THE FARTHEST POINT PROBLEM IN NON-ARCHIMEDEAN NORMED SPACES

MOHAMMAD SAL MOSLEHIAN, ASSADOLLAH NIKNAM and SEDDIGHEH SHADKAM

Abstract

We study the farthest point mapping in non-Archimedean normed spaces. We prove that a uniquely remotal subset M in a non-Archimedean normed space X is singleton if for some Chebyshev center c and some $|\alpha|<1$ the equality $q_{M}\left(\alpha c+(1-\alpha) q_{M}(c)\right)=q_{M}(c)$ holds. We show that M is singleton if and only if $\left\|x-q_{M}(x)\right\|=\left\|y-q_{M}(y)\right\|$ implies that $q_{M}(x)=q_{M}(y)$. We also prove that if X, Y are non-Archimedean normed spaces and $Z=X \times Y$ is equipped with the norm $\|(x, y)\|=\max \{|x|,|y|\}$, then all uniquely remotal sets in $(Z,\|\|$.$) are singletons.$

MSC 2000. Primary 46S10; secondary 41A65, 46B20.
Key words. Farthest point, Chebyshev center, uniquely remotal set, normed space, non-Archimedean normed space, non-Archimedean field.

1. INTRODUCTION

A non-Archimedean field is a field K equipped with a function (valuation) |.| from K into $[0, \infty)$ such that for each $r, s \in K$ the following relations hold $|r s|=|r||s|,|r+s| \leq \max \{|r|,|s|\}$, and $|r|=0$ if and only if $r=0$. An example of a non-Archimedean valuation is the mapping |.| taking everything but 0 into 1 and $|0|=0$. This valuation is called trivial.

In 1897 Hensel [3] discovered the p-adic numbers as a number theoretical analogue of power series in complex analysis. Fix a prime number p. For any nonzero rational number x, there exists a number integer $n_{x} \in \mathbb{Z}$ such that $x=\frac{a}{b} p^{n_{x}}$, where a and b are integers not divisible by p. Then $|x|_{p}:=p^{-n_{x}}$ defines a non-Archimedean norm on \mathbb{Q}. The completion of \mathbb{Q} with respect to the metric $d(x, y)=\|x-y\|_{p}$ is denoted by \mathbb{Q}_{p} which is called the p-adic number field; see $[9$. During the last three decades p-adic numbers have gained the interest of physicists for their research in particular in problems coming from quantum physics, p-adic strings and superstrings (cf. 4]).

Now let X be a vector space over a scalar field K with a non-Archimedean valuation |.|. A function $\|\cdot\|: X \rightarrow[0, \infty)$ is said to be a non-Archimedean norm if it satisfies the following conditions:
(i) $\|x\|=0$ if and only if $x=0$,
(ii) $\|r x\|=|r|\|x\| \quad(r \in K, x \in X)$,
(iii) the strong triangle inequality $\|x+y\| \leq \max \{\|x\|,\|y\|\} \quad(x, y \in X)$.

Then $(X,\|\|$.$) is called a non-Archimedean normed space. Throughout the$ paper we assume that X is a non-Archimedean normed space over a nonArchimedean filed K satisfying

$$
\begin{equation*}
\|X\|:=\{\|x\|: x \in X\}=\{|r|: r \in K\} \tag{1.1}
\end{equation*}
$$

see [6, 7]. Let X be a real normed space and M be a non-empty bounded subset of X. The mapping $Q_{M}: X \rightarrow 2^{M}$ defined by

$$
Q_{M}(x)=\left\{q_{M}(x) \in M:\left\|x-q_{M}(x)\right\|=\sup _{t \in M}\|x-t\|\right\}
$$

is called the farthest point mapping of M. We call M a remotal (uniquely remotal) set if for each $x \in X$ the set $Q_{M}(x)$ is not empty (is singleton). A Chebyshev center of M in X is an element c in X satisfying

$$
r(M):=\sup _{t \in M}\|c-t\|=\inf _{x \in X} \sup _{t \in M}\|x-t\|
$$

In fact, $r(M)$, the so-called Chebyshev radius of M, is the smallest ball in X containing M. The space X is said to admit centers whenever any non-empty bounded subset of X has at least one center; see [5].

We study the farthest point mapping in a non-Archimedean normed spaces. Using the strategies of [1, 2, , 8], we prove that a uniquely remotal subset M in a non-Archimedean normed space X is singleton if for some Chebyshev center c and some $|\alpha|<1$ the equality

$$
q_{M}\left(\alpha c+(1-\alpha) q_{M}(c)\right)=q_{M}(c)
$$

holds. We show that M is singleton if and only if $\left\|x-q_{M}(x)\right\|=\| y-$ $q_{M}(y) \|$ implies that $q_{M}(x)=q_{M}(y)$. We also prove that if X, Y are nonArchimedean normed spaces and $Z=X \times Y$ is equipped with the norm $\|(x, y)\|=\max \{\|x\|,\|y\|\}$, then all uniquely remotal sets in $(Z,\|\cdot\|)$ are singletons.

2. THE MAIN RESULTS

Lemma 2.1. Let X be a non-Archimedean normed space and let M be a remotal subset of X. If $|\alpha| \geq 1$ then $q_{M}\left(\alpha x+(1-\alpha) q_{M}(x)\right)=q_{M}(x)$.

Proof. Let $t \in M$. Then

$$
\begin{aligned}
\left\|\alpha x+(1-\alpha) q_{M}(x)-t\right\| & =\left\|q_{M}(x)-t+\alpha\left(x-q_{M}(x)\right)\right\| \\
& \leq \max \left\{\left\|q_{M}(x)-t\right\|,\left\|\alpha\left(x-q_{M}(x)\right)\right\|\right\}
\end{aligned}
$$

If $\left\|q_{M}(x)-t\right\| \leq\left\|\alpha\left(x-q_{M}(x)\right)\right\|$, then
$\left\|\alpha x+(1-\alpha) q_{M}(x)-t\right\| \leq\left\|\alpha\left(x-q_{M}(x)\right)\right\|=\left\|\alpha x+(1-\alpha) q_{M}(x)-q_{M}(x)\right\|$.

If $\left\|\alpha\left(x-q_{M}(x)\right)\right\| \leq\left\|q_{M}(x)-t\right\|$, then

$$
\begin{aligned}
\left\|\alpha x+(1-\alpha) q_{M}(x)-t\right\| & \leq\left\|q_{M}(x)-t\right\| \\
& =\left\|q_{M}(x)-x+x-t\right\| \\
& \leq \max \left\{\|x-t\|,\left\|x-q_{M}(x)\right\|\right\} \\
& =\left\|x-q_{M}(x)\right\| \\
& \leq|\alpha|\left\|x-q_{M}(x)\right\| \\
& =\left\|\alpha x+(1-\alpha) q_{M}(x)-q_{M}(x)\right\|
\end{aligned}
$$

Hence $q_{M}\left(\alpha x+(1-\alpha) q_{M}(x)\right)=q_{M}(x)$.
Lemma 2.2. Let X be a non-Archimedean normed space and let M be a remotal subset of X. If c is a Chebyshev center and if for $|\alpha|<1$ the equality $q_{M}\left(\alpha c+(1-\alpha) q_{M}(c)\right)=q_{M}(c)$ holds, then M is singleton.

Proof. We know that

$$
\begin{aligned}
\left\|c-q_{M}(c)\right\| & =\inf _{x \in X}\left\|x-q_{M}(x)\right\| \\
& \leq\left\|\alpha c+(1-\alpha) q_{M}(c)-q_{M}\left(\alpha c+(1-\alpha) q_{M}(c)\right)\right\| \\
& =\left\|\alpha c+(1-\alpha) q_{M}(c)-q_{M}(c)\right\| \\
& =\| \alpha\left(c-q_{M}(c) \|\right. \\
& =|\alpha|\left\|c-q_{M}(c)\right\| .
\end{aligned}
$$

If $c \neq q_{M}(c)$, then $1 \leq|\alpha|$, a contradiction. So $c=q_{M}(c)$. Thus

$$
\sup _{t \in M}\|c-t\|=0
$$

whence $M=\{c\}$.
ThEOREM 2.3. If c is a Chebyshev center in a non-Archimedean normed space X and there exist x, α such that $|\alpha|>1$ and $\alpha x+(1-\alpha) q_{M}(x)=c$, then M is singleton.

Proof. By Lemma 2.1, $q_{M}(x)=q_{M}\left(\alpha x+(1-\alpha) q_{M}(x)\right)=q_{M}(c)$. Since $\left|\frac{1}{\alpha}\right|<1$, we have

$$
\begin{aligned}
q_{M}\left(\frac{1}{\alpha} c+\left(1-\frac{1}{\alpha}\right) q_{M}(c)\right) & =q_{M}\left(\frac{1}{\alpha}\left(\alpha x+(1-\alpha) q_{M}(x)\right)+\left(1-\frac{1}{\alpha}\right) q_{M}(c)\right) \\
& =q_{M}(x)=q_{M}(c)
\end{aligned}
$$

It follows from Lemma 2.2 that M is singleton.
ExAmple 2.4. Let X be the field of rational numbers endowed with the 2 -adic valuation. If $M=\left\{\frac{1}{2}\right\}$ we have the following cases:

Case (i) $x=2^{m} \frac{p}{q}$, where $m \geq 1$ and $(p, 2)=(q, 2)=1$. Since $p \cdot 2^{m+1}-q$ is an odd integer, we conclude that

$$
\left|2^{m} \frac{p}{q}-\frac{1}{2}\right|_{2}=\left|\frac{p \cdot 2^{m+1}-q}{2 q}\right|_{2}=2
$$

Case (ii) $x=2^{-m} \frac{p}{q}$, where $m>1$ and $(p, 2)=(q, 2)=1$. Since $p-q \cdot\left(2^{m-1}\right)$ is an odd integer, we have that

$$
\left|\frac{p}{2^{m} q}-\frac{1}{2}\right|_{2}=\left|\frac{p-q \cdot 2^{m-1}}{2^{m} q}\right|_{2}=2^{m} .
$$

Case (iii) $x=\frac{p}{2 q}$ where $(p, 2)=(q, 2)=1$. Since $p-q$ is an even integer, we have that

$$
\left|\frac{p}{2 q}-\frac{1}{2}\right|_{2}=\left|\frac{p-q}{2 q}\right|_{2}=0 \text { or } 2^{r} \text { for some } r \leq 0 .
$$

Case (iv) $x=\frac{p}{q}$ where $(p, 2)=(q, 2)=1$. Since $2 p-q$ is an odd integer, we have that

$$
\left|\frac{p}{q}-\frac{1}{2}\right|_{2}=\left|\frac{2 p-q}{2 q}\right|_{2}=2 .
$$

Hence $x=\frac{1}{2}$ is a Chebyshev center.
It is clear that Theorem 2.3 holds for $c=\frac{1}{2}$ with $x=\frac{1}{2}$ and $\alpha=\frac{1}{4}$. Note that $|\alpha|=4>1$ and $q_{M}(x)=\frac{1}{2}$.

Theorem 2.5. Let M be a uniquely remotal set of a non-Archimedean normed space X. Then M is singleton if and only if $\left\|x-q_{M}(x)\right\|=\left\|y-q_{M}(y)\right\|$ implies $q_{M}(x)=q_{M}(y)$ for every $x, y \in X$.

Proof. If M is singleton then $q_{M}(x)=q_{M}(y)$, for every $x, y \in X$, therefore $\left\|x-q_{M}(x)\right\|=\left\|y-q_{M}(y)\right\| \Rightarrow q_{M}(x)=q_{M}(y)$. Now suppose that the implication $\left\|x-q_{M}(x)\right\|=\left\|y-q_{M}(y)\right\| \Rightarrow q_{M}(x)=q_{M}(y)$ holds. We will show that M is singleton. If M is not singleton, there exist x, y such that $q_{M}(x) \neq q_{M}(y)$, thus $\left\|x-q_{M}(x)\right\| \neq\left\|y-q_{M}(y)\right\|$. We assume that $\left\|x-q_{M}(x)\right\|<\left\|y-q_{M}(y)\right\|$. Let $k \in K$ such that

$$
|k|=\frac{\left\|y-q_{M}(y)\right\|}{\left\|x-q_{M}(x)\right\|}>1 .
$$

This follows easily from (1.1) and the multiplicative property of |.| on K.
If $z=q_{M}(x)+k\left(x-q_{M}(x)\right)$ then $\left\|z-q_{M}(x)\right\|=|k|\left\|x-q_{M}(x)\right\|=\left\|y-q_{M}(y)\right\|$. Also,

$$
\begin{equation*}
\left\|y-q_{M}(y)\right\|=\left\|z-q_{M}(x)\right\| \leq\left\|z-q_{M}(z)\right\| \leq \max \left\{\|z-x\|,\left\|x-q_{M}(z)\right\|\right\} \tag{2.1}
\end{equation*}
$$

Since $\|z-x\|=\left\|\left(x-q_{M}(x)\right)(k-1)\right\|=|k-1|\left\|x-q_{M}(x)\right\|$ and $|k-1| \leq$ $\max \{|k|,|1|\}=|k|$, we get

$$
\begin{equation*}
\|z-x\|=|k-1|\left\|x-q_{M}(x)\right\| \leq|k|\left\|x-q_{M}(x)\right\|=\left\|y-q_{M}(y)\right\| . \tag{2.2}
\end{equation*}
$$

If $\|z-x\|<\left\|x-q_{M}(z)\right\|$, then inequality (2.1) yields

$$
\begin{aligned}
\left\|y-q_{M}(y)\right\| & =\left\|z-q_{M}(x)\right\| \leq\left\|z-q_{M}(z)\right\| \leq\left\|x-q_{M}(z)\right\| \\
& \leq\left\|x-q_{M}(x)\right\|<\left\|y-q_{M}(y)\right\|,
\end{aligned}
$$

a contradiction. Hence $\|z-x\| \geq\left\|x-q_{M}(z)\right\|$. Now inequalities (2.1) and (2.2) yield

$$
\begin{equation*}
\left\|y-q_{M}(y)\right\|=\left\|z-q_{M}(z)\right\|=\left\|z-q_{M}(x)\right\|, \tag{2.3}
\end{equation*}
$$

whence $q_{M}(y)=q_{M}(x)=q_{M}(z)$ (in fact the first equality of (2.3) implies $q_{M}(y)=q_{M}(z)$, and the second equality of (2.3) and the assumption that M is uniquely remotal imply that $\left.q_{M}(x)=q_{M}(z)\right)$.

The following lemma can be proved in a straightforward way and we omit its proof.

Lemma 2.6. Let $(X,\|\cdot\|),(Y,\|\cdot\|)$ be arbitrary non-Archimedean normed spaces. Then $Z=X \times Y$, endowed with the norm $\|(x, y)\|=\max \{\|x\|,\|y\|\}$, is also a non-Archimedean normed space over the non-Archimedean field K.

Lemma 2.7. Let $Z=X \times Y$ and $\emptyset \neq M \subset Z$ be a uniquely remotal bounded set. If $p_{1}, p_{2} \in Z, p_{i}=\left(x_{i}, y_{i}\right)(i=1,2), q_{M}\left(p_{i}\right)=z_{i}=\left(a_{i}, b_{i}\right)(i=1,2)$, $C_{1}=\left\|p_{1}-q_{M}\left(p_{1}\right)\right\|=\left\|x_{1}-a_{1}\right\|$ and $C_{2}=\left\|p_{2}-q_{M}\left(p_{2}\right)\right\|=\left\|y_{2}-b_{2}\right\|$, then $z_{1}=z_{2}$.

Proof. Assume $C_{1} \geq C_{2}$, and set $\lambda=\frac{C_{1}}{C_{2}}$. Let $k \in K$ be such that $|k|=\lambda \geq$ 1. We set

$$
p_{3}=\left(x_{3}, y_{3}\right)=k p_{2}+(1-k) z_{2},
$$

thus

$$
\begin{equation*}
\left\|p_{3}-z_{2}\right\|=\left\|k\left(p_{2}-z_{2}\right)\right\|=|k|\left\|\left(p_{2}-z_{2}\right)\right\|=C_{1} \tag{2.4}
\end{equation*}
$$

and

$$
\begin{aligned}
\left\|p_{3}-p_{2}\right\| & =\left\|(1-k)\left(p_{2}-z_{2}\right)\right\|=|1-k|\left\|p_{2}-z_{2}\right\| \\
& \leq \max \{|k|, 1\}\left\|p_{2}-z_{2}\right\|=|k|\left\|p_{2}-z_{2}\right\|=C_{1} .
\end{aligned}
$$

It follows that

$$
\begin{align*}
\left\|p_{3}-q_{M}\left(p_{3}\right)\right\| & \leq \max \left\{\left\|p_{3}-p_{2}\right\|,\left\|p_{2}-q_{M}\left(p_{3}\right)\right\|\right\} \\
& \leq \max \left\{\left\|p_{3}-p_{2}\right\|,\left\|p_{2}-q_{M}\left(p_{2}\right)\right\|\right\} \\
& \leq \max \left\{C_{1}, C_{2}\right\}=C_{1} . \tag{2.5}
\end{align*}
$$

Then (2.4) and (2.5) yield $q_{M}\left(p_{3}\right)=z_{2}$. In view of

$$
p_{3}=\left(k x_{2}+(1-k) a_{2}, k y_{2}+(1-k) b_{2}\right)
$$

we have that

$$
\begin{aligned}
C_{1} & =\left\|p_{3}-z_{2}\right\|=\left\|k\left(p_{2}-z_{2}\right)\right\|=\max \left\{\left\|k\left(x_{2}-a_{2}\right)\right\|,\left\|k\left(y_{2}-b_{2}\right)\right\|\right\} \\
& =|k| \max \left\{\left\|x_{2}-a_{2}\right\|,\left\|y_{2}-b_{2}\right\|\right\}=|k|\left\|y_{2}-b_{2}\right\|=\left\|k y_{2}-k b_{2}\right\| \\
& =\left\|y_{3}-b_{2}\right\| .
\end{aligned}
$$

Set $p_{4}=\left(x_{1}, y_{3}\right)$ and let $w=\left(w_{1}, w_{2}\right) \in M$. Since

$$
\begin{aligned}
\left\|x_{1}-a_{1}\right\| & =\left\|p_{1}-q_{M}\left(p_{1}\right)\right\|=\sup \left\{\left\|p_{1}-t\right\|: t=\left(w_{1}, w_{2}\right) \in M\right\} \\
& =\sup \left\{\max \left\{\left\|x_{1}-w_{1}\right\|,\left\|y_{1}-w_{2}\right\|\right\}: t=\left(w_{1}, w_{2}\right) \in M\right\}
\end{aligned}
$$

and since $\left\|y_{3}-w_{2}\right\| \leq\left\|p_{3}-q_{M}\left(p_{3}\right)\right\|=\left\|p_{3}-z_{2}\right\|=\left\|y_{3}-b_{2}\right\|$, we have

$$
\begin{aligned}
\left\|p_{4}-w\right\| & =\max \left\{\left\|x_{1}-w_{1}\right\|,\left\|y_{3}-w_{2}\right\|\right\} \\
& \leq \max \left\{\left\|x_{1}-a_{1}\right\|,\left\|y_{3}-b_{2}\right\|\right\}=\max \left\{C_{1}, C_{1}\right\}=C_{1} .
\end{aligned}
$$

But

$$
\left\|p_{4}-z_{1}\right\|=\max \left\{\left\|x_{1}-a_{1}\right\|,\left\|y_{3}-b_{1}\right\|\right\} \geq\left\|x_{1}-a_{1}\right\|=C_{1}
$$

and

$$
\left\|p_{4}-z_{2}\right\|=\max \left\{\left\|x_{1}-a_{2}\right\|,\left\|y_{3}-b_{2}\right\|\right\} \geq\left\|y_{3}-b_{2}\right\|=C_{1},
$$

therefore $q_{M}\left(P_{4}\right)=z_{1}=z_{2}$, since M is uniquely remotal.
Lemma 2.8. Let M be a subset of X and let

$$
Q_{M}=\left\{t \in M: \exists x \in X \text { with } q_{M}(x)=t\right\} .
$$

Then M is singleton if and only if Q_{M} is singleton.
Proof. If $Q_{M}=\left\{t_{0}\right\}$ is singleton then $q_{M}\left(t_{0}\right)=t_{0}$. Then

$$
\sup \left\{\left\|t_{0}-t\right\|: t \in M\right\}=\left\|t_{0}-q_{M}\left(t_{0}\right)\right\|=0,
$$

whence we conclude that M is singleton. Conversely suppose that $M=\left\{t_{0}\right\}$, then obviously $Q_{M}=\left\{t_{0}\right\}$.

Theorem 2.9. Let $(X,\|\cdot\|),(Y,\|\cdot\|)$ be arbitrary non-Archimedean normed spaces over a nontrivial non-Archimedean field K. Then all uniquely remotal sets in $Z=X \times Y$ are singleton.

Proof. Suppose that M is a uniquely remotal set in $(Z,\|\cdot\|)$ which is not singleton. Then there exist $p_{1}=\left(x_{1}, y_{1}\right), p_{2}=\left(x_{2}, y_{2}\right) \in Z$ and $z_{1}, z_{2} \in M$ such that $q_{M}\left(p_{1}\right)=z_{1}=\left(a_{1}, b_{1}\right) \neq\left(a_{2}, b_{2}\right)=z_{2}=q_{M}\left(p_{2}\right)$. Using Lemma 2.7, we can assume that

$$
\left\|p_{i}-z_{i}\right\|=\left\|x_{i}-a_{i}\right\| \quad(i=1,2) .
$$

Let $p=(x, y)$ be an arbitrary element of Z with $q_{M}=(a, b)$. If $\left\|p-q_{M}(p)\right\|=$ $\|y-b\|$, then $z_{1}=q_{M}(p)=z_{2}$, a contradiction. Hence $\left\|p-q_{M}(p)\right\|=\|x-a\|$. Fix $0 \neq y_{0} \in Y$ and let $\sup _{z \in M}\|z\|=\lambda$. Since K is nontrivial, there exists an element $n_{0} \in K$ such that $\left|n_{0}\right|<1$. Hence $\frac{\left\|y_{0}\right\|}{\left|n_{0}\right|^{m}}>\lambda$ for some m. Taking $p=\left(0, \frac{y_{0}}{n_{0}^{m}}\right)$ and $q_{M}(p)=\left(a_{0}, b_{0}\right)$, we have

$$
\left\|p-q_{M}(p)\right\|=\left\|0-a_{0}\right\| \leq\left\|\left(a_{0}, b_{0}\right)\right\| \leq \sup _{z \in M}\|z\|,
$$

whence

$$
\begin{aligned}
\sup _{z \in K}\|z\| & <\left\|\frac{y_{0}}{n_{0}^{m}}\right\|=\max \left\{0,\left\|\frac{y_{0}}{n_{0}^{m}}\right\|\right\}=\|p\| \\
& \leq \max \left\{\left\|p-q_{M}(p)\right\|,\left\|q_{M}(p)\right\|\right\} \leq \sup _{z \in K}\|z\|,
\end{aligned}
$$

a contradiction. Hence M is singleton.

REFERENCES

[1] Baronti, M., A note on remotal sets in normed spaces, Publ. Inst. Math., Nouv. Sér., 53 (67) (1993), 95-98.
[2] Bosznay, A.P., A remark on the farthest point problem I, J. Approx. Theory, 27 (1979), 309-312.
[3] Hensel, K., Über eine neue Begründung der Theoric der algebraischen Zahlen, Jahresber. Deutsch. Math. Verein, 6 (1897), 83-88.
[4] Khrennikov, A., Non-Archimedean Analysis: Quantum Paradoxes, Dynamical Systems and Biological Models, Kluwer Academic Publishers, Dordrecht, 1997.
[5] Mirmostafaee, A.K. and Niknam, A., A remark on uniquely remotal sets, Indian J. Pure Appl. Math., 29 (1998), 849-854.
[6] Moslehian, M.S. and Rassias, Th.M, Stability of functional equations in nonArhimedian spaces, Appl. Anal. Disc. Math., 1 (2007), 325-334.
[7] Moslehian, M.S. and Sadeghi, G., A Mazur-Ulam theorem in non-Archimedean normed spaces, Nonlinear Anal., 69 (2008), 3405-3408.
[8] Niknam, A., On uniqely remotal sets, Indian J. Pure Appl. Math., 15 (1984), 1079-1083.
[9] van Rooij, A.C.M, Non-Archimedean functional analysis, Monographs and Textbooks in Pure and Applied Math., 51. Marcel Dekker, New York, 1978.

Received January 17, 2008
Accepted August 26, 2008
Ferdowsi University of Mashhad
Department of Mathematics
Centre of Excellence in Analysis
on Algebraic Structures (CEAAS)
P. O. Box 1159

Mashhad 91775, Iran
E-mail: moslehian@ferdowsi.um.ac.ir
E-mail: niknam@math.um.ac.ir,
dassamankin@yahoo.co.uk
E-mail: shadkam.s@wali.um.ac.ir

