex-
act values of φ(u, b) and the absolute error for the estimates φ̂(u, b), obtained
through direct simulation, for N = 1000 and N = 5000, when b is fixed to
value 20 and u is varying from 10 to 15.

Table 1: Exact values of φ(u, b) and absolute error |φ(u, b)− bφ(u, b)|, for fixed b = 20

(u, b) Exact values of the survival probability |φ(u, b)− bφ(u, b)| |φ(u, b)− bφ(u, b)|
φ(u, b) N=1000 N=5000

(10, 20) 0.99790 0.0019 0.0011
(11, 20) 0.99870 0.0017 0.0005
(12, 20) 0.99920 0.0012 0.0006
(13, 20) 0.99944 0.0004 0.0002
(14, 20) 0.99953 0.0005 0.0001
(15, 20) 0.99961 0.0006 0.0002

The numerical results show an important improvement as N increases from
1000 to 5000 paths. Even for small values of N , the absolute errors that we
obtain are very small.

4.3.2. Simulation results for the expected sum of discounted dividend payments.
The exact values of the expected sum of discounted dividend payments V (u, b),
for each choice of the pair (u, b), are presented in Table 2.
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Table 2: Exact values of the expected discounted dividend payments V (u, b)

(u, b) Exact values of the expected dividend payments

(0.5, 1) 2.4387
(0.5, 1.5) 2.5017

(1.5, 2) 3.6858
(1.5, 2.5) 3.8408
(1.5, 3) 3.9945

The numerical results for the estimators ṼMC(u, b), ṼQMC(u, b), V̂MC(u, b)
and V̂QMC(u, b), in terms of their absolute error |V (u, b)−ṼMC(u, b)|, |V (u, b)−
ṼQMC(u, b)|, |V (u, b)− V̂MC(u, b)| and |V (u, b)− V̂QMC(u, b)|, respectively, are
given in Table 3. We used a number of N = 200 and N = 400 paths for
each estimate ṼMC(u, b), ṼQMC(u, b), V̂MC(u, b) and V̂QMC(u, b). In the case
of QMC estimations we displayed the absolute errors obtained using Halton
sequences and SQRT sequences (ErrHalton and ErrSQRT ).

Table 3: Absolute errors |V (u, b)− eV (u, b)| and |V (u, b)− bV (u, b)|, obtained by MC and QMC
methods

Estimator eV Estimator bV
(u, b) N ErrMC ErrHalton ErrSQRT ErrMC ErrHalton ErrSQRT

(0.5, 1) 200 0.0165 0.0237 0.0210 0.0210 0.0279 0.0214
(0.5, 1) 400 0.0188 0.0220 0.0199 0.0222 0.0238 0.0202

(0.5, 1.5) 200 0.0162 0.0048 0.0125 0.0126 0.0022 0.0108
(0.5, 1.5) 400 0.0142 0.0077 0.0117 0.0111 0.0080 0.0120

(1.5, 2) 200 0.0083 0.0109 0.0100 0.0116 0.0124 0.0101
(1.5, 2) 400 0.0091 0.0104 0.0096 0.0114 0.0110 0.0096

(1.5, 2.5) 200 0.0126 0.0079 0.0111 0.0106 0.0067 0.0104
(1.5, 2.5) 400 0.0118 0.0091 0.0108 0.0105 0.0093 0.0109

(1.5, 3) 200 0.0045 0.0027 0.0028 0.0020 0.0031 0.0017
(1.3, 3) 400 0.0035 0.0009 0.0019 0.0011 0.0002 0.0022
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