COEFFICIENT ESTIMATES AND THE CONVEX HULL PROBLEM FOR MEROMORPHIC FUNCTIONS

B. BHOWMIK, S. PONNUSAMY and K.-J. WIRTHS

Abstract

We consider the class $S(p)$ of meromorphic univalent functions in the unit disk \mathbb{D} having a simple pole at $p \in(0,1)$. Let $\Sigma^{s}\left(p, w_{0}\right)$ consist of functions $f \in S(p)$ for which $\overline{\mathbb{C}} \backslash f(\mathbb{D})$ is a starlike set with respect to a point $w_{0} \neq 0, \infty$. In this paper, we find a sharp estimate for the real part of the constant coefficient in the Laurent expansion of functions in $S(p)$. Also we prove a result on the closed convex hull of $\Sigma^{s}\left(p, w_{0}\right)$. Lastly, we obtain certain coefficient estimates in the Laurent expansion for functions in $\Sigma^{s}\left(p, w_{0}\right)$.

MSC 2000. 30C45.
Key words. Starlike, Laurent Coefficient.

1. INTRODUCTION

Let $\mathbb{D}:=\{z:|z|<1\}$ be the open unit disk. Let \mathcal{S} denote the class of analytic univalent functions f in \mathbb{D} with standard normalization $f(0)=$ $f^{\prime}(0)-1=0$. The class $S(p)$ of meromorphic and univalent functions in \mathbb{D}, having a simple pole at $z=p \in(0,1)$ with the standard normalization at the origin and its subclasses have renewed their interest in function theory. We refer to $[1,2,3,4,10]$ for the latest development. Another related class of interest lies in $\Sigma^{s}\left(p, w_{0}\right)$, the class of meromorphically starlike functions f satisfying
(i) $f \in S(p)$,
(ii) $\overline{\mathbb{C}} \backslash f(\mathbb{D})$ is a starlike set with respect to a point $w_{0} \neq 0, \infty$.

Characterization and results about $\Sigma^{s}\left(p, w_{0}\right)$ can be obtained from $[3,4,5,7$, 8, 9]. Clearly, each $f \in S(p)$ has the Laurent expansion

$$
\begin{equation*}
f(z)=\frac{a_{-1}}{z-p}+\sum_{n=0}^{\infty} a_{n}(f)(z-p)^{n}, \quad|z-p|<1-p \tag{1}
\end{equation*}
$$

We now recall a familiar result of Zemyan [11] on the set of variability of the residue a_{-1} for functions in $S(p)$.

Theorem A. Let $\Omega_{p}=\left\{a_{-1}: a_{-1}=\operatorname{Res}_{z=p} f(z), f \in S(p)\right\}$. Then

$$
\begin{equation*}
\Omega_{p}=\left\{-p^{2}\left(1-p^{2}\right)^{\epsilon}:|\epsilon| \leq 1\right\} . \tag{2}
\end{equation*}
$$

A function f belongs to the class $C o(p)$, called the class of concave functions, if and only if
(i) $f \in S(p)$,
(ii) $\overline{\mathbb{C}} \backslash f(\mathbb{D})$ is a convex set.

Results about Taylor and Laurent coefficients, and the closed convex hull of the family of concave functions can be obtained from $[1,2,3,4,7,9,10]$.

Theorem B. [7, Theorem 4] If f is a member of $C o(p)$ with expansion (1) then

$$
\begin{equation*}
\left|p+\frac{a_{0}(f)\left(1-p^{2}\right)}{a_{-1}(f)}\right| \leq \frac{1+p^{2}}{p} \tag{3}
\end{equation*}
$$

and the inequality is sharp.
We will indicate in the proof of Theorem 1 that the estimate in Theorem B holds for $f \in S(p)$ as well.

In [3, Theorem 3.1], the following representation formula for functions in the class $\Sigma^{s}\left(p, w_{0}\right)$ has been obtained.

Theorem C. For $0<p<1$, let $f \in \Sigma^{s}\left(p, w_{0}\right)$. Then there exists a function ω holomorphic in \mathbb{D} such that $\omega(\mathbb{D}) \subset \overline{\mathbb{D}}, \omega(0)=-\frac{1}{2}\left(\frac{1}{w_{0}}+p+\frac{1}{p}\right)$ and

$$
\begin{equation*}
f(z)=w_{0}+\frac{p w_{0}(1+z \omega(z))^{2}}{(z-p)(1-z p)}, \quad z \in \mathbb{D} \tag{4}
\end{equation*}
$$

Now we recall the lower bound for the modulus of the residue for functions in $\Sigma^{s}\left(p, w_{0}\right)$.

Theorem D. [3, Theorem 3.3] If $f \in \Sigma^{s}\left(p, w_{0}\right)$ and has the Laurent expansion (1), then we have

$$
\begin{equation*}
\left|a_{-1}\right| \geq \frac{p(1-p)}{1+p}\left|w_{0}\right| . \tag{5}
\end{equation*}
$$

The inequality is sharp for the function

$$
g(z)=\frac{-z p}{(z-p)(1-p z)}=w_{0}+\frac{p w_{0}}{(z-p)(1-p z)}(1-z)^{2} \in \Sigma^{s}\left(p, w_{0}\right)
$$

where $w_{0}=\frac{-p}{(1-p)^{2}}$.
The present article is organized as follows: In Section 2 we use Theorems A and B to obtain a sharp estimate for the real part of $a_{0}(f)$ for functions in $S(p)$ for certain values of p in $(0,1)$. In Section 3 we prove that, for all $p \in(0,1)$ and for certain values of w_{0}, the closed convex hull of $\Sigma^{s}\left(p, w_{0}\right)$ is a proper subset of the closed convex hull of the family of functions defined by the representation formula (4) in the topology of uniform convergence on compact subsets of $\mathbb{D} \backslash\{p\}$ (see [12]).
2. AN ESTIMATE FOR THE REAL PART OF $a_{0}(f), f \in s(p)$

Theorem 1. Let $f \in S(p)$ have the expansion (1). Then

$$
\operatorname{Re}\left(a_{0}(f)\right) \geq \frac{-p}{\left(1-p^{2}\right)^{2}}, \quad p \in\left(0, \sqrt{1-\mathrm{e}^{-\pi}}\right), \quad \sqrt{1-\mathrm{e}^{-\pi}} \approx 0.97 .
$$

Furthermore, the above inequality is sharp.

Proof. For $f \in S(p)$ let

$$
h(z)=\frac{-a_{-1}}{\left(1-p^{2}\right) f\left(\frac{p-z}{1-p z}\right)} .
$$

Then h can easily seen to be a member of $S(p)$. Keeping in account the fact that h is analytic in $\mathbb{D} \backslash\{p\}$ with simple pole at $z=p$, it is a simple exercise to see that

$$
h(z)=z+\left(p+\frac{\left(1-p^{2}\right) a_{0}}{a_{-1}}\right) z^{2}+\cdots, \quad|z|<p .
$$

Now by Jenkin's inequality (see [6]), we have

$$
\left|h^{\prime \prime}(0)\right| \leq \frac{2\left(1+p^{2}\right)}{p}
$$

This shows that the estimate (3) of Theorem B continues to hold for functions in $S(p)$. Consequently, for any $f \in S(p)$ there exists a number $\tau \in \overline{\mathbb{D}}$ such that

$$
\begin{equation*}
a_{0}(f)=\frac{a_{-1}(f)}{1-p^{2}}\left(-p+\tau \frac{1+p^{2}}{p}\right) . \tag{6}
\end{equation*}
$$

It suffices to consider the points τ on the boundary of unit disk. Set $\tau=\mathrm{e}^{\mathrm{i} \phi}$ and $\epsilon=r \mathrm{e}^{\mathrm{i} \theta}, r \in(0,1]$, in Theorem A. Then, by (2), (6) can be rewritten as

$$
\begin{equation*}
a_{0}(f)=Y J, \tag{7}
\end{equation*}
$$

where

$$
Y=\frac{-p^{2}\left(1-p^{2}\right)^{r \cos \theta}}{\left(1-p^{2}\right)}, J=\left(1-p^{2}\right)^{\mathrm{i} r \sin \theta}\left(-p+\mathrm{e}^{\mathrm{i} \phi} \frac{1+p^{2}}{p}\right) .
$$

It follows easily that

$$
\frac{-p^{2}}{\left(1-p^{2}\right)^{2}} \leq Y \leq-p^{2}
$$

Now, we need to compute extremum of the real part of J. To this end we have

$$
\begin{align*}
\operatorname{Re} J & =\left(-p+\frac{1+p^{2}}{p} \cos \phi\right) \cos \left(\left(\log \left(1-p^{2}\right)\right) r \sin \theta\right) \tag{8}\\
& -\frac{1+p^{2}}{p} \sin \phi \sin \left(\left(\log \left(1-p^{2}\right)\right) r \sin \theta\right)
\end{align*}
$$

Now, let $x=\left(\log \left(1-p^{2}\right)\right) r \sin \theta, \theta \in[0,2 \pi]$. Then $x \in[-\alpha, \alpha]$, where

$$
\alpha=\log \left(\frac{1}{1-p^{2}}\right)>0 .
$$

From (8) we obtain that

$$
\operatorname{Re} J=Q(x, \phi)=\frac{1+p^{2}}{p} \cos (x+\phi)-p \cos x, \quad \phi \in[0,2 \pi] .
$$

In view of this simple form, we need to find the extremum for the function $Q(x, \phi)$. To do this, consider the expression

$$
R(a, b)=\frac{1+p^{2}}{p} a-p b,
$$

where $a=\cos (x+\phi)$ and $b=\cos x$. As $\phi \in[0,2 \pi]$ and cosine is a periodic function of period 2π, we see that the variables a and b are independent. Clearly, $-1 \leq b \leq 1$. Now, let for a fixed $\alpha>0$, the minimum value of b be " t ". Hence, the corners of the rectangle where (a, b) varies are $A(1,1), B(1, t), C(-1, t), D(-1,1)$ (see Fig. 1).

Fig. 1
Here we note that the maximum is attained at the corner B for certain values of p in $(0,1)$. A little calculation shows that $t=-1$ is possible only for the interval $p \in\left[\sqrt{1-\mathrm{e}^{-\pi}}, 1\right]$. For the maximum of $R(a, b)$ in the remaining interval, we have

$$
\max R(a, b)=R(1,1)=\frac{1}{p} \quad \text { for } p \in\left(0, \sqrt{1-\mathrm{e}^{-\pi}}\right) .
$$

Using this, we get from (7)

$$
\operatorname{Re}\left(a_{0}(f)\right) \geq \frac{-p}{\left(1-p^{2}\right)^{2}} \quad \text { for } p \in\left(0, \sqrt{1-\mathrm{e}^{-\pi}}\right)
$$

The above estimate is sharp for the function

$$
f(z)=\frac{-z p}{(z-p)(1-p z)} .
$$

Remark 1. Since the equality $t=-1$ can hold only for $p \in\left[\sqrt{1-\mathrm{e}^{-\pi}}, 1\right)$, we have

$$
\max R(a, b)=R(1,-1)=\frac{1+2 p^{2}}{p}, \quad p \in\left[\sqrt{1-\mathrm{e}^{-\pi}}, 1\right)
$$

We also see that the minimum is attained at the corner D. Hence,

$$
\min R(a, b)=R(-1,1)=-\frac{1+2 p^{2}}{p}, \quad p \in(0,1) .
$$

Hence we get

$$
\operatorname{Re}\left(a_{0}(f)\right) \geq \frac{-p\left(1+2 p^{2}\right)}{\left(1-p^{2}\right)^{2}}, \quad p \in\left[\sqrt{1-\mathrm{e}^{-\pi}}, 1\right) .
$$

Now using the estimate for minimum of $R(a, b)$ and (7) we get

$$
\operatorname{Re}\left(a_{0}(f)\right) \leq p\left(1+2 p^{2}\right), \quad p \in(0,1)
$$

Remark 2. We note that the bounds obtained above for the real part of $a_{0}(f)$ are the same as the bounds for the real part of $a_{0}(f)$ in any direction, i.e., the bounds which are true for $\operatorname{Re}\left(a_{0}(f)\right)$ are also valid for $\operatorname{Re}\left(\mathrm{e}^{\mathrm{i} \beta} a_{0}(f)\right)$ for some fixed parameter $\beta \in[0,2 \pi)$.

Corollary 1. Let $f \in S(p)$ have the expansion (1). Then

$$
\frac{-p\left(1+2 p^{2}\right)}{\left(1-p^{2}\right)^{2}} \leq \operatorname{Im}\left(a_{0}(f)\right) \leq p\left(1+2 p^{2}\right), \quad p \in\left[\sqrt{1-\mathrm{e}^{-\pi / 2}}, 1\right)
$$

The strict inequality holds in the above estimate for $p \in\left(0, \sqrt{1-\mathrm{e}^{-\pi / 2}}\right)$.
Proof. We have from (7) that $a_{0}(f)=Y J$. Now a little computation of the imaginary part of J reveals that

$$
\operatorname{Im} J=-p \sin x+\frac{1+p^{2}}{p} \sin (x+\phi)
$$

where x and ϕ are as in Theorem 1. We observe that $-1 \leq \sin x \leq 1$ whenever $p \in\left[\sqrt{1-\mathrm{e}^{-\pi / 2}}, 1\right)$, and that on the complement part $p \in\left(0, \sqrt{1-\mathrm{e}^{-\pi / 2}}\right)$, we have $-1<\sin x<1$. Now the proof follows easily.

Corollary 2. If $g \in \mathcal{S}$ has the expansion

$$
g(z)=\sum_{n=0}^{\infty} b_{n}(z-p)^{n}, \quad|z-p|<1-p,
$$

then

$$
\operatorname{Re}\left(b_{2}\left(\frac{b_{0}}{b_{1}}\right)^{2}-b_{0}\right) \geq \frac{-p}{\left(1-p^{2}\right)^{2}}, \quad p \in\left(0, \sqrt{1-\mathrm{e}^{-\pi}}\right)
$$

The above estimate is sharp for the Koebe function $\frac{z}{(1-z)^{2}}$.
Proof. If $g \in \mathcal{S}$, then

$$
f(z)=\frac{g(p) g(z)}{g(p)-g(z)}
$$

is in $S(p)$. Now using the Laurent expansion (1) of f at p, we easily get that

$$
a_{0}(f)=\frac{g(p)^{2} g^{\prime \prime}(p)}{2 g^{\prime}(p)^{2}}-g(p) .
$$

Noting that $g(p)=b_{0}, g^{\prime}(p)=b_{1}, g^{\prime \prime}(p)=2 b_{2}$ and using the estimate for the real part of $a_{0}(f)$ from Theorem 1, we get the desired estimate for functions in \mathcal{S}. It is not difficult to see that the estimate is sharp for the Koebe function.
3. CLOSED CONVEX HULL AND THE LAURENT COEFFICIENTS OF $\Sigma^{s}\left(p, w_{0}\right)$

The closed convex hull of the family of functions defined by the representation formula (4) in Theorem C consists of all functions each of which are limits (in the topology of uniform convergence) of functions of the form

$$
\begin{aligned}
& \left\{w_{0}+\frac{p w_{0}}{(z-p)(1-z p)} \sum_{i=1}^{n} t_{i}\left(1+z \omega_{i}(z)\right)^{2}: \omega_{i}: \mathbb{D} \rightarrow \overline{\mathbb{D}}, \omega_{i}\right. \text { is holomorphic } \\
& \text { and } \left.\omega_{i}(0)=-\frac{1}{2}\left(p+\frac{1}{p}+\frac{1}{w_{0}}\right), n=1,2, \cdots\right\}
\end{aligned}
$$

In the next theorem we prove a containment relation between the closed convex hull of $\Sigma^{s}\left(p, w_{0}\right)$ and the closed convex hull of family of functions defined by (4). We will use Theorem D to get this result .

THEOREM 2. Let $p \in(0,1)$ and $w_{0} \in\left[\frac{-p}{(1-p)^{2}}, \frac{-p}{(1+p)^{2}}\right]$. Then the closed convex hull of $\Sigma^{s}\left(p, w_{0}\right)$ is a proper subset of the closed convex hull of the family of functions defined by (4).

Proof. First we observe that the coefficients $a_{-1}(f)$ of the functions f in the closed convex hull of $\Sigma^{s}\left(p, w_{0}\right)$ satisfy the inequality (5) of Theorem D. Next let us consider the following Taylor expansion for ω at $z=p$

$$
\begin{equation*}
\omega(z)=\sum_{n=0}^{\infty} c_{n}(z-p)^{n}, \quad|z-p|<1-p \tag{9}
\end{equation*}
$$

Now a computation of $a_{-1}(f)$, using the representation formula (4) and the expansions (1) and (9), yields

$$
\begin{equation*}
a_{-1}(f)=\frac{p w_{0}}{1-p^{2}}\left[1+p^{2} c_{0}^{2}+2 p c_{0}\right] \tag{10}
\end{equation*}
$$

We insert into (4) the functions

$$
\begin{equation*}
\omega_{x}(z)=\frac{-\left(\frac{z-p}{1-p z}\right)-x}{1+x\left(\frac{z-p}{1-p z}\right)}, \quad z \in \mathbb{D} \tag{11}
\end{equation*}
$$

$x \in(0,1)$ fixed. The Taylor expansion of ω_{x}, at the point p, gives $c_{0}=-x$. Using this value of c_{0}, we get from (10)

$$
a_{-1}(f)=\frac{p(1-p)}{(1+p)}\left(\frac{1-p x}{1-p}\right)^{2} w_{0}
$$

It is easy to see that

$$
\left(\frac{1-p x}{1-p}\right)^{2}>1
$$

for all $p \in(0,1)$ and $x \in(0,1)$. Hence for $w_{0} \in\left[\frac{-p}{(1-p)^{2}}, \frac{-p}{(1+p)^{2}}\right]$, we have

$$
a_{-1}(f)<-\frac{p(1-p)}{(1+p)}\left|w_{0}\right| .
$$

So the functions f in (4) got by inserting $\omega_{x}(z)$ do not belong to the closed convex hull of $\Sigma^{s}\left(p, w_{0}\right)$. This finishes the proof.

In view of the refined estimate $[3,(3.6)]$, we can formulate the corrected version of the corollary after [7, Theorem 9]:

Corollary 3. Let $p \in(0,1)$ and $f \in \Sigma^{s}\left(p, w_{0}\right)$ have the expansion (1). Then
(i) $\left|a_{0}-w_{0}\right| \leq \frac{p(2+p)}{(1-p)^{2}}\left|w_{0}\right|$,
(ii) $\left|a_{1}\right| \leq \frac{p\left|w_{0}\right|}{(1-p)^{3}(1+p)}$.

The estimate (ii) is sharp for

$$
f(z)=\frac{-z p}{(z-p)(1-p z)}
$$

with $w_{0}=\frac{-p}{(1+p)^{2}}$.
Remark 3. We observe that the extremal function f of [7, Theorem 8] belongs to $\Sigma^{s}\left(p, w_{0}\right)$ if and only if $w_{0}=\frac{-p}{(1-p)^{2}}$. This is a direct consequence of the fact that

$$
f^{\prime}(z)=-(1-p)^{2}\left(\frac{1+z}{1-z}\right) \frac{f(z)-w_{0}}{(z-p)(1-z p)}
$$

and $f^{\prime}(0)=1$. Hence, the inequality (i) for the above corollary cannot be sharp since the inequality $[3,(3.6)]$ is sharp for $(-z p) /((1-z p)(z-p))$ with $w_{0}=\frac{-p}{(1+p)^{2}}$. But this is not the case with estimate (ii) of the above corollary, as the estimate $[7,(5.5)]$ is not involved with the point w_{0}.

REFERENCES

[1] Avkhadiev, F.G., Pommerenke, Ch. and Wirths, K.-J., On the coefficients of concave univalent functions, Math. Nachr., 271 (2004), 3-9.
[2] Avkhadiev, F.G. and Wirths, K.-J., A proof of the Livingston conjecture, Forum Math., 19 (2007), 149-158.
[3] Bhowmik, B. and Ponnusamy, S., Coefficient inequalities for concave and meromorphically starlike univalent functions, Ann. Polon. Math., 93 (2008), 177-186.
[4] Bhowmik, B., Ponnusamy, S. and Wirths, K.-J., Domains of variability of Laurent coefficients and the convex hull for the family of concave univalent functions, Kodai Math. J., 30 (2007), 385-393.
[5] Chang, Y.L., On the representation formulas for the functions in the class $\Sigma^{*}\left(p, w_{0}\right)$, Proc. Amer. Math. Soc., 103 (1988), 517-520.
[6] Jenkins, J.A., On a conjecture of Goodman concerning meromorphic univalent functions, Michigan Math. J., 9 (1902), 25-27.
[7] Livingston, A.E., Convex meromorphic mappings, Ann. Polon Math., 59 (3) (1994), 275-291.
[8] Miller, J., Starlike meromorphic functions, Proc. Amer. Math. Soc., 31 (1972), 446452.
[9] Miller, J., Convex and starlike meromorphic functions, Proc. Amer. Math. Soc., 80 (1980), 607-613.
[10] Wirths, K.-J., On the residuum of concave univalent functions, Serdica Math. J., 32 (2006), 209-214.
[11] Zemyan, St.M., The range of the residue functional for the class $S(p)$, Michigan Math. J., 31 (1984), 73-76.
[12] Zhang, Y.L. and MA, J.X., Extreme points and support points of the families of meromorphic univalent functions, Math. Japonica, 36 (1991), 1115-1121.

Received March 31, 2008
Accepted November 23, 2008

Department of Mathematics Indian Institute of Technology Madras
Chennai-600 036, India.
E-mail: ditya@iitm.ac.in
Department of Mathematics Indian Institute of Technology Madras
Chennai-600 036, India.
E-mail: samy@iitm.ac.in
Institut für Analysis
TU Braunschweig
38106 Braunschweig, Germany.
E-mail: kjwirths@tu-bs.de

