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A NOTE ON FLAT COVERS OF COMODULES

SEPTIMIU CRIVEI

Abstract. We present another proof for the existence of a flat cover for every
comodule over a semiperfect coalgebra.
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1. INTRODUCTION

The Flat Cover Conjecture has played a special part in the theory of module
approximation, originated in the work of Auslander and Smalø for finitely
generated modules over finite dimensional algebras [2] and Enochs for modules
over arbitrary rings [9]. After Bican, El Bashir and Enochs gave a positive
answer to it, showing that every module has a flat cover [3, Theorem 3], the
problem of the existence of flat covers for any object was raised and solved
in more general contexts, such as Grothendieck categories. Thus, Aldrich,
Enochs, Garćıa Rozas and Oyonarte [1] proved the existence of a flat cover
for any object in a Grothendieck category with a flat generator. El Bashir
[8] showed that if F is a class of objects of a Grothendieck category G closed
under coproducts and directed colimits and there exists a subset S of F such
that each object in F is a directed colimit of objects in S, then each object
of G has an F-cover. Cuadra and Simson [6] showed that if A is a locally
finitely presented Grothendieck category with enough projectives, then every
object of A has a flat cover. As a consequence for comodules, if C is a right
semiperfect coalgebra over a field k, then every right C-comodule has a flat
cover [6].

In the present note, we present a different proof of this last result, that uses
the idea of showing that a certain cotorsion theory is cogenerated by a set,
and follows the same steps as one of the corresponding proofs of the existence
of flat covers of modules. The existence of enough projectives in our category
of comodules will be exploited. A key step is to involve solvability of systems
of equations in comodules, which was characterized in [5].

Let us recall the concepts of purity and flatness in a locally finitely presented
category. An additive category C is called locally finitely presented (or finitely
accessible) if it has direct limits, the class of finitely presented objects is skele-
tally small, and every object is a direct limit of finitely presented objects [4].
A short exact sequence 0 → X → Y → Z → 0 in C is called pure if the in-
duced sequence 0 → Hom(P,X) → Hom(P, Y ) → Hom(P,Z) → 0 is exact for
every finitely presented object P of C. An object Z of C is called flat if every
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short exact sequence 0 → X → Y → Z → 0 in C is pure. Now these apply to
the category of comodules over a coalgebra over a field, which is known to be
locally finite Grothendieck. If C is a right semiperfect coalgebra over a field
k, then the category of right comodules over C has enough projectives. For
terminology and further information on coalgebras and comodules the reader
is referred to [7].

2. THE RESULT

Let C be a coalgebra over a field k and M a right C-comodule with structure
map ρM : M → M⊗C. Recall from [5] that an equation in M is an expression
of the form ∑

i

ρM (vi)αi +
∑

i

vi ⊗ ci = 0,

where each αi ∈ k, ci ∈ C. A comodule monomorphism K → M is called
pure if every system of equations in M which has a solution in M already
has a solution in K. This definition of purity is similar to the well known
characterization of purity for modules in terms of solvability of certain systems
of equations (e.g., see [12, 34.5]), and agrees with the categorical definition of
purity (see [5, Proposition 5] and the final remarks from the same paper).

The following lemma is the key ingredient of our proof for the existence of
flat covers of comodules over a semiperfect coalgebra.

Lemma 2.1. Let C be a coalgebra over a field k, ℵ an infinite cardinal such
that |k| ≤ ℵ and |C| ≤ ℵ, and let M be a right C-comodule. Then for any
subcomodule A of M with |A| ≤ ℵ, there exists a pure subcomodule S of M
containing A with |S| ≤ ℵ.

Proof. Put S0 = A and consider the set of all finite systems of equations

(1)
∑

i

ρM (ai)αiλ +
∑

i

ai ⊗ ciλ = 0

solvable in M with each ai ∈ S0, αiλ ∈ k, ciλ ∈ C. Consider the subcomodule
S1 of M generated by S0 and a single solution of each of the systems above.
The number of systems considered is less than or equal to ℵ0 · |k| · |C| · |A| ≤ ℵ,
so the number of solutions that we take to generate S1 is less than or equal to
ℵ0 · ℵ = ℵ. Hence

|S1| ≤ |k| · |S0| · ℵ ≤ ℵ.

Now take the set of all finite systems of equations (1) solvable in M with
each ai ∈ S1. Repeat the process above in order to construct a subcomodule
S2 of M with |S2| ≤ ℵ. By induction we construct for every natural number
n ∈ N a subcomodule Sn of M with |Sn| ≤ ℵ.

Let S =
⋃

n∈N Sn and let (1) be a finite system of equations solvable in M
with each ai ∈ S. Then there is a natural number t such that ai ∈ St. Hence
our system has a solution in St+1, and so in S by the construction of the Sn’s.
Therefore, S is a pure subcomodule of M containing A with |S| ≤ ℵ. �
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Let us recall some needed terminology, following [10]. Let A be an abelian
category with enough injectives and projectives. Recall that a continuous
chain of subobjects of a given object X is a set of subobjects {Xα | α < λ}
of X for some ordinal λ such that Xα is a subobject of Xβ for all α ≤ β < λ,
and that Xγ =

∑
α<γ Xα whenever γ < λ is a limit ordinal. For a class F of

objects of A, denote

F⊥ = {X ∈ A | Ext1(F,X) = 0 for all F ∈ F},
⊥F = {X ∈ A | Ext1(X, F ) = 0 for all F ∈ F}.

A cotorsion theory in A is a pair of classes (F , C) of objects of A such that
F⊥ = C and ⊥C = F . If F is a class of objects of A, then the pair of classes
(F ,F⊥) is said to be cogenerated by a set S of objects of A provided X ∈ F⊥
if and only if Ext1(F,X) = 0 for every F ∈ S.

Also, recall the following results.

Theorem 2.2. [10, Proposition 3.1.1] Assume that A has direct limits and
let A,B be objects of A. If A is the direct union of a continuous chain of
subobjects {Aα | α < λ} for some ordinal λ such that Ext1(A0, B) = 0 and
Ext1(Aα+1/Aα, B) = 0 for all α < λ, then Ext1(A,B) = 0.

Theorem 2.3. [10, Corollary 3.1.11] Assume that A is Grothendieck and
has enough projectives and let F be a class of objects of A closed under direct
sums, extensions and continuous well ordered unions. If the pair (F ,F⊥)
is cogenerated by a set, then every object of A has a special F-precover. If
moreover F is closed under well ordered direct limits, then every object of A
has an F-cover.

Now we are ready to establish our result.

Theorem 2.4. Let C be a right semiperfect coalgebra over a field k and
denote by F the class of flat right C-comodules. Then the pair (F ,F⊥) is
cogenerated by a set.

Proof. Let ℵ be an infinite cardinal such that |k| ≤ ℵ and |C| ≤ ℵ. Let F
be a flat right C-comodule. Using Lemma 2.1, one can construct a continuous
chain {Sα | α < γ} of pure subcomodules of F such that |S0| ≤ ℵ and
|Sα+1/Sα| ≤ ℵ whenever α < γ. Note that all Sα and Sα+1/Sα are also flat
(e.g., by [6, Proposition 2.2 and Remark 2.8] and [11, Proposition 5.9]).

Now let S be a representative set of flat right C-comodules G with |G| ≤ ℵ.
Using Theorem 2.2, we have

X ∈ F⊥ if and only if Ext1(G, X) = 0, ∀G ∈ S.

Hence (F ,F⊥) is cogenerated by a set. �

Noting that flatness in categories of comodules is preserved under direct
limits (e.g., see [6, Proposition 2.3]) and, if C is a right semiperfect coalgebra,
then the category of right C-comodules has enough projectives, the following
corollary is obtained by using Theorems 2.3 and 2.4.
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Corollary 2.5. Let C be a right semiperfect coalgebra over a field k. Then
every right C-comodule has a flat cover.

REFERENCES
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