# A MULTIPLICITY RESULT FOR A DOUBLE EIGENVALUE P-LAPLACIAN EQUATION ON UNBOUNDED DOMAIN 

ILDIKÓ ILONA MEZEI


#### Abstract

We present a multiplicity result concerning a class of quasilinear eigenvalue problems with nonlinear boundary conditions on unbounded domain. The proofs are based on the Mountain Pass theorem applied to weighted Sobolev spaces. Our paper completes the results obtained in this direction (see for instance [1], [3], [5], [6], [8]).


MSC 2000. 35P30, 35J20, 35J65, 35J70, 58E05.
Key words. p-Laplacian, quasilinear elliptic equation, eigenvalue problems, unbounded domain, weighted function space.

## 1. PRELIMINARIES

The eigenvalue problems involving the p-Laplacian operator have been intensively studied by many authors in the last decade. This is motivated by the importance of their applications to mathematical physics.

Let $\Omega \subset \mathbb{R}^{N}$ be an unbounded domain with smooth boundary $\Gamma$. We assume throughout this paper that $m, p, q$ and $\alpha_{1}, \alpha_{2}$ are real numbers satisfying

$$
\begin{align*}
& 1<p<N, \quad p \leq q \leq \frac{p N}{N-p}, \quad-N<\alpha_{1} \leq q \cdot \frac{N-p}{p}-N  \tag{1}\\
& p \leq m \leq p \cdot \frac{N-1}{N-p} \text { and } \quad-N<\alpha_{2} \leq m \cdot \frac{N-p}{N}-N+1
\end{align*}
$$

We define the weighted Sobolev space $E$ as the completion of $C_{0}^{\infty}(\Omega)$ in the norm

$$
\|u\|_{E}=\left(\int_{\Omega}\left(|\nabla u(x)|^{p}+\frac{1}{(1+|x|)^{p}}|u(x)|^{p}\right) \mathrm{d} x\right)^{\frac{1}{p}}
$$

We denote by $L^{q}\left(\Omega ; w_{1}\right)$ and by $L^{m}\left(\Gamma ; w_{2}\right)$ the weighted Lebesgue spaces with respect to

$$
\begin{equation*}
w_{i}(x)=(1+|x|)^{\alpha_{i}}, i=1,2 \tag{3}
\end{equation*}
$$

and norms

$$
\|u\|_{q, w_{1}}^{q}=\int_{\Omega} w_{1}(x)|u(x)|^{q} \mathrm{~d} x \quad \text { and } \quad\|u\|_{m, w_{2}}^{m}=\int_{\Gamma} w_{2}(x)|u(x)|^{m} \mathrm{~d} \Gamma
$$

[^0]We shall use in our paper the following embedding result from [7].
Proposition 1. Assume that (1) holds.
Then the embedding $E \hookrightarrow L^{q}\left(\Omega ; w_{1}\right)$ is continuous. If the upper bound for $q$ in (1) is strict, then the embedding is compact. Suppose that the inequalities in (2) are satisfied. Then the trace operator $E \rightarrow L^{m}\left(\Gamma ; w_{2}\right)$ is continuous. If the upper bound for $m$ in (2) is strict, then the trace operator is compact.

Notations: The best embedding constant of $E \hookrightarrow L^{q}\left(\Omega ; w_{1}\right)$ will be denoted by $C_{q, w_{1}}$ and that of $E \hookrightarrow L^{m}\left(\Gamma ; w_{2}\right)$ by $C_{m, w_{2}}$.

We assume throughout this paper that $a \in L^{\infty}(\Omega)$ and $b \in L^{\infty}(\Gamma)$ such that

$$
\begin{equation*}
a(x) \geq a_{0}>0 \quad \text { for a.e. } x \in \Omega \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{c}{(1+|x|)^{p-1}} \leq b(x) \leq \frac{C}{(1+|x|)^{p-1}} \quad \text { for a.e. } x \in \Gamma, \tag{5}
\end{equation*}
$$

where $c, C>0$ are constants.
Remark 1. Note, that

$$
\|u\|_{b}^{p}=\int_{\Omega} a(x)|\nabla u(x)|^{p} \mathrm{~d} x+\int_{\Gamma} b(x)|u(x)|^{p} \mathrm{~d} \Gamma
$$

defines an equivalent norm on $E$, see [6], Lemma 2.
The main result of this paper is based on the following Mountain Pass Theorem.

Theorem 1. Let $f: E \rightarrow \mathbb{R}$ be a $C^{1}$ functional satisfying the Palais-Smale condition and verifying the hypotheses
(a) there exist constants $\alpha>0$ and $\rho>0$ such that $f(u) \geq \alpha$, for every $\|u\|=\rho$;
(b) there is $e \in E$ with $\|e\|>\rho$ and $f(e) \leq \alpha$.

Then the number

$$
c=\inf _{g \in \Gamma} \max _{v \in[0, e]} f(g(v)),
$$

where $[0, e]$ is the closed line segment in $E$ joining 0 and $e$ and

$$
\Gamma=\{c \in C([0, e], X): g(0)=0, g(e)=e\},
$$

is a critical value of $f$ with $c \geq \alpha$.

## 2. MAIN RESULT

For $\lambda>0$ and $\mu \in \mathbb{R}$ we consider the problem
$\left(P_{\lambda, \mu}\right) \quad\left\{\begin{array}{l}-\operatorname{div}\left(a(x)|\nabla u|^{p-2} \nabla u\right)=\lambda f(x, u) \text { in } \Omega, \\ a(x)|\nabla u|^{p-2} \nabla u \cdot n+b(x)|u|^{p-2} u=\lambda \mu g(x, u) \text { on } \Gamma \\ u \neq 0 \text { in } \Omega,\end{array}\right.$
where $n$ denotes the unit outward normal on $\Gamma$, and $f: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is a Carathéodory function.

We consider the following assumptions:
(F1) $f(\cdot, 0)=0$ and $|f(x, s)| \leq f_{0}(x)+f_{1}(x)|s|^{r-1}$, where $p<r<\frac{p N}{N-p}$, and $f_{0}, f_{1}$ are measurable functions which satisfy

$$
\begin{aligned}
& 0<f_{0}(x) \leq C_{f} w_{1}(x), \text { and } 0 \leq f_{1}(x) \leq C_{f} w_{1}(x) \text { a.e. } x \in \Omega, \\
& \qquad f_{0} \in L^{\frac{r}{r-1}}\left(\Omega ; w_{1}^{\frac{1}{1-r}}\right) .
\end{aligned}
$$

(F2) $\lim _{s \rightarrow 0} \frac{f(x, s)}{f_{0}(x)|s|^{p-1}}=0$, uniformly in $x \in \Omega$;
(F3) $\limsup _{s \rightarrow+\infty} \frac{1}{f_{0}(x)\left|s^{p}\right|} F(x, s) \leq 0$, uniformly for $x \in \Omega, \quad \max _{|s| \leq M} F(\cdot, s) \in$ $L^{1}(\Omega)$ for all $M>0$, where $F$ denotes the primitive function of $f$ with respect to the second variable, i.e. $F(x, u)=\int_{0}^{u} f(x, s) \mathrm{d} s$;
(F4) there exist $x_{0} \in \Omega, R_{0}>0$ and $s_{0} \in \mathbb{R}$ such that $\min _{\left|x-x_{0}\right|<R_{0}} F\left(x, s_{0}\right)>0$.
(G1) Let $g: \Gamma \times \mathbb{R} \rightarrow \mathbb{R}$ be a a Carathéodory function such that $g(\cdot, 0)=0$ and

$$
|g(x, s)| \leq g_{0}(x)+g_{1}(x)|s|^{m-1}
$$

where $p \leq m<p \cdot \frac{N-1}{N-p}$, and $g_{0}, g_{1}$ are measurable functions satisfying

$$
\begin{aligned}
& 0<g_{0}(x) \leq C_{g} w_{2}(x) \text { and } 0 \leq g_{1}(x) \leq C_{g} w_{2}(x), \text { a.e. } x \in \Gamma, \\
& \qquad g_{0} \in L^{\frac{q}{q-1}}\left(\Gamma ; w_{2}^{\frac{1}{1-q}}\right) ;
\end{aligned}
$$

(G2)

$$
\lim _{s \rightarrow 0} \frac{g(x, s)}{g_{0}(x)|s|^{p-1}}=0, \quad \text { uniformly in } x \in \Gamma ;
$$

(G3) $\limsup _{s \rightarrow+\infty} \frac{1}{g_{0}(x)\left|s^{\eta}\right|} G(x, s) \leq 0$, uniformly for $x \in \Gamma, \max _{|s| \leq M} G(\cdot, s) \in L^{1}(\Gamma)$ for all $M>0$, where $G$ is the primitive function of $g$ with respect to the second variable, i.e. $G(x, u)=\int_{0}^{u} g(x, s) \mathrm{d} s$.

We introduce the functionals $J_{F}, J_{G}, J_{\mu}: E \rightarrow \mathbb{R}$, defined by

$$
\begin{gathered}
J_{F}(u)=\int_{\Omega} F(x, u(x)) \mathrm{d} x, \quad J_{G}(u)=\int_{\Gamma} G(x, u(x)) \mathrm{d} \Gamma, \\
J_{\mu}(u)=J_{F}(u)+\mu J_{G}(u) .
\end{gathered}
$$

A standard argument, which is based on the embedding results from Proposition 1 and the assumptions (F1), (G1) shows that the functionals $J_{F}, J_{G}$ hence $J_{\mu}$ too, are well defined, are of class $C^{1}$ and their directional derivative in direction $v \in E$ are

$$
\begin{gathered}
\left\langle J_{F}(u), v\right\rangle=\int_{\Omega} F(x, u(x)) v(x) \mathrm{d} x, \quad\left\langle J_{G}(u), v\right\rangle=\int_{\Gamma} G(x, u(x)) v(x) \mathrm{d} \Gamma, \\
\left\langle J_{\mu}(u), v\right\rangle=\int_{\Omega} F(x, u(x)) v(x) \mathrm{d} x+\mu \int_{\Gamma} G(x, u(x)) v(x) \mathrm{d} \Gamma
\end{gathered}
$$

for each $u \in E$ (see for instance [10], Lemma 3.10).
Now, we can define the energy functional $\mathcal{E}_{\lambda, \mu}: E \rightarrow \mathbb{R}$ corresponding to ( $P_{\lambda, \mu}$ ) as follows

$$
\mathcal{E}_{\lambda, \mu}(u)=\frac{1}{p} \int_{\Omega} a(x)|\nabla u(x)|^{p} \mathrm{~d} x+\frac{1}{p} \int_{\Gamma} b(x)|u(x)|^{p} \mathrm{~d} \Gamma-\lambda J_{F}(u)-\lambda \mu J_{G}(u) .
$$

$\mathcal{E}_{\lambda, \mu}$ is well defined and the solutions of problem ( $P_{\lambda, \mu}$ ) will be found as critical points of $\mathcal{E}_{\lambda, \mu}$. Therefore, a function $u \in E$ is a solution of problem $\left(P_{\lambda, \mu}\right)$ provided that, for any $v \in E$,

$$
\begin{aligned}
\left\langle\mathcal{E}_{\lambda, \mu}^{\prime}(u), v\right\rangle & =\int_{\Omega} a(x)|\nabla u(x)|^{p-2} \nabla u(x) \nabla v(x) \mathrm{d} x \\
& +\int_{\Gamma} b(x)|u(x)|^{p-2} u(x) v(x) \mathrm{d} \Gamma \\
& -\lambda \int_{\Omega} f(x, u(x)) v(x) \mathrm{d} x+\lambda \mu \int_{\Gamma} g(x, u(x)) v(x) \mathrm{d} \Gamma=0 .
\end{aligned}
$$

The main result of this paper is the following:
Theorem 2. We suppose that the functions $f: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ and $g: \Gamma \times \mathbb{R} \rightarrow$ $\mathbb{R}$ satisfy the conditions $(F 1)-(F 4)$ and $(G 1)-(G 3)$ respectively. Then there exists $\lambda_{0}>0$ such that to every $\left.\lambda \in\right] \lambda_{0},+\infty[$ it corresponds a nonempty open interval $I_{\lambda} \subset \mathbb{R}$ such that for every $\mu \in I_{\lambda}$ the problem $\left(P_{\lambda, \mu}\right)$ has at least two distinct, nontrivial weak solutions $u_{\lambda, \mu}$ and $v_{\lambda, \mu}$, with the property

$$
\mathcal{E}_{\lambda, \mu}\left(u_{\lambda}, \mu\right)<0<\mathcal{E}_{\lambda, \mu}\left(v_{\lambda}, \mu\right) .
$$

## 3. PROOF OF THE MAIN THEOREM

We start with some auxiliary results.
Lemma 1. [5, Lemma 3.3] Suppose that the conditions (F1), (F3), (G1) and (G3) are satisfied. Then, for every $\lambda \geq 0$ and $\mu \in \mathbb{R}$ the functional $\mathcal{E}_{\lambda, \mu}$ is coercive on $E$.

Lemma 2. $\mathcal{E}_{\lambda, \mu}: E \rightarrow \mathbb{R}$ satisfies the Palais-Smale condition.

Proof. Let $\left\{u_{n}\right\} \subset E$ be a (PS)-sequence for the function $\mathcal{E}_{\lambda, \mu}$, i.e.
(1) $\left\{\mathcal{E}_{\lambda, \mu}\left(u_{n}\right)\right\}$ is bounded;
(2) $\mathcal{E}_{\lambda, \mu}^{\prime}\left(u_{n}\right) \rightarrow 0$.

Since $\mathcal{E}_{\lambda, \mu}$ is coercive, we have that $\left\{u_{n}\right\}$ is bounded. The reflexivity of the Banach space $E$ implies the existence of a subsequence notated also by $\left\{u_{n}\right\}$ such that $\left\{u_{n}\right\}$ is weakly convergent to an element $u \in E$. Because the inclusion $E \hookrightarrow L^{p}\left(\Omega, w_{1}\right)$ is compact, we have that $u_{n} \rightarrow u$ strongly in $L^{p}\left(\Omega, w_{1}\right)$. We want to prove, that $u_{n}$ converges strongly to $u$ in $E$. For this end, we will use the following inequalities from ([2], Lemma 4.10)

$$
\begin{gather*}
|\xi-\zeta|^{p} \leq M_{1}\left(|\xi|^{p-2} \xi-|\zeta|^{p-2} \zeta\right)(\xi-\zeta), \quad \text { for } p \geq 2  \tag{6}\\
\left.|\xi-\zeta|^{2} \leq M_{2}\left(|\xi|^{p-2} \xi-|\zeta|^{p-2} \zeta\right)(\xi-\zeta)(|\xi|+|\zeta|)^{2-p}, \quad \text { for } p \in\right] 1,2[ \tag{7}
\end{gather*}
$$

where $M_{1}$ and $M_{2}$ are some positive constants. We separate two cases. In the first case let $p \geq 2$. Then we have:

$$
\begin{aligned}
& \left\|u_{n}-u\right\|_{b}^{p}=\int_{\Omega} a(x)\left|\nabla u_{n}(x)-\nabla u(x)\right|^{p} \mathrm{~d} x+\int_{\Gamma} b(x)\left|u_{n}(x)-u(x)\right|^{p} \mathrm{~d} \Gamma \\
& \leq M_{1} \int_{\Omega} a(x)\left[\left|\nabla u_{n}(x)\right|^{p-2} \nabla u_{n}(x)-|\nabla u(x)|^{p-2} \nabla u(x)\right]\left(\nabla u_{n}(x)-\nabla u(x)\right) \mathrm{d} x \\
& +M_{1} \int_{\Gamma} b(x)\left[\left|u_{n}(x)\right|^{p-2} u_{n}(x)-|u(x)|^{p-2} u(x)\right]\left(u_{n}(x)-u(x)\right) \mathrm{d} \Gamma \\
& =M_{1}\left(\left\langle\mathcal{E}_{\lambda, \mu}^{\prime}\left(u_{n}\right), u_{n}-u\right\rangle-\left\langle\mathcal{E}_{\lambda, \mu}^{\prime}(u), u_{n}-u\right\rangle+\lambda\left\langle J_{F}^{\prime}\left(u_{n}\right)-J_{F}^{\prime}(u), u_{n}-u\right\rangle\right. \\
& \left.+\lambda \mu\left\langle J_{G}^{\prime}\left(u_{n}\right)-J_{G}^{\prime}(u), u_{n}-u\right\rangle\right) \\
& \leq M_{1}\left(\left\|\mathcal{E}_{\lambda, \mu}^{\prime}\left(u_{n}\right)\right\|+\lambda\left\|J_{F}^{\prime}\left(u_{n}\right)-J_{F}^{\prime}(u)\right\|+\lambda \mu\left\|J_{G}^{\prime}\left(u_{n}\right)-J_{G}^{\prime}(u)\right\|\right) \cdot\left\|u_{n}-u\right\|_{b} \\
& -M_{1}\left\langle\mathcal{E}_{\lambda, \mu}^{\prime}(u), u_{n}-u\right\rangle .
\end{aligned}
$$

Since $u_{n} \rightarrow u$ weakly in $E$ and $J_{F}^{\prime}, J_{G}^{\prime}$ are compact (see [6]), we have that $\left\|J_{F}^{\prime}\left(u_{n}\right)-J_{F}^{\prime}(u)\right\| \rightarrow 0$ and $\left\|J_{G}^{\prime}\left(u_{n}\right)-J_{G}^{\prime}(u)\right\| \rightarrow 0$. Moreover $\mathcal{E}_{\lambda, \mu}^{\prime}(u)=0$ and $\left\|\mathcal{E}_{\lambda, \mu}^{\prime}\left(u_{n}\right)\right\| \rightarrow 0$, so $\left\|u_{n}-u\right\|_{b} \rightarrow 0$, i.e. $u_{n}$ converges strongly to $u$ in $E$.

In the second case, when $1<p<2$, we use the following result: for all $s \in(0, \infty)$ there is a constant $C_{s}>0$ such that

$$
\begin{equation*}
(x+y)^{s} \leq C_{s}\left(x^{s}+y^{s}\right), \quad \text { for any } x, y \in(0, \infty) \tag{8}
\end{equation*}
$$

Then we obtain
(9)

$$
\begin{aligned}
& \left\|u_{n}-u\right\|_{b}^{2}=\left(\int_{\Omega} a(x)\left|\nabla u_{n}(x)-\nabla u(x)\right|^{p} \mathrm{~d} x+\int_{\Gamma} b(x)\left|u_{n}(x)-u(x)\right|^{p} \mathrm{~d} \Gamma\right)^{\frac{2}{p}} \\
\leq & C_{p}\left[\left(\int_{\Omega} a(x)\left|\nabla u_{n}(x)-\nabla u(x)\right|^{p} \mathrm{~d} x\right)^{\frac{2}{p}}+\left(\int_{\Gamma} b(x)\left|u_{n}(x)-u(x)\right|^{p} \mathrm{~d} \Gamma\right)^{\frac{2}{p}}\right]
\end{aligned}
$$

Now, using the (7) and the Hölder inequalities we get

$$
\int_{\Omega} a(x)\left|\nabla u_{n}(x)-\nabla u(x)\right|^{p} \mathrm{~d} x=\int_{\Omega} a(x)\left(\left|\nabla u_{n}(x)-\nabla u(x)\right|^{2}\right)^{\frac{p}{2}} \mathrm{~d} x
$$

$$
\leq M_{2} \int_{\Omega} a(x)\left(( | \nabla u _ { n } ( x ) | ^ { p - 2 } \nabla u _ { n } ( x ) - | \nabla u ( x ) | ^ { p - 2 } \nabla u ( x ) ) \left(\nabla u_{n}(x)\right.\right.
$$

$$
-\nabla u(x)))^{\frac{p}{2}}\left(\left|\nabla u_{n}(x)\right|+|\nabla u(x)|\right)^{\frac{p(2-p)}{2}} \mathrm{~d} x
$$

$$
=M_{2} \int_{\Omega}\left[a(x)\left(\left|\nabla u_{n}(x)\right|^{p-2} \nabla u_{n}(x)-|\nabla u(x)|^{p-2} \nabla u(x)\right)\left(\nabla u_{n}(x)-\nabla u(x)\right)\right]^{\frac{p}{2}}
$$

$$
\cdot\left[a(x)\left(\left|\nabla u_{n}(x)\right|+|\nabla u(x)|\right)^{p}\right]^{\frac{2-p}{2}} \mathrm{~d} x
$$

$$
\leq \widetilde{M}_{2}\left(\int_{\Omega} a(x)\left|\nabla u_{n}(x)\right|^{p} \mathrm{~d} x+\int_{\Omega} a(x)|\nabla u(x)|^{p} \mathrm{~d} x\right)^{\frac{2-p}{2}}
$$

$$
\cdot\left(\int_{\Omega} a(x)\left(\left|\nabla u_{n}(x)\right|^{p-2} \nabla u_{n}(x)-|\nabla u(x)|^{p-2} \nabla u(x)\right)\left(\nabla u_{n}(x)-\nabla u(x)\right) \mathrm{d} x\right)^{\frac{p}{2}}
$$

$$
\leq \bar{M}_{2}\left[\left(\int_{\Omega} a(x)\left|\nabla u_{n}(x)\right|^{p} \mathrm{~d} x\right)^{\frac{2-p}{2}}+\left(\int_{\Omega} a(x)|\nabla u(x)|^{p} \mathrm{~d} x\right)^{\frac{2-p}{2}}\right]
$$

$$
\cdot\left(\int_{\Omega} a(x)\left(\left|\nabla u_{n}(x)\right|^{p-2} \nabla u_{n}(x)-|\nabla u(x)|^{p-2} \nabla u(x)\right)\left(\nabla u_{n}(x)-\nabla u(x)\right) \mathrm{d} x\right)^{\frac{p}{2}}
$$

$$
\leq \widehat{M}_{2}\left(\left\|u_{n}\right\|_{b}^{\frac{(2-p) p}{2}}+\|u\|_{b}^{\frac{(2-p) p}{2}}\right)
$$

$$
\cdot\left[\int_{\Omega} a(x)\left(\left|\nabla u_{n}(x)\right|^{p-2} \nabla u_{n}(x)-|\nabla u(x)|^{p-2} \nabla u(x)\right) \cdot\left(\nabla u_{n}(x)-\nabla u(x)\right) \mathrm{d} x\right]^{\frac{p}{2}}
$$

Then using again the relation (8) and the above inequality we have:

$$
\begin{align*}
& \left(\int_{\Omega} a(x)\left|\nabla u_{n}(x)-\nabla u(x)\right|^{p} \mathrm{~d} x\right)^{\frac{2}{p}}  \tag{10}\\
& \leq M_{2}^{\prime}\left(\left\|u_{n}\right\|_{b}^{2-p}+\|u\|_{b}^{2-p}\right) \\
& \cdot \int_{\Omega} a(x)\left(\left|\nabla u_{n}(x)\right|^{p-2} \nabla u_{n}(x)-|\nabla u(x)|^{p-2} \nabla u(x)\right)\left(\nabla u_{n}(x)-\nabla u(x)\right) \mathrm{d} x
\end{align*}
$$

In a similar way we obtain the following estimate

$$
\begin{gather*}
\left(\int_{\Gamma} b(x)\left|u_{n}(x)-u(x)\right|^{p} \mathrm{~d} \Gamma\right)^{\frac{2}{p}}  \tag{11}\\
\leq \quad M_{2}^{\prime} \cdot\left(\int_{\Gamma} b(x)\left(\left|u_{n}(x)\right|^{p-2} u_{n}(x)-|u(x)|^{p-2} u(x)\right)\left(u_{n}(x)-u(x)\right) \mathrm{d} \Gamma\right) \\
\\
\quad\left(\left\|u_{n}\right\|_{b}^{2-p}+\|u\|_{b}^{2-p}\right)
\end{gather*}
$$

We introduce the following notation: $I(u)=\frac{1}{p}\|u\|_{b}^{p}$. As we used before, the directional derivative of $I$, in the direction $v \in E$ is

$$
\left\langle I^{\prime}(u), v\right\rangle=\int_{\Omega} a(x)|\nabla u(x)|^{p-2} \nabla u(x) \nabla v(x) \mathrm{d} x+\int_{\Gamma} b(x)|u(x)|^{p-2} u(x) v(x) \mathrm{d} \Gamma
$$

Using the inequalities (9), (10), (11) we have

$$
\left\|u_{n}-u\right\|_{b}^{2}<M_{2}^{\prime} \cdot\left\langle I^{\prime}\left(u_{n}\right)-I^{\prime}(u), u_{n}-u\right\rangle \cdot\left(\left\|u_{n}\right\|_{b}^{p-2}+\|u\|_{b}^{2-p}\right) .
$$

Since $u_{n}$ is bounded, the same argument as in the first case (when $p \geq 2$ ) shows that $u_{n}$ converges to $u$ strongly in $E$.

Thus $\mathcal{E}_{\lambda, \mu}$ satisfy the $(P S)$ condition for all $\lambda>0$ and $\mu \in \mathbb{R}$.
Using the assumption (F4) one can prove the existence of an element $u_{0} \in E$ such that $J_{F}\left(u_{0}\right)>0$ (see [5], Lemma 3.2).
Let us define $m=\int_{\Gamma}\left|G\left(x, u_{0}(x)\right)\right| \mathrm{d} \Gamma$,

$$
\lambda_{0}=\frac{I\left(u_{0}\right)}{J_{F}\left(u_{0}\right)}>0 \quad \text { and } \quad \mu_{\lambda}^{*}=\frac{1}{\lambda(1+m)} \cdot\left(\lambda-\lambda_{0}\right) J_{F}\left(u_{0}\right)>0 .
$$

Lemma 3. For $\lambda>\lambda_{0}$ and $\left.\left.|\mu| \in\right] 0, \mu_{\lambda}^{*}\right]$ we have

$$
\inf _{u \in E} \mathcal{E}_{\lambda, \mu}(u)<0 .
$$

Proof. It is sufficient to prove, that, for $\lambda>\lambda_{0}$ and $\left.\left.|\mu| \in\right] 0, \mu_{\lambda}^{*}\right]$ we have $\mathcal{E}_{\lambda, \mu}\left(u_{0}\right)<0$. Indeed,

$$
\begin{aligned}
\mathcal{E}_{\lambda, \mu}\left(u_{0}\right) & =I\left(u_{0}\right)-\lambda J_{f}\left(u_{0}\right)-\lambda \mu J_{G}\left(u_{0}\right) \\
& \leq \lambda_{0} J_{F}\left(u_{0}\right)-\lambda J_{F}\left(u_{0}\right)+\lambda|\mu| m \\
& =\left(\lambda_{0}-\lambda\right) J_{F}\left(u_{0}\right)+\lambda|\mu| m \\
& =\left(\lambda_{0}-\lambda\right) \frac{\lambda(1+m) \mu_{\lambda}^{*}}{\lambda-\lambda_{0}}+\lambda|\mu| m \\
& =-(1+m) \lambda \mu_{\lambda}^{*}+\lambda|\mu| m \\
& =-\lambda \mu_{\lambda}^{*}-m \lambda\left(\mu_{\lambda}^{*}-|\mu|\right)<0 .
\end{aligned}
$$

for all $\lambda>\lambda_{0}$ and $\left.\left.|\mu| \in\right] 0, \mu_{\lambda}^{*}\right]$.
Lemma 4. For every $\lambda>\lambda_{0}$ and $\left.\left.\mu \in\right] 0, \mu_{\lambda}^{*}\right]$, the functional $\mathcal{E}_{\lambda, \mu}$ satisfies the Mountain Pass geometry.

Proof. From the assumptions (F1),(F2), (G1) and (G2) results the existence of $c_{1}(\varepsilon), c_{2}(\varepsilon)>0$ for every $\varepsilon>0$, such that

$$
\begin{equation*}
|F(x, u(x))| \leq \varepsilon f_{0}(x)|u(x)|^{p}+c_{1}(\varepsilon)\left(f_{0}(x)+f_{1}(x)\right)|u(x)|^{r}, \tag{12}
\end{equation*}
$$

$$
\begin{equation*}
|G(x, u(x))| \leq \varepsilon g_{0}(x)|u(x)|^{p}+c_{2}(\varepsilon)\left(g_{0}(x)+g_{1}(x)\right)|u(x)|^{m}, \tag{13}
\end{equation*}
$$

where $r \in] p, p^{*}\left[\right.$ and $m \in\left[p, p \frac{N-1}{N-p}\right]$. Using again the (F1) and (G1) assumptions, we get

$$
\begin{equation*}
\left.|F(x, u(x))| \leq \varepsilon w_{1}(x) C_{f}|u(x)|^{p}+2 c_{1}(\varepsilon) C_{f} w_{1}(x)\right)|u(x)|^{r}, \tag{14}
\end{equation*}
$$

$$
\begin{equation*}
|G(x, u(x))| \leq \varepsilon w_{2}(x) C_{g}|u(x)|^{p}+2 c_{2}(\varepsilon) C_{g} w_{2}(x)|u(x)|^{m} . \tag{15}
\end{equation*}
$$

Fix $\lambda>\lambda_{0}$ and $\left.\mu \in\right] 0, \mu_{\lambda}^{*}[$, then using the (14) and (15) inequalities for every $u \in E$ we have

$$
\begin{aligned}
\mathcal{E}_{\lambda, \mu}(u)= & \frac{1}{p}\|u\|_{b}^{p}-\lambda J_{\mu}(u) \\
\geq & \frac{1}{p}\|u\|_{b}^{p}-\lambda \int_{\Omega}|F(x, u(x))| \mathrm{d} x-\lambda|\mu| \int_{\Gamma}|G(x, u(x))| \mathrm{d} \Gamma \\
\geq & \frac{1}{p}\|u\|_{b}^{p}-\lambda \varepsilon C_{f} \int_{\Omega} w_{1}(x)|u(x)|^{p} \mathrm{~d} x-2 \lambda c_{1}(\varepsilon) C_{f} \int_{\Omega} w_{1}(x)|u(x)|^{r} \mathrm{~d} x \\
& -\lambda|\mu| \varepsilon C_{g} \int_{\Gamma} w_{2}(x)|u(x)|^{p} \mathrm{~d} \Gamma-2 \lambda|\mu| c_{2}(\varepsilon) C_{g} \int_{\Gamma} w_{2}(x)|u(x)|^{m} \mathrm{~d} \Gamma \\
= & \frac{1}{p}\|u\|_{b}^{p}-\lambda \varepsilon C_{f}\|u\|_{p, w_{1}}^{p}-2 \lambda c_{1}(\varepsilon) C_{f}\|u\|_{r, w_{1}}^{r} \\
& -\lambda|\mu| \varepsilon C_{g}\|u\|_{p, w_{2}}^{p}-2 \lambda|\mu| c_{2}(\varepsilon) C_{g}\|u\|_{m, w_{2}}^{m} \\
\geq & \left(\frac{1}{p}-\lambda \varepsilon C_{f} C_{p, w_{1}}^{p}-\lambda|\mu| \varepsilon C_{g} C_{p, w_{2}}^{p}\right)\|u\|_{b}^{p} \\
& -2 \lambda c_{1}(\varepsilon) C_{f} C_{r, w_{1}}^{r}\|u\|_{b}^{r}-2 \lambda|\mu| c_{2}(\varepsilon) C_{g} C_{m, w_{2}}^{m}\|u\|_{b}^{m} .
\end{aligned}
$$

Using the notations

$$
\begin{gathered}
A=\left(\frac{1}{p}-\lambda \varepsilon C_{f} C_{p, w_{1}}^{p}-\lambda|\mu| \varepsilon C_{g} C_{p, w_{2}}^{p}\right) \\
B=2 \lambda c_{1}(\varepsilon) C_{f} C_{r, w_{1}}^{r}, \quad C=2 \lambda|\mu| c_{2}(\varepsilon) C_{g} C_{m, w_{2}}^{m}
\end{gathered}
$$

we get

$$
\mathcal{E}_{\lambda, \mu}(u) \geq\left(A-B\|u\|_{b}^{r-p}-C\|u\|_{b}^{m-p}\right)\|u\|_{b}^{p} .
$$

We choose $\varepsilon \in] 0, \frac{1}{2 p} \frac{1}{\lambda\left(\varepsilon C_{f} C_{p, w_{1}}^{p}+|\mu| \varepsilon C_{g} C_{\left.p, w_{2}\right)}^{p}\right.}\left[\right.$, so $A>0$. Now, let $l: \mathbb{R}_{+} \rightarrow \mathbb{R}$ be the function defined by $l(t)=A-B t^{r-p}-C t^{m-p}$. We can see, that $l(0)=$ $A>0$, so because $l$ is continuous, there exists an $\varepsilon^{*}>0$ such that $l(t)>0$, for every $t \in] 0, \varepsilon^{*}\left[\right.$. Then for every $u \in E$, with $\|u\|=\varepsilon^{* *}<\min \left\{\varepsilon^{*},\left\|u_{0}\right\|\right\}$, we have $\mathcal{E}_{\lambda, \mu}(u) \geq \eta\left(\lambda, \mu, \varepsilon^{*}\right)>0$. From Lemma 3 we have $\mathcal{E}_{\lambda, \mu}\left(u_{0}\right)<0$.

Therefore the functional $\mathcal{E}_{\lambda, \mu}$ satisfies the hypotheses of the Mountain Pass theorem 1.

## Proof of theorem 2.

Fix $\lambda>\lambda_{0}$ and $\left.\mu \in\right] 0, \mu_{\lambda}^{*}\left[=I_{\lambda}\right.$. From the lemma 2 we have that the functional $\mathcal{E}_{\lambda, \mu}$ satisfies the (PS)-condition, from the lemma 1 we have the coerciveness of $\mathcal{E}_{\lambda, \mu}$. Then there exists an element $u_{\lambda, \mu} \in E$ such that $\mathcal{E}_{\lambda, \mu}\left(u_{\lambda, \mu}\right)=$ $\inf _{v \in E} \mathcal{E}_{\lambda, \mu}(v)$ (see [9]). By using lemma 3 we have $\mathcal{E}_{\lambda, \mu}\left(u_{\lambda, \mu}\right)<0$. On the other hand by lemma 4 and the Mountain Pass Theorem 1, there exists an element $v_{\lambda, \mu} \in E$ such that $\mathcal{E}_{\lambda, \mu}^{\prime}\left(v_{\lambda, \mu}\right)=0$ and $\mathcal{E}_{\lambda, \mu}\left(v_{\lambda, \mu}\right) \geq \eta\left(\lambda, \mu, \varepsilon^{*}\right)>0$, which completes the proof.

## REFERENCES

[1] CÂrstea, F.-C. Şt. and Rădulescu, V., On a class of quasilinear eigenvalue problems on unbounded domains, Arch. der Math., 77 (2001), 337-346.
[2] Diaz, J. I., Nonlinear partial differential equations and free boundaries. Elliptic equations. Pitman Adv. Publ., Boston, 1986.
[3] Lisei, H., Varga, Cs. and Horváth, A., Multiplicity results for a class of quasilinear eigenvalue problems on unbounded domains, Arch. der Math., in press
[4] de Nápoli, P. and Mariani, M. C., Equations of p-Laplacian Type in Unbounded Domains Adv. Nonlinear Studies 2 (2001), 237-250
[5] Mezei, I. I. and Varga, Cs., Multiplicity result for a double eigenvalue quasilinear problem on unbounded domain, Nonlinear Analysis, in press
[6] Pflüger, K., Existence and multiplicity of solutions to a p-Laplacian equation with nonlinear boundary condition, Electronic J.Differential Equations 10 (1998), 1-13.
[7] Pflüger, K., Compact traces in weighted Sobolev space. Analysis 18 (1998), 65-83.
[8] Montefusco, E. and Radulescu, V., Nonlinear eigenvalue problems for quasilinear operators on unbounded domains, Nonlinear differ. equ. appl. 8 (2001) 481-497
[9] Rabinowitz, P. H., Minimax Method in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conf. Series in Math. 65, AMS, Providence (1986)
[10] Willem, M., Minimax theorems, Birkhäuser, Boston, 1996

Received January 05, 2008

"Babeş-Bolyai" University<br>Faculty of Mathematics and Computer Science<br>str. M. Kogalniceanu 1<br>400084 Cluj-Napoca, Romania<br>E-mail: mezeiildi@yahoo.com


[^0]:    This work was supported by MEdC-ANCS, Grant PN. II, ID_527/2007.

