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VOLTERRA-FREDHOLM NONLINEAR INTEGRAL EQUATIONS
VIA PICARD OPERATORS THEORY

CLAUDIA BACOŢIU

Abstract. In the present paper we study existence and uniqueness of the so-
lution, data dependence of the solution, comparison theorems, lower and upper
subsolutions and differentiability of the solution with respect to a parameter of
the following Volterra-Fredholm nonlinear integral equation

u(t, x) = g(t, x) +

Z t

0

Z
Ω

K(t, x, s, y, u(s, y))dyds.
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1. INTRODUCTION

Let (X, ‖ · ‖X) be a Banach space. In this paper we consider the following
nonlinear integral equation of Volterra-Fredholm type:

(1) u(t, x) = g(t, x) +
∫ t

0

∫
Ω
K(t, x, s, y, u(s, y))dyds,

for all (t, x) ∈ [0, T ] × Ω := D, where T > 0 and Ω ⊂ Rm is bounded and
closed.

Volterra-Fredholm integral equations (VF for short) often arise from the
mathematical modeling of the spreading (in space and time) of some conta-
gious diseases; they also come up in the theory of nonlinear parabolic boundary
value problems and in many physical and biological models. There are many
results for the VF equation (1) which establish numerical approximation of
the solutions; see, e.g., [6], [7], [18], [1], [8], [2].

In [17] H. R. Thieme considered a model for the spatial spread of an epidemic
consisting of a nonlinear integral equation of Volterra-Fredholm type having
an unique solution. The author showed that this solution has a temporally
asymptotic limit which describes the final state of the epidemic and is the
minimal solution of another nonlinear integral equation.

In [3] O. Diekmann described, derived and analysed a model of the spatial
and temporal development of an epidemic. The model considered leads (see
[10]) to the following nonlinear integral equation of Volterra-Fredholm type:

(2) u(t, x) = f(t, x) +
∫ t

0

∫
Ω
g(u(t− τ, ξ))S0(ξ)A(τ, x, ξ)dξdτ,

for all (t, x) ∈ [0,∞]× Ω, where Ω is a bounded domain in Rn.
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In [10] B. G. Pachpatte considered the integral equation (1). Using the Con-
traction Principle, the author proved that, under appropriate assumptions, (1)
has a unique solution in a subset S of C(D,Rn). The result was then applied
to show the existence and uniqueness of the solution of certain nonlinear par-
abolic differential equations and mixed Volterra-Fredholm integral equations
occurring in specific physical and biological problems (for example, a reliable
treatment of the Diekmann’s model mentioned above is given).

In this paper we will present an extended treatment for equation (1). While
in [10] the author gives a local existence and uniqueness theorem with the
contraction condition required, we will give a global existence and uniqueness
theorem without the contraction condition required (i. e., the assumption
LKm(Ω) < 1 is not necessary). Moreover, we will study the data dependence
of the solution, comparison theorems, lower and upper subsolutions and the
differentiability of the solution with respect to a parameter. For the last
problem we will consider the following VF equation with a parameter λ:

(3) u(t, x) = g(t, x) +
∫ t

0

∫ b

a
K(t, x, s, y, u(s, y), λ)dyds,

for all (t, x) ∈ [0, T ] × [α, β], with [a, b] ⊂ [α, β] ⊂ R+, where λ ∈ J ⊂ R,
J being a compact interval. Also, we will prove the differentiability of the
solution with respect to λ.

Since the main tool used in the present paper are the Picard operators, we
start by presenting some basic notions and results concerning this important
class of operators.

2. PICARD OPERATORS

Let (X, d) be a metric space and A : X → X an operator. We will use the
following notations:

FA := {x ∈ X : A(x) = x};
A0 := 1X , An+1 := A ◦An, ∀n ∈ N.

If (X, d,≤) is an ordered metric space, let

(LF )A :=
{
x ∈ X : x ≤ A(x)

}
,

(UF )A :=
{
x ∈ X : x ≥ A(x)

}
.

Definition 1. (Rus [11]) The operator A is said to be:
(i) a weakly Picard operator (wPo) if An(x0) → x∗0, for every x0 ∈ X, and

the limit x∗0 is a fixed point of A, which may depend on x0.
(ii) a Picard operator (Po) if FA = {x∗} and An(x0)→ x∗, for every x0 ∈ X.
For a weakly Picard operator A one defines the operator A∞ as follows:

A∞ : X → X, A∞(x) := lim
n→∞

An(x).

Note that A∞(X) = FA. If A is Picard operator, then A∞(x) = x∗, for every
x ∈ X, where x∗ is the unique fixed point of A.
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The following abstract theorem is needed to study the data dependence of
the solution:

Theorem 1. (Rus [13]) For a complete metric space (X, d) and the opera-
tors A,B : X → X assume that:

(i) there exists α ∈ [0, 1[ such that A is an α-contraction; let FA = {x∗A};
(ii) FB 6= ∅; let x∗B ∈ FB;
(iii) there exists η > 0 such that d (A(x), B(x)) ≤ η, for all x ∈ X. Then

d(x∗A, x
∗
B) ≤ η

1− α
.

The following lemma will be applied in order to prove a comparison theorem
for VF equations:

Lemma 1. (The Abstract Comparison Lemma; Rus [13]) Let (X, d,≤) be an
ordered metric space and A,B,C : X → X operators satisfying the following
conditions:

(i) A ≤ B ≤ C;
(ii) A,B,C are weakly Picard;
(iii) B is increasing.
If x, y, z ∈ X are so that x ≤ y ≤ z, then A∞(x) ≤ B∞(y) ≤ C∞(z).

In order to study lower and upper subsolutions the following abstract lemma
in ordered metric spaces is required:

Lemma 2. (The Abstract Gronwall Lemma; Rus [13]) Let (X, d,≤) be an
ordered metric space and A : X → X an operator such that:

(i) A is increasing;
(ii) A is Picard; let FA = {x∗A}.
If x ∈ (LF )A and y ∈ (UF )A then x ≤ x∗A ≤ y.

In order to study the differentiability of the solution with respect to a pa-
rameter we need the following theorem:

Theorem 2. (The Fiber Contraction Principle, Rus [12]) Let (X, d), (Y, ρ)
be two metric spaces and B : X → X, C : X × Y → Y operators such that:

(i) (Y, ρ) is complete;
(ii) B is a Picard operator, FB = {x∗};
(iii) C(·, y) : X → Y is continuous, for all y ∈ Y ;
(iv) there exists α ∈]0, 1[ such that the operator C(x, ·) : Y → Y is α-

contraction for all x ∈ X; let y∗ be the unique fixed point of C(x∗, ·).
Then

A : X × Y → X × Y, A(x, y) := (B(x), C(x, y))

is a Picard operator and FA = {(x∗, y∗)}.

For Picard operators applied in the study of differential or integral equations
we refer to [15], [14], [13], [9], [16], [5], [4].
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3. THE EXISTENCE AND UNIQUENESS THEOREM

Consider the equation (1).

Theorem 3. If the following conditions are satisfied:
(i) g ∈ C(D,X) and K ∈ C(D ×D ×X,X);
(ii) there exists a real constant LK > 0 such that for all (t, x, s, y) ∈ D×D

and for all u, v ∈ X
(4) ‖K(t, x, s, y, u)−K(t, x, s, y, v)‖X ≤ LK‖u− v‖X ,
then (1) has an unique solution u∗ ∈ C(D,X).

Proof. Endow the space C(D,X) with a Bielecki-Chebysev suitable norm

(5) ‖u‖BC := sup{‖u(t, x)‖X e−τt : t ∈ [0, T ], x ∈ Ω}, τ > 0.

Consider the operator A : C(D,X)→ C(D,X) defined by

(6) A(u)(t, x) := g(t, x) +
∫ t

0

∫
Ω
K(t, x, s, y, u(s, y))dyds, ∀ (t, x) ∈ D.

For all u, v ∈ C(D,X) we have

‖A(u)(t, x) − A(v)(t, x)‖X

≤
∫ t

0

∫
Ω
‖K(t, x, s, y, u(s, y))−K(t, x, s, y, v(s, y))‖Xdyds

≤ LK

∫ t

0

∫
Ω
‖u(s, y)− v(s, y)‖Xdyds

≤ LK

∫ t

0
m(Ω) sup

y∈Ω
‖u(s, y)− v(s, y)‖Xds

≤ LKm(Ω)
τ

‖u− v‖BC eτt,

hence

‖A(u)−A(v)‖BC ≤
LKm(Ω)

τ
‖u− v‖BC .

Choosing τ such that α :=
LKm(Ω)

τ
< 1, it follows that A : C(D,X) →

C(D,X) is an α-contraction. Thus, by the Contraction Principle, the conclu-
sion follows. Note that A is a Picard operator. �

4. DATA DEPENDENCE OF THE SOLUTION

In order to prove the dependence of the solution of (1) on g and K let us
consider the following VF equation

(7) u(t, x) = h(t, x) +
∫ t

0

∫
Ω
N(t, x, s, y, u(s, y))dyds,

for all (t, x) ∈ D, with h ∈ C(D,X) and N ∈ C(D ×D ×X,X).
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Theorem 4. Consider equation (1) and assume that conditions (i) and (ii)
from Theorem 3 are satisfied. Let u∗ be the unique solution of (1). Further-
more, assume that the equation (7) has at least one solution and let v∗ be such
a solution. If there exist η1, η2 > 0 such that

‖g(t, x)− h(t, x)‖X ≤ η1, ∀ (t, x) ∈ D,
and

‖K(t, x, s, y, u)−N(t, x, s, y, u)‖X ≤ η2, ∀ (t, x, s, y, u) ∈ D ×D ×X,
then

‖u∗ − v∗‖BC ≤
η1 + Tm(Ω)η2

1− LKm(Ω)
τ

,

where τ > 0 is suitably selected.

Proof. In the space C(D,X), endowed with Bielecki-Chebysev norm (5), we
define the operators Ai : C(D,X)→ C(D,X), i = 1, 2, by

A1(u)(t, x) := g(t, x) +
∫ t

0

∫
Ω
K(t, x, s, y, u(s, y))dyds,

A2(u)(t, x) := h(t, x) +
∫ t

0

∫
Ω
N(t, x, s, y, u(s, y))dyds,

for all (t, x) ∈ D, i = 1, 2.
Let LK be the Lipschitz constant of K. Then, for a suitable τ > 0, A1

is an α-contraction, with α :=
LKm(Ω)

τ
< 1. We have FA1 = {u∗} and

v∗ ∈ FA2 6= ∅. Relation (iii) implies that ‖A1(u)−A2(u)‖BC ≤ η1 +Tm(Ω)η2,
for all u ∈ C(D). The conclusion follows now from Theorem 1. �

5. DATA DEPENDENCE: MONOTONICITY

Consider the equation (1).

Theorem 5. (A Gronwall-type theorem) Assume that the conditions of
Theorem 3 are satisfied and let u∗ be the unique solution of (1). Moreover,
assume that K(t, x, s, y, ·) is increasing for all (t, x, s, y) ∈ D × D. If v ∈
C(D,X) is a subsolution of (1) and w ∈ C(D,X) is a suprasolution of (1),
then v ≤ u∗ ≤ w.

Proof. Consider the operator A : C(D,X)→ C(D,X) defined by (6). From
Theorem 3 we know that A is a Picard operator and that FA = {u∗}. But
v ∈ (LF )A, w ∈ (UF )A, so the conditions of Lemma 2 are fulfilled and the
conclusion follows. �

Now consider the following three equations:

(8) u(t, x) = gi(t, x) +
∫ t

0

∫
Ω
Ki(t, x, s, y, u(s, y))dyds, i = 1, 2, 3.
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Theorem 6. Assume that conditions (i) and (ii) from Theorem 3 are ful-
filled for each equation from (8) and let u∗i be their solutions, i = 1, 2, 3. If, in
addition, we have that

(iii) K2(t, x, s, y, ·) is increasing for all (t, x, s, y) ∈ D ×D,
(iv) g1 ≤ g2 ≤ g3 and K1 ≤ K2 ≤ K3,

then u∗1 ≤ u∗2 ≤ u∗3.

Proof. Let Ai : C(D,X)→ C(D,X) be defined by

Ai(u)(t, x) := gi(t, x) +
∫ t

0

∫
Ω
Ki(t, x, s, y, u(s, y))dyds, i = 1, 2, 3.

From the proof of Theorem 3 we know that Ai is a Picard operator, so

(9) A∞i (u) = u∗i , ∀ u ∈ C(D,X), ∀ i = 1, 2, 3.

Condition (iii) yields that A2 is increasing, and from (iv) it follows that A1 ≤
A2 ≤ A3. Thus the conditions of Lemma 1 are satisfied, so A∞1 ≤ A∞2 ≤ A∞3 .
By (9) it follows that u∗1 ≤ u∗2 ≤ u∗3. �

6. DIFFERENTIABILITY OF THE SOLUTION WITH RESPECT TO PARAMETERS

In this section we consider equation (3) under certain assumptions and we
will prove the differentiability of its solution with respect to the parameter λ.

Theorem 7. Let J ⊂ R be a compact interval and λ ∈ J . Assume that:
(i) g ∈ C(D) and K ∈ C(D ×D × R× J);
(ii) there exists LK > 0 such that

(10) |K(t, x, s, y, u, λ)−K(t, x, s, y, v, λ)| ≤ LK |u− v|
for all (t, x, s, y) ∈ D ×D, u, v ∈ R, and λ ∈ J .

Then the following assertions hold:
a) Equation (3) has in C(D) a unique solution u∗(·, ·, λ), for every λ ∈ J .
b) The sequence (un)n≥0, defined for each u0 ∈ C(D) by

un(t, x, λ) = g(t, x) +
∫ t

0

∫
Ω
K(t, x, s, y, un−1(s, y, λ), λ)dyds

converges uniformly to u∗, for every (t, x, λ) ∈ D × J .
c) The function u∗ which assigns to each (t, x, λ) 7→ u∗(t, x, λ) is continuous,

i.e., u∗ ∈ C(D × J).
d) If K(t, x, s, y, ·, ·) ∈ C1(R × J), for each (t, x, s, y) ∈ D × D, then

u∗(t, x, ·) ∈ C1(J), for every (t, x) ∈ D.

Proof. Let Y := C(D × J). Consider the operator B : Y → Y defined by

B(u)(t, x, λ) := g(t, x) +
∫ t

0

∫
Ω
K(t, x, s, y, u(s, y, λ), λ)dyds.

The operator B satisfies the hypotheses of Theorem 3, so assertions a), b) and
c) hold.
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For any λ ∈ J there is a unique solution u∗(·, ·, λ) ∈ C(D) and we have

(11) u∗(t, x, λ) = g(t, x) +
∫ t

0

∫
Ω
K(t, x, s, y, u∗(s, y, λ), λ)dyds.

We will prove that
∂u∗(t, x, λ)

∂λ
exists and is continuous. Supposing that

∂u∗(t, x, λ)
∂λ

exists, we obtain from (11) that

∂u∗(t, x, λ)
∂λ

=
∫ t

0

∫
Ω

∂K(t, x, s, y, u∗(s, y, λ), λ)
∂u

· ∂u
∗(s, y, λ)
∂λ

dyds

+
∫ t

0

∫
Ω

∂K(t, x, s, y, u∗(s, y, λ), λ)
∂λ

dyds.

This suggests us to consider the operator C : Y × Y → Y , defined by

C(u, v)(t, x, λ) :=
∫ t

0

∫
Ω

∂K(t, x, s, y, u(s, y, λ), λ)
∂u

· v(s, y, λ)dyds

+
∫ t

0

∫
Ω

∂K(t, x, s, y, u(s, y, λ), λ)
∂λ

dyds.

The operator C(u, ·) is a contraction for all u ∈ Y ; let v∗ be the unique fixed
point of C(u∗, ·). If we define the operator A : Y × Y → Y × Y ,

A(u, v)(t, x, λ) := (B(u)(t, x, λ), C(u, v)(t, x, λ)) ,

then the conditions of the Theorem 2 are fulfilled. It follows that A is a Picard
operator and FA = {(u∗, v∗)}.

Consider now the sequences (un)n≥0 and (vn)n≥0 defined by

un(t, x, λ) := B(un−1(t, x, λ))

= g(t, x) +
∫ t

0

∫
Ω
K(t, x, s, y, un−1(s, y, λ), λ)dyds, ∀ n ≥ 1,

vn(t, x, λ) := C(un−1(t, x, λ), vn−1(t, x, λ))

=
∫ t

0

∫
Ω

∂K(t, x, s, y, un−1(s, y, λ), λ)
∂u

· vn−1(s, y, λ)dyds

+
∫ t

0

∫
Ω

∂K(t, x, s, y, un−1(s, y, λ), λ)
∂λ

dyds, ∀ n ≥ 1.

We have

(12) un ⇒ u∗ (n→∞) and vn ⇒ v∗ (n→∞)

for (t, x, λ) ∈ D × J , and for each u0, v0 ∈ C(D × J). We take u0 = v0 := 0,

so v1 =
∂u1

∂λ
. An induction argument yields that vn =

∂un
∂λ

, for all n ≥ 1, and

(12) implies that ∂un
∂λ ⇒ v∗ (n → ∞). Applying the theorem of Weierstrass,

it follows that
∂u∗

∂λ
exists and ∂u∗(t,x,λ)

∂λ = v∗(t, x, λ). �
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3, 81–94.

[6] Hadizadeh, M., Posteriori Error Estimates for the Nonlinear Volterra-Fredholm Inte-
gral Equations, Comput. Math. Appl., 45 (2003), 677–687.

[7] Maleknejad, K. and Hadizadeh, M., A New Computational Method for Volterra-
Fredholm Integral Equations, Comput. Math. Appl., 37 (1999), 1–8.

[8] Maleknejad, K. and Fadaei Yami, M.R., A computational method for system of
Volterra-Fredholm integral equations, Appl. Math. Comput., 183 (2006), 589–595.
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