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INTEGRAL CHARACTERIZATIONS OF
WEIGHTED BLOCH SPACES AND QK,ω(p, q) SPACES

R.A. RASHWAN, A. EL-SAYED AHMED and ALAA KAMAL

Abstract. In this paper we introduce a new space of functions, the so called
QK,ω(p, q) space of holomorphic functions on the unit disk in terms of nonde-
creasing functions. The relation between the integral norm of the QK,ω(p, q)
space and the integral norm of the weighted Bloch space Bαω is also given. Fur-
ther, we obtain similar integral criteria for the little weighted Bloch functions of
analytic functions and meromorphic functions.
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1. INTRODUCTION

Let ∆ = {z : |z| < 1} be the open unit disk in the complex plane C. Recall
that the well known Bloch space (cf. [2]) is defined as follows:

B = {f : f analytic in ∆ and sup
z∈∆

(1− |z|2)|f ′(z)| <∞};

the little Bloch space B0 (cf. [2]) is a subspace of B consisting of all f ∈ B
such that

lim
|z|→1−

(1− |z|2)|f ′(z)| = 0.

The Dirichlet space is defined by

D = {f : f analytic in ∆ and
∫

∆

∣∣f ′(z)∣∣2dσz <∞},

where dσz is the Euclidean area element dxdy. Let 0 < q < ∞. The Besov-
type spaces

Bq =
{
f : f analytic in ∆, sup

a∈∆

∫
∆

∣∣f ′(z)∣∣q(1−|z|2)q−2(1−|ϕa(z)|2)2dσz <∞
}

have been introduced and studied intensively by Stroethoff (cf. [13]). Here,
ϕa(z) stands for the Möbius transformation of ∆ given by

ϕa(z) =
a− z
1− āz

, where a ∈ ∆.

In 1994, Aulaskari and Lappan [2] introduced a class of holomorphic functions,
the so called Qp-spaces, as follows:

Qp =
{
f : f analytic in ∆ and sup

a∈∆

∫
∆

∣∣f ′(z)∣∣2gp(z, a)dσz <∞
}
,
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where 0 < p <∞ and the weight function

g(z, a) = log
∣∣∣∣1− āza− z

∣∣∣∣
is defined as the composition of the Möbius transformation ϕa and the funda-
mental solution of the two-dimensional real Laplacian. The weight function
g(z, a) is actually Green’s function in ∆ with pole at a ∈ ∆.

For 0 < p < ∞, −2 < q < ∞, we say that a function f analytic in ∆
belongs to the space QK(p, q) (cf. [18]), if

‖f‖K,p,q = sup
a∈∆

∫
∆

∣∣f ′(z)∣∣p(1− |z|2)qK(g(z, a))dσz <∞.

Recall that the analytic function

f(z) =
∞∑
k

akz
nk (with nk ∈ N ; for all k ∈ N = {1, 2, 3, . . . } )

is said to belong to the Hadamard gap class (also known as lacunary series) if
there exists a constant c > 1 such that nk+1

nk
≥ c for all k ∈ N (see e.g. [20]).

Two quantities Af and Bf , both depending on an analytic function f on ∆,
are said to be equivalent, written as Af ≈ Bf , if there exists a finite positive
constant C not depending on f such that for every analytic function f on ∆
we have 1

CBf ≤ Af ≤ CBf . If the quantities Af and Bf are equivalent, then
in particular we have Af <∞ if and only if Bf <∞.

Now, given a reasonable function ω : (0, 1] → [0,∞), the weighted Bloch
space Bω (see [5]) is defined as the set of all analytic functions f on ∆ satisfying

(1− |z|)|f ′(z)| ≤ Cω(1− |z|), z ∈ ∆,

for some fixed C = Cf > 0. In the special case when ω ≡ 1,Bω reduces to the
classical Bloch space B. Here the word “reasonable” is a non-mathematical
term; it means that the function is “not too bad” and that it satisfies some
natural conditions.

We introduce now the following definitions:

Definition 1.1. Let ω : (0, 1]→ [0,∞) be a given reasonable function and
0 < α <∞. An analytic function f on ∆ is said to belong to the α−weighted
Bloch space Bαω if

‖f‖Bαω = sup
z∈∆

(1− |z|)α

ω(1− |z|)
|f ′(z)| <∞.

Definition 1.2. For a given reasonable function ω : (0, 1]→ [0,∞) and for
0 < α <∞ an analytic function f on ∆ is said to belong to the little weighted
Bloch space Bαω,0 if

‖f‖Bαω,0 = lim
|z|→1−

(1− |z|)α

ω(1− |z|)
|f ′(z)| = 0.
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Throughout this paper and for some techniqual reasons we assume that
ω 6≡ 0. Now, we introduce the following new definition:

Definition 1.3. For a nondecreasing function K : [0,∞)→ [0,∞), for 0 <
p < ∞, −2 < q < ∞, and for a given reasonable function ω : (0, 1] → (0,∞)
an analytic function f in ∆ is said to belong to the space QK,ω(p, q) if

‖f‖pK,ω,p,q = sup
a∈∆

∫
∆

∣∣f ′(z)∣∣p(1− |z|)q K(g(z, a))
ωp(1− |z|)

dσz <∞.

Remark 1.1. It should be remarked that our QK,ω(p, q) classes are more
general than many classes of analytic functions. If ω ≡ 1, we obtain QK(p, q)
type spaces (cf. [18] and [17]). If q = p = 2, and ω(t) = t, we obtain QK
spaces as studied recently in [6, 7, 11, 15, 16, 19] and others. If q = p = 2,
ω(t) = t and K(t) = tp, we obtain Qp spaces as studied in [2, 3, 20] and others.
If ω ≡ 1 and K(t) = ts, then QK,ω = F (p, q, s) classes (cf. [1, 21]).

In this paper, we characterize the weighted Bloch space Bαω by mean of our
QK,ω(p, q) spaces. One of the main results is a general Besov-type characteri-
zation for Bαω functions that extends and generalizes the Stroethoff’s theorem
in [13]. Also, we extend and improve some results due to Essén et. al ([7])
using our new definitions.

2. HOLOMORPHIC QK,ω CLASSES

In this paper we show some relations between the QK,ω(p, q) norms and
the Bαω norms for a nondecreasing function K. We also give a general way to
construct different spaces QK,ω1(p, q) and QK2,ω(p, q) by using some functions
K1 and K2.

Before proving the main theorems we recall a few facts about the Möbius
function ϕa. First, the function ϕa is easily seen to be its own inverse under
composition: (ϕa ◦ ϕa)(z) = z for all z ∈ ∆. The following identity can be
obtained by straightforward computation:

1− |ϕa(z)|2 =
(1− |a|2)(1− |z|2)

|1− az|2
, (a, z ∈ ∆).

A slightly different form in which we will apply the above identity is:

1− |ϕa(z)|2

1− |z|2
= |ϕ′a(z)| , (a, z ∈ ∆).(1)

For a ∈ ∆ consider the substitution z = ϕa(w). Then dσw = |ϕ′a(z)|2dσz by
the Jacobian change in measure. For a Lebesgue integrable or a non-negative
Lebesgue measurable function h on ∆ we thus have the following change-of-
variable formula:∫

∆(0,r)
h(ϕa(w))dσw =

∫
∆(a,r)

h(z)
(

1− |ϕa(z)|2

1− |z|2

)2

dσz .(2)
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We assume throughout this paper that∫ 1

0
K

(
log

1
r

)
r

(1− r2)2
dr <∞ .(3)

We need the following lemmas in the sequel.

Lemma 2.1. ([20]) Let α ∈ (0,∞) and suppose that f(z) =
∑∞

j=1 ajz
nj

belongs to Hadamard gap class. Then f ∈ Bα if and only if supj∈N |aj |n1−α
j <

∞ , where N = {1, 2, 3, . . . }.

Lemma 2.2. ([10]) Let ω : (0, 1] → (0,∞) and let 1 ≤ α < ∞. Then there
are two functions f1 , f2 ∈ Bαω such that

|f ′1(z)|+ |f ′2(z)| ≈ ω(1− |z|)
(1− |z|)α

, z ∈ ∆.(4)

Theorem 2.1. Let 0 < p <∞, −2 < q <∞. Then, for each non-decreasing
function K : [0,∞)→ [0,∞) and for a given reasonable non-decreasing func-
tion ω : (0, 1]→ (0,∞) with ω(k t) ≈ ω(t), k > 0, we have

(i) QK,ω(p, q) ⊂ B
q+2
p

ω and

(ii) QK,ω(p, q) = B
q+2
p

ω if and only if∫ 1

0
K

(
log

1
r

)
r

(1− r2)2
dr <∞.

Proof. For fixed r ∈ (0, 1) and a ∈ ∆ let

E(a, r) =
{
z ∈ ∆ : |z − a| < r(1− |a|)

}
.

We know that E(a, r) ⊂ ∆(a, r). Also, for any z ∈ E(a, r) we have

(1− r)(1− |a|) ≤ 1− |z| ≤ (1 + r)(1− |a|),
which means that 1− |z|2 ' 1− |a|2 for any z ∈ E(a, r). Denote

Fω,p,q(f)(z) =
∣∣f ′(z)∣∣p (1− |z|)q

ωp(1− |z|)
.

Then, we obtain∫
∆
Fω,p,q(f)(z)K

(
g(z, a)

)
dσz ≥

∫
∆(a,r)

Fω,p,q(f)(z)K
(
g(z, a)

)
dσz

≥ K

(
log

1
r

)∫
∆(a,r)

Fω,p,q(f)(z) dσz

≥ K

(
log

1
r

)∫
E(a,r)

Fω,p,q(f)(z) dσz.

For every z ∈ E(a, r) we have

(1− r)(1− |a|) ≤ 1− |z| ≤ (1 + r)(1− |a|),
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hence
(1− |z|)p ≥ (1− r)p(1− |a|)p , ∀ p > 0.

Now, since ω is non-decreasing, we obtain that∫
E(a,r)

Fω,p,q(f)(z) dσz ≥
(1− r)p(1− |a|)q

ωp((1− r)(1− |a|))

∫
E(a,r)

∣∣f ′(z)∣∣p dσz.

Since |f ′(z)|p is a subharmonic function, it follows that∫
E(a,r)

∣∣f ′(z)∣∣p dσz ≥ |E(a, r)| · |f ′(a)
∣∣p = r2(1− |a|)2|f ′(a)

∣∣p.
Then we obtain∫

∆
Fω,p(f)(z)K

(
g(z, a)

)
dσz ≥ K

(
log

1
r

)
(1− r)p(1− |a|)q+2

ωp((1− r)(1− |a|))
|f ′(a)

∣∣p
≥ λK

(
log

1
r

)
(1− r)p(1− |a|)q+2

ωp(1− |a|)
|f ′(a)

∣∣p,
where λ is a constant. If f ∈ QK,ω(p, q), then by the above estimate we have

sup
a∈∆

(1− |a|)q+2|f ′(z)|p

ωp(1− |a|)
<∞.

The proof of (i) is therefore completed.

Now, we show that B
q+2
p

ω ⊂ QK,ω(p, q) provided that K satisfies condition

(3). For f ∈ B
q+2
p

ω , we have∫
∆
Fω,p,q(f)(z)K

(
g(z, a)

)
dσz ≤

∥∥f∥∥p
B
q+2
p

ω

∫
∆(1− |z|2)−2K

(
g(z, a)

)
dσz

= 2π
∥∥f∥∥p

B
q+2
p

ω

∫ 1
0 K

(
log 1

r

)
r

(1−r2)2
dr <∞,

which shows that

B
q+2
p

ω ⊂ QK,ω(p, q).

Now we assume that B
p+2
p

ω = QK,ω(p, q) and we show that (3) holds. From

Lemma 2.3, for f1 and f2 in B
q+2
p

ω , we have

|f ′1(z)|+ |f ′2(z)| ≥ ω(1− |z|)

(1− |z|)
q+2
p

.(5)

Then f1, f2 ∈ QK,ω(p, q) and

∞ > sup
a∈∆

∫
∆

(∣∣f ′1(z)
∣∣p +

∣∣f ′2(z)
∣∣p)(1− |z|)q

K
(
g(z, a)

)
ωp(1− |z|)

dσz

≥
∫

∆

(∣∣f ′1(z)
∣∣+
∣∣f ′2(z)

∣∣)p (1− |z|)q
K
(
g(z, 0)

)
ωp(1− |z|)

dσz.(6)
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From (5) and (6), we obtain∫
∆

(∣∣f ′1(z)
∣∣p +

∣∣f ′2(z)
∣∣p) (1− |z|)q

K
(
g(z, 0)

)
ωp(1− |z|)

dσz

≈ 2π
∫ 1

0
K

(
log

1
r

)
r

(1− r2)2
dr.

Thus (3) holds, and this completes the proof. �

3. THE CLASSES QK,ω,0 AND Bαω,0
We say that f ∈ QK,ω,0(p, q) if

lim
|a|→1−

∫
∆

∣∣f ′(z)∣∣p (1− |z|)q K(g(z, a))
ωp(1− |z|)

dσz = 0.(7)

Also, as a subspace of Bαω , we define the little weighted Bloch space Bαω,0 as
the space which consists of analytic functions f on ∆ such that

lim
|z|→1−

(1− |z|)α|f ′(z)|
ω(1− |z|)

= 0,

where 0 < α <∞. Then we obtain the following theorem:

Theorem 3.1. Let 0 < p <∞, −2 < q <∞. Then, for each non-decreasing
function K : [0,∞)→ [0,∞) and for a given reasonable non-decreasing func-
tion ω : (0, 1]→ (0,∞) with ω(k t) ≈ ω(t), k > 0, we have

(i) QK,ω,0(p, q) ⊂ B
q+2
p

ω,0 and

(ii) QK,ω,0(p, q) = B
q+2
p

ω,0 if and only if (3) holds.

Proof. Without loss of generality we assume that K(1) > 0. From the proof
of Theorem 2.1, we have

π(1
e )2K(1) (1−|a|)q+2

ωp(1−|a|) |f
′(a)|p ≤ K(1)

∫
E(a)

Fω,p,q(f)(z) dσz

≤ K(1)
∫

∆(a, 1
e
)
Fω,p,q(f)(z) dσz

≤
∫

∆
Fω,p,q(f)(z)K

(
g(z, a)

)
dσz,

where

E(a) =
{
z ∈ ∆ : |z − a| < 1

e
(1− |a|)

}
.

If f ∈ QK,ω,0, we obtain that

lim
|a|→1−

(1− |a|)q+2|f ′(a)|p

ωp(1− |a|)
= 0.
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(ii) We only have to prove that B
q+2
p

ω,0 ⊂ QK,w,0(p, q). Assume that

A =
∫ 1

0
K

(
log

1
r

)
r

(1− r2)2
dr <∞.

For a given ε > 0 there exists a real number r1 with 0 < r1 < 1 such that∫ 1

r1

K

(
log

1
r

)
r

(1− r2)2
dr < ε.(8)

Then we have∫
∆\∆(a,r1)

∣∣f ′(z)∣∣p(1− |z|)q K(g(z, a))
ωp(1− |z|)

dσz

≤
∥∥f∥∥p

B
q+2
p

ω,0

∫
∆\∆(a,r1)

K(g(z, a))
(1− |z|2)2

dσz

=
∥∥f∥∥p

B
q+2
p

ω,0

∫
r1<|w|<1

K

(
log

1
|w|

)
1

(1− |w|2)2
dσw

=
∥∥f∥∥p

B
q+2
p

ω,0

∫ 1

r1

K

(
log

1
r

)
r

(1− r2)2
dr

≤ 2π ε
∥∥f∥∥p

B
q+2
p

ω,0

.(9)

Similarly, if f ∈ B
q+2
p

ω,0 , we obtain that

|f ′(ϕa(w))|p (1− |ϕa(w)|2)
q+2
p

ωp(1− |ϕa(w)|)
−→ 0

converges uniformly for |w| ≤ r if |a| → 1−, where r is fixed and 0 < r < 1.
Then we obtain that

lim
|a|→1−

∫
∆

∣∣f ′(z)∣∣p (1− |z|)q
K
(
g(z, a)

)
ωp(1− |z|)

dσz

= lim
|a|→1−

∫
|w|<r

∣∣f ′(ϕa(w))
∣∣p (1− |ϕa(w)|)q K

(
log 1

|w|
)

ωp(1− |ϕa(w)|)(1− |w|2)2
dσw

≤ A lim
|a|→1−

sup
|w|≤r1

∣∣f ′(ϕa(w))
∣∣p (1− |ϕa(w)|)q+2

ωp(1− |ϕa(w)|)
= 0.(10)

By (9) and (10) it is easy to obtain that

lim
|a|→1−

∫
∆

∣∣f ′(z)∣∣p (1− |z|)q
K
(
g(z, a)

)
ωp(1− |z|)

dσz = 0.(11)
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Conversely, suppose that (3) does not hold, that is∫ 1

0
K

(
log

1
r

)
r

(1− r2)2
dr =∞.

Thus we find a continuous strictly decreasing function g : [0, 1) −→ [0,∞)
tending to zero at 1 such that∫ 1

0
K

(
log

1
r

)
g(r)

(1− r2)2
r dr =∞.(12)

It is easy to see that

r2k+1−2 ≥ exp{−2k+2(1 + r)}, r ∈ [0.5, 1).(13)

We know that t2β exp{−4t}
t=β

2
=
(β

2

)2β exp{−2β} for β > 0. Then there

exists an integer k for 3
4 ≤ r < 1 such that β

2 ≤ 2k(1− r) < β+1
2 and

2βk exp{−2k+2(1− r)} = (1− r)−2β

(
2k(1− r)

)2β

exp{−2k+2(1− r)}

>

(
1 + β

2

)2β

(1− r)−2β exp{−2(β + 1)}.(14)

For 3
4 ≤ r < 1 we define

f0(z) =
∞∑
k=0

ak 2
2k
p z2k ,

where ak = g
(
1− (p+1)

p 2k
)
, k = 0, 1, 2, . . . . By (13) and (14) we deduce that

M2
2 (r, f ′0) =

∫ 2π

0
|f ′0(r eiθ)|2 dθ = 2π

∞∑
k=0

a2
k 2

2k(p+2)
p z2k−2

≥ 2π
(
g(r)

) 2
p 2

2k(q+2)
p exp{−2k+2(1− r)}

≥ λ
(
g(r)

) 2
p (1− r)

−2(q+2)
p ,(15)

where λ is a constant. Since f0 is defined by a gap series with Hadamard
condition, we have

M2(r, f ′0) ≈Mp(r, f ′0), where Mp(r, f ′0) =
(∫ 2π

0
|f ′0(r eiθ)|p dθ

) 1
p

.
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Therefore

sup
a∈∆

∫
∆

∣∣f ′0(z)
∣∣p(1− |z|)q K(g(z, a))

ωp(1− |z|)
dσz

≥
∫ 1

0
Mp
p (r, f ′0)(1− r2)qK

(
log

1
r

)
r dr

≈
∫ 1

0
Mp

2 (r, f ′0)(1− r2)qK
(

log
1
r

)
r dr

≥
∫ 1

3
4

K

(
log

1
r

)
g(r)

(1− r2)2
r dr =∞.

This means that f0 ∈ B
q+2
p

ω,0 \ QK,w,0(p, q), which is a contraction. Hence (3)
holds. This completes the proof of our theorem. �

4. MORE RESULTS ON QK,ω-SPACES

The following result means that the kernel function K can be chosen as
bounded.

Theorem 4.1. Assume that K(1) > 0 and let K1(r) = inf{K(r), K(1)}.
Then, for 0 < p <∞, −2 < q <∞, we have QK,w = QK1,w.

Proof. Since K1 ≤ K and K1 is nondecreasing, it is clear that QK,ω(p, q) ⊂
QK1,w(p, q). It remains to prove that QK1,ω(p, q) ⊂ QK,ω(p, q).

We note that g(z, a) > 1, z ∈ ∆(a, 1
e ) and g(z, a) ≤ 1, z ∈ ∆\∆(a, 1

e ). Thus
K(g(z, a)) = K1(g(z, a)) in ∆\∆(a, 1

e ). It suffices to deal with integrals over
∆(a, 1

e ). If f ∈ QK1,ω(p, q) and f is a weighted Bloch function, i.e., f ∈ Bω,
then, by Theorem 2.1, it follows that∫

∆(a, 1
e
)
|f ′(z)|p (1− |z|)q

K
(
g(z, a)

)
ωp(1− |z|)

dσz

≤
∥∥f∥∥p

B
q+2
p

ω

∫
∆(a, 1

e
)
K
(
g(z, a)

) 1
(1− |z|2)2

dσz

=
∥∥f∥∥p

B
q+2
p

ω

∫
∆(0, 1

e
)
K

(
log

1
|w|

)
1

(1− |z|2)2
dσw ≤ C

∥∥f∥∥p
B
q+2
p

ω

.

Thus f ∈ QK,ω(p, q), which finishes the proof. �

Corollary 4.1. Let 0 < p < ∞, −2 < q < ∞ and ω : (0, 1] → (0,∞).
Then f ∈ QK,w(p, q) if and only if

sup
a∈∆

∫
∆
|f ′(z)|p (1− |z|)q K(1− |ϕa(z)|2)

ωp(1− |z|)
dσz <∞.

For later use we state the following lemma which is needed for the applica-
tion of the above results.
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Lemma 4.1. Let K : [0,∞) → [0,∞), 0 < p < ∞, −2 < q < ∞ and
ω : (0, 1]→ (0,∞). Then the following assertions hold:

(i) f ∈ B
q+2
p

ω if and only if there exists R ∈ (0, 1) such that

sup
a∈∆

∫
∆(a,R)

|f ′(z)|p (1− |z|)q K(g(z, a))
ωp(1− |z|)

dσz <∞.(16)

(ii) f ∈ B
q+2
p

ω,0 if and only if there exists R ∈ (0, 1) such that

lim
|a|→1−

∫
∆(a,R)

|f ′(z)|p (1− |z|)q K(g(z, a))
ωp(1− |z|)

dσz = 0.(17)

Proof. (i) Assume that f ∈ B
q+2
p

ω . Then, for any R ∈ (0, 1) and a ∈ ∆, we
have ∫

∆(a,R)
|f ′(z)|p (1− |z|)q K(g(z, a))

ωp(1− |z|)
dσz

=
∫

∆(0,R)
|f ′(ϕa(z))|p

(1− |ϕa(z)|2)q+2

(1 + |ϕa(z)|)q+2

K
(

1
|z|
)

(1− |z|2)2ωp(1− |z|)
dσz

≤ ‖f‖p
B
q+2
p

ω

∫
∆(0,R)

K

(
log

1
|z|

)
1

(1− |z|2)2
dσz

≤ λ1‖f‖p
B
q+2
p

ω

,

where 1 < (1 + |ϕa(z)|)q+2 < 2q+2 and λ1 is a constant. Conversely, suppose
that (16) holds for some R with 0 < R < 1. By the proof of Theorem 2.1 (i)
with 1− |a| ≈ 1− |z| on E(a,R), a, z ∈ ∆, we obtain∫

∆(a,R)
|f ′(z)|p (1− |z|)q K(g(z, a))

ωp(1− |z|)
dσz

≥ K(log
1
R

)
∫

∆(a,R)
|f ′(z)|p (1− |z|)q

ωp(1− |z|)
dσz

≥ λ2K

(
log

1
R

)
ω−p(1− |a|)

∫
E(a,R)

|f ′(z)|p (1− |z|)q dσz

≥ πλ2R
2K

(
log

1
R

)
(1− |a|)q

ωp(1− |a|)
|f ′(a)|p ,(18)

where λ2 is a constant. The last inequality shows that f ∈ B
q+2
p

ω .
The proof of (ii) is similar to that of (i) (one takes the limit when |a| −→ 1−

in (i)), hence it can be omitted. �

Theorem 4.2. Let 0 < p < ∞, −2 < q < ∞ and ω : (0, 1] → (0,∞).
Assume that K1(r) ≤ K2(r) for r ∈ (0, 1) and K1(r)

K2(r) → 0 as r → 0. If the
integral in (3) is divergent for K2, then QK2,ω(p, q) $ QK1,ω(p, q).
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Proof. It is clear thatQK2,ω(p, q) ⊂ QK1,ω(p, q). Suppose thatQK2,ω(p, q) =
QK1,ω(p, q). By the open mapping theorem (see [9]) we know that the identity
map from one of these spaces into the other one is continuous. Thus there
exists a constant C such that

‖f‖K2,ω(p,q) ≤ C‖f‖K1,ω(p,q) .

Since K1(r)
K2(r) → 0 as r → 0, there exists r0 ∈ (0, 1) such that

K1(r) ≤ (2C)−1K2(r) for 0 < r ≤ r0.

Put t0 = e−r0 . If f ∈ QK2,ω, then

sup
a∈∆

∫
∆
|f ′(z)|p (1− |z|)q

K2

(
g(z, a)

)
ωp(1− |z|)

dσz

≤ C sup
a∈∆

∫
∆(a,t0)

|f ′(z)|p (1− |z|)q
K1

(
g(z, a)

)
ωp(1− |z|)

dσz

+
1
2

sup
a∈∆

∫
∆
|f ′(z)|p (1− |z|)q

K2

(
g(z, a)

)
ωp(1− |z|)

dσz .

Therefore

sup
a∈∆

∫
∆
|f ′(z)|p (1− |z|)q

K2

(
g(z, a)

)
ωp(1− |z|)

dσz

≤ 2C sup
a∈∆

∫
∆(a,t0)

|f ′(z)|p (1− |z|)q
K1

(
g(z, a)

)
ωp(1− |z|)

dσz .

For f ∈ QK2,ω(p, q) there exists, by Lemma 4.1, a constant C1 such that

sup
a∈∆

∫
∆
|f ′(z)|p (1− |z|)q

K2

(
g(z, a)

)
ωp(1− |z|)

dσz ≤ C1‖f‖p
B
q+2
p

ω

.(19)

If g ∈ B
q+2
p

ω and gr(z) = g(rz) , 0 < r < 1, then∥∥gr∥∥
B
q+2
p

ω

≤
∥∥g∥∥

B
q+2
p

ω

.

Since gr ∈ QK2,ω(p, q), 0 < r < 1, we can choose f = gr in the inequality (19).
Using Fatou’s lemma (see [12]), we deduce that

sup
a∈∆

∫
∆
|g′(z)|p (1− |z|)q K2(g(z, a))

ωp(1− |z|)
dσz < C1

∥∥g∥∥p
B
q+2
p

ω

.

Thus g ∈ QK2,ω(p, q), which means that QK2,ω(p, q) = B
q+2
p

ω . It follows from
Theorem 2.1 that the integral in (3) with K = K2 must be convergent, a
contradiction. We obtain QK2,ω(p, q) $ QK1,ω(p, q), finishing the proof. �
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5. MEROMORPHIC CLASSES Q#
K,ω

For a meromorphic function f a natural analogue of |f ′(z)| is the spherical
derivative

f#(z) =
|f ′(z)|

(1 + |f(z)|2)
.

In an analogous way to the analytic case we define the meromorphic classes
Q#
K,ω as follows.

Definition 5.1. Let K : [0,∞)→ [0,∞) be a nondecreasing function, 0 <
p < ∞, −2 < q < ∞, and ω : (0, 1] → (0,∞) a reasonable function with
ω(kt) ≈ ω(t) k > 0. A meromorphic function f in ∆ is said to belong to the
classes Q#

K,ω(p, q) if

sup
a∈∆

∫
∆

(
f#(z)

)p
(1− |z|)q

K
(
g(z, a)

)
ωp(1− |z|)

dσz <∞.(20)

Remark 5.1. Our Q#
K,ω(p, q) classes are more general than many other

classes of meromorphic function spaces. If we take ω ≡ 1, then we get the
Q#
K(p, q) type spaces (see [18]). If we take q = p = 2, and ω(t) = t, we obtain

the Q#
K space (see [6, 7, 15]). If we take q = p = 2, ω(t) = t, and K(t) = tp,

we obtain the Q#
p spaces as studied in [2, 3, 4, 14]. If we take ω(t) ≡ 1 and

K(t) = ts, then we obtain the F#(p, q, s) classes (see [21]).

Definition 5.2. ([14]) A meromorphic function f on ∆ is said to be a
spherical Bloch function, denoted by f ∈ B#, if there exists a real number r
with 0 < r < 1 such that

sup
a∈∆

∫
∆(a,r)

(f#(z))2 dσz <∞.

Definition 5.3. ([14]) A meromorphic function f on ∆ is said to be a
spherical Dirichlet class if there exists a real number r with 0 < r < 1 such
that ∫

∆(a,r)
(f#(z))2 dσz <∞.

The meromorphic counterpart of the spaces Bαω and Bαω,0 are respectively
the classes of the weighted normal and the little weighted normal functions
defined below.

Definition 5.4. Let f be a meromorphic function in ∆, 0 < α < ∞ and
ω : (0, 1]→ (0,∞). If

‖f‖Nω,α = sup
z∈∆

f#(z)
(1− |z|)α

ω(1− |z|)
<∞,
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then f belongs to the class Nω,α of weighted normal functions. Moreover, if

lim
|z|→1−

f#(z)
(1− |z|)α

ω(1− |z|)
= 0,

then f belongs to the class Nω,α,0 of little weighted normal functions.

The classes Nω,α and Nω,α,0 are called respectively the class of weighted
normal functions and the class of little weighted normal functions.

Theorem 5.1. For each nondecreasing function K : [0,∞)→ [0,∞), for a
given reasonable function ω : (0, 1]→ (0,∞), and for 0 < p <∞, −2 < q <∞
the following assertions hold:

(i) Q#
K,ω(p, q) ⊂ Nω, q+2

p
.

(ii) Q#
K,ω(p, q) = Nω, q+2

p
if and only if (3) holds.

Proof. The proof of this theorem is much akin to that of Theorem 2.1 with
some minor modifications, so it will be omitted. �

The little “oh” version of Theorem 5.1 can be obtained in view of Theorem
3.1 as follows:

Theorem 5.2. For each nondecreasing function K : [0,∞)→ [0,∞), for a
given reasonable function ω : (0, 1]→ (0,∞), and for 0 < p <∞, −2 < q <∞
then following assertions hold:

(i) Q#
K,ω,0(p, q) ⊂ Nω, q+2

p
, 0.

(ii) Q#
K,ω,0(p, q) = Nω, q+2

p
, 0 if and only if (3) holds.
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