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NON SINGULAR ELLIPTIC CURVES, FROM THEORY TO
APPLICATION. ALGORITHM ATTACKS DISCUSSIONS

NICOLAE CONSTANTINESCU

Abstract. Let E be an elliptic curve. Starting from its definition we create a set
of restrictions which helps us to realize an implementation in a real system of the
theories concerning the infeasibility of the ECDL problem. We also present the
implementation methods to compute the necessary parameters in such a system.
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1. INTRODUCTION

Defining the elliptic curves means a crucial moment in developing computa-
tion methods of certain one-way functions. The practically implementations
of the elliptic curves theory were possible only few years ago because they
needs a big computing power. Without a computer it is practically impossi-
ble to compute elliptic curves parameters for fields which can be taken into
consideration in practice. Therefore, being given a function f : A → B and
x ∈ A we say that f is a one-way function if f(x) = y is easy to compute (by
a computer, in polynomial time) and given y it is infeasible to find x, where
infeasible refers to computation time which is not acceptable to be taken into
consideration. This infeasible time is defined according to the application
wherefore the elliptic curve is implemented. In this paper we will discuss the
cases of generating efficient curves in order to implement them in practical
systems.

2. FINITE FIELDS CALCULATION

In order to implements in computation systems, arithmetics in Fp are used,
where p is a prime number, large enough to fulfill certain conditions required
by the presented problem. The main problems under consideration refer to
calculation in Fp: addition and multiplication. The latter is also the most
difficult to solve. In order to create an efficient algorithm in [2, 3, 5] we present
methods which start from a special form of p, i.e. p = bt − a, where a has
a sufficiently low value. The algorithm is based on multiplication subroutine,
followed by reduction subroutine such as

Algorithm 1.
1 q0 ← bx/btc, r0 ← x− q0b

t, r ← r0, i← 0;
2 while qi > 0 do

• qi+1 ← bqia/btc, ri+1 ← qia− qi+1b
t
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• i← i + 1, r ← r + ri;
3 while r ≥ p do r ← r − p.

In this way the reduction function uses only shift operations, addition and
multiplication by a.
For the calculation of certain parameters found in the systems implemented
in practice, RNSA (Residue Number System Arithmetic) is used. This con-
cept is a rather old one and is based on CRT (Chinese Remainder Theorem).
Therefore, starting from the integer p, as defined above, we choose pi prime
numbers, so that

(1)
t∏

i=1

pi > p2

We will represent an element x modulo p as a vector (x1, ... , xt), where
x ≡ xi ( mod pi). With this representation there can be made fast imple-
mentations on computing machines which use 32 or 64 bit-words. One of this
ways wherefore such interpretation can be used is in trapdoor functions, ap-
plications of this kind being found in the algorithms of Public-Key systems.
Another efficient method of implementing modulo a large prime p arithmetics
consist in using Montgomery representation [6] . Let b be the base in which
the system works. R and t will be defined so that R = bt > p will be satisfied.
We conclude from this that each element x ∈ Fp is represented by xR(mod p).
The reduction operation required by the multiplication process is based on the
result provided by Lemma 1

Lemma 1. Let be 0 ≤ y ≤ pR, u = −yp−1(mod R) and

x =
(y + up)

R
.

Then x is an integer such that x < 2p and x ≡ yR−1(mod p)

Also, the algorithm to compute the Montgomery reduction is:

Algorithm 2.
1 u← −yp−1(mod R)
2 x← (y + up)/R
3 if x ≥ p then x← x− p
4 return x.

In case of y = (y2t−1, . . . , y1, y0)mod b = y2t−1b
2t−1 + . . . + y1b + y0 we can

compute yR−1(mod p) in the following way:

Algorithm 3.
1 for i = 0 to t− 1

• u← yip
′ (mod b)

• y ← y + upbi

2 z ← y/R
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3 if z ≥ p then z ← z − p
4 return z.

These computations are made in case of p′ = −p−1(mod b). In order to find
this one it is necessary to compute x−1(mod 2w).

Algorithm 4.
1 y ← 1
2 for i = 2 to w

• if 2i−1 < xy(mod 2i) then y ← y + 2i−1

3 return y.

Another important aspect which must be taken into consideration is to solve
quadratic equation in modulo p finite fields. These are necessary for computing
a y − coordinate of a point on the elliptic curve. It is found by starting from
the x − coordinate. The equation type to be solved is: x2 ≡ a(mod p). In
order to test that such an equation has a solution we will compute Legendre
symbol

(
a
p

)
, whose value will be 1 in case a is a square modulo p or the value

will be 0 in case a ≡ 0(mod p). If we are in none of the above cases the
Legendre symbol will be -1. The algorithm is presented below

Algorithm 5.
1 if a ≡ 0 (mod p) the return 0
2 x← a, y ← p, L← 1
3 x← x (mod y)
4 if x > y/2 then

• x← y − x
• if y ≡ 3(mod 4) the L← −L

5 while x ≡ 0 (mod 4) do x← x/4
6 if x ≡ 0 (mod 2) then

• x← x/2
• if y ≡ ±3 (mod 8) then L← −L

7 x = 1 then return L
8 x ≡ 3 (mod 4) and y ≡ 3 (mod 4) then L← −L
9 temp← x

10 x← y
11 y ← temp
12 go to 3.

In the computing machines, the representation are made in base 2, so that,
in order to optimize the algorithms all necessary arithmetics must be trans-
lated in the finite fields F2n . Therefore, let be a quadratic equation

(2) x2 + β = 0

in F2n , where its double square will be x0 = β2n−1
. A nontrivial quadratic

equation x2 + x + β = 0 will have, in F2n , a solution of the type x0 = τ(β),
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where

(3) τ(β) =
(n−1)/2∑

j=0

β22j
.

Let be the matrix T = (Tij).

(4) α1+2i =
n−1∑
j=0

Tijα
2j

, 0 ≤ i ≤ n− 1,

where (α, α2, α22
, ..., α2n−1

) is a normal base in F2n over F2 and α ∈ F2.
Trq|2(αiαj) = 1 iff i = j, Trq|2(z) is the trace of z ∈ Fq over F2, with q = 2n.

3. OPTIMIZATION IN ELLIPTIC CURVES ARITHMETICS

As the elliptic curves theory was founded a long time ago there is a large
variety of interpretations and also ways to solve them. Let be an integral of
type

(5)
∫

dx√
4x3 − h2x− h3

.

The inverse function of such an integral is called elliptic function. Let be two
constants α1 and α2, a function and a double periodic function over R then
Weierstrass function will be of the type

(6) (γ′)2 = 4γ3 − α1γ − α2.

This pair (γ, γ′) will define a point on the curve

(7) y2 = 4x3 − α1x− α2

making an elliptic curve.

Definition 1. Let be p > 3 a prime integer. The elliptic curve y2 =
x3 + α1x + α2, defined over Zp is the set of solutions (x, y) ∈ Zp × Zp to the
congruence

(8) y2 ≡ x3 + α1x + α2 (mod p),

where α1, α2 ∈ Zp are constants such that 4α3
1 + 27α2

2 6≡ 0 (mod p) together
with a special point O called the point at infinity.

As already described in section 2 the main problems are to define the addi-
tion of two points in such a field and to make multiplications by a given integer
to a point on the elliptic curve. Let be A1 and A2 two points from the elliptic
curve. The adding problem of these points can be split in two categories:

• x1 = x2 and y1 = y2

• other cases.



5 Elliptic Curves. Applications 181

Lemma 2. Let E denote an elliptic curve given by

(9) E : Y2 + α1XY + α3Y = X3 + α2X
2 + α4X + α6

and let be A1 = (x1, y1) and A2 = (x2, y2) two points on the curve. Then

(10) −A1 = (x1,−y1 − α1x1 − α3).

Set

(11) λ =
y2 − y1

x2 − x1
, γ =

y1x2 − y2x1

x2 − x1

where x1, x2 satisfy the condition x1 6= x2 and, from this point we will have

(12) λ =
3x2

1 + 2α2x1 + α4 − α1y1

2y1 + α1x1 + α3
, γ =

−x3
1 + α4x1 + 2α6 − α3y1

2y1 + α1x1 + α3
.

In case of equality between x1 and x2 and A2 6= −A1 the sum of these two
points will be the point A3 with the following coordinates:

(13) x3 = λ2 + α1λ− α2 − x1 − x2, y3 = −(λ + α1)x3 − γ − α3.

Thus we will have
(1) x2 = x1 and y2 = y1. Then A1 + A2 = O
(2) Otherwise A1 + A2 = B, B(x3, y3), where

(14) x3 = λ2 − x1 − x2, y3 = λ(x1 − x3)− y1

and

(15) λ =
{

(y2 − y1)(x2 − x1)−1, A1 6= A2;
(3x2

1 + a)(2y1)−1, A1 = A2.

In practice there are used the elliptic curves defined over a finite field Fq, which
means that the study will be made on an abelian group. Let be s the number
of points on an elliptic curve E, defined over Fq. Then s = #E(Fq) = q+1−t,
where #E(Fq) is named trace of Frobenius at q. Thus we can define Frobenius
endomorphism as being

(16) ϕ =

 E(F q)→ E(F q)
(x, y)→ (xq, yq)
O→ O.

An approximation of the number of points on an elliptic curve is given by
Hass’s Theorem, in this way t must fulfill the condition

(17) |t| ≤ 2
√

q.

In order to compute the addition of two points on elliptic curve in finite fields
one of the solutions will be Weil pairing implementation. Let be a finite field
K and an elliptic curve defined over this field E(K) with E(m) its group of
m-torsion points if char(K) = p and gcd(m, p) = 1 then there are m2 such
points.
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Lemma 3. Let E be an elliptic curve over Fq and m is a prime which
divides #E(Fq) but which does not divide q − 1 and m 6= char(Fq). Then
E(Fqk) contains the m2 points of order m iff m divides qk − 1

According to [1] we will define Weil pairing as being E(m) × E(m) → γm

where γm is the group of mth roots of unity in K. Thus, let be B1, B2 ∈ E[m]
and we choose a function g in E whose divisor satisfies

(18) div(g) =
∑

D∈E[m]

(B′
1 + D)− (D)

with B′ ∈ E(K) such that [m]B′ = B. In this case, we define em as:

(19) em =

{
E[m]× E[m]→ γm

(B1, B2)→ g(X+B1)
g(X) .

In the case of the implementation in computing systems of a subfield curve,
of the type Fqn , n must be greater than 1 and the coefficients from Fq. We
will define [8, 9] as a new addition method (and subsequently multiplication
method by an integer) of two points on the elliptic curve using Frobenius
Expansion. In equation (16) ϕ must satisfies equation

(20) ϕ2 − [t]ϕ + [q] = [0].

In this way we will define an addition and multiplication method which will
speed up the finding of the result. For the particular case where there is a
subfield Fqn provided that the multiplication factor, let it be K, to satisfy the
property |K| ≤ bq/2c.

4. APPLICATION IN COMPUTING INFEASIBILITY OF ECDL

Since the development of the computing systems and the use of trapdoor
functions, the implementations based on elliptic curves have been considered
useful. Therefore, these have become the subject of research in order to obtain
certain characteristic which will make their practical implementation efficient.
The first condition described in the previous section was to use certain repre-
sentations in finite fields in order to obtain solvable values of the points (their
coordinates). The implementation in real systems is especially conditioned by
the computation time necessary to find a multiplication coefficient. Thus, we
define an elliptic curve E over a field Fq, n being the order of group E(Fq)
and P,Q elements in E(Fq). The ECDL problem is to find an integer so that
Q = [m]P . In the previous section was presented a method of reducing the
computation complexity using Weil pairing method. Based on Weil pairing
on E[n], there is a polynomial time reduction of the ECDL on E(Fq) to the
DLP in Fql . The number q must be the smallest integer which fulfills the
condition ql ≡ m(mod n) with gcd(n, q) = 1. In case q is prime, according to
[7] there is a method to generate a subfield in which m will be computed, the
study subfield being generated by p. Also, in [4] Pohlig and Hellman reduce
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the problem to a subgroup of prime power order in G. Let G be a group with
an order divisible by a prime number p and B = [K]A. If the order of G
is n, then the problem can be reduced to a subgroup of order p by solving
B′ = [n′]B = [K0]([n′]A) = [K0]A′ where

n′ =
n

pc−1

and pc is the largest power of p dividing n. In this way A′ is a number of
order p. Solving this problem we will find the value of K0, by K mod p. Then,
the obtained values by K mod p2, p3, ..., pc are computed. We assume that
K ≡ Ki (mod pi) is known and K = Ki + λpi for a fixed λ ∈ Z. Then
D = (B − [Ki]A) = [λ]([pi]A) = [λ]H where D and H are known and H has
the order

h =
n

pi
.

The value of λ mod p can be determinated from K mod p. Let be

h′ =
h

pc−i−1

then we will obtain λ mod p by solving the problem D′ = [h′]D = [λ0]([h′]H) =
[λ0]H ′ where H ′ is a point of order p. Next, we will compute the points from
a subgroup of order p. When n mod pc is computed for all p, prime divisors
of n, we will obtain the final solution K using Chinese Remainder Theorem.
The complexity of this attack is of order

√
2n. It will become infeasible when

the order of the curve is large enough. In [1]it is described the elliptic curve
with the following form:

(1) G = (E,+), E is an elliptic curve modulo an integer prime number p,
α ∈ E is a point with order a prime number

q =
#E

h
,

where h = 1, 2 or 4
(2) G = (E,+), E is an elliptic curve over a finite field F2n , α ∈ E is a

point with order a prime number

q =
#E

h
,

where h = 2 or 4

We noted #E as the number of points from elliptic curve E, with p+1−2
√

2p ≤
#E ≤ p + 1 +

√
2p. We are able to attack the key based on elliptic curve

using the Pollard Rho method in a subgroup of order q. In order to ensure
the security of the cryptographic system based on elliptic curve, in [10] it is
recommended to use p ≈ 2160 in case (1) and n=160 in case (2).

In order to define the subfield curves it is defined:
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Definition 2. Let be E an elliptic curve over a finite field Fq where Nn =
#E(Fqn), n > 1. For undetermined T we define Zeta function as being the
series:

(21) Z(E;T ) = exp

∑
n≥1

Nn

n
Tn

 .

Theorem 1. Let be E an elliptic curve over Fq and c1 its trace of Frobenius
at q, with N1 = q + 1− c1. Then

(22) Z(E;T ) =
P (T )

(1− T )(1− qT )
.

P (T ) it is defined in the following way:

(23) P (T ) = 1− c1T + qT 2 = (1− αT )(1− αT ),

where the magnitude of α is
√

q and P (T ) is non-positive.

Wherefore, giving Fq, E and c1 as in Theorem 1 it is possible to compute

(24) #E(Fq) = qn + 1− cn, for any n ≥ 1

where

(25) cn = c1cn−1 − qcn−2.

The starting coefficient, c0, is 0. Following the conditions imposed by the above
descriptions there can be constructed elliptic curves with a good practical
application using the following generating algorithm:

Algorithm 6.
1 Construct a random E, with its coefficients in Fq

2 Compute #E(Fq)
3 Check the conditions above imposed for an elliptic curve (in order to

be infeasible against attack). If failed then go to 1
4 attempt to factor #E(Fq) in feasible time. If failed then go to 1
5 if #E(Fq) = ab with a < a and b is prime then E is an ”acceptable-

elliptic-curve”. Return E. If failed then go to 1.

Using such curves we can construct algorithms for information transfer in
computer networks. Thus the information confidentiality is ensured in the
case of potential listening of the communication channel. First of all, we take
into consideration the assurance of the attack infeasibility, defining a function
of information validity. The necessary condition will be that the necessary
time to solve ECDL problem has to be longer than the time defined by the
function of the validity information. It is observed a continuous development
of the methods of reducing the ECDL problem for certain particular cases of
problems whose solving needs polynomial time computation, thus new curve,
according to the above definition.
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4.1. Discussion about the necessary time to solve ECDL. This section
describes the required times on a one-processor and multiprocessor machine
in order to solve ECDL.

Single processor machine
At this point, we have to speak about the intractability of elliptic functions.
For this reason, taking as starting point [11] we shall describe the necessary
time to solve the elliptic curve discrete logarithm problem. The fastest al-
gorithm known to date is Pollard method which takes about

√
2πn

2 steps to
make an elliptic curve addition, where n represents the order of any generated
point. In a software implementation, if we assume that an adversary can per-
form 4 ∗ 103MIPS in the field Z2155 [12] (a high performance machine) and
that for every generated point he spends ≈ 220 steps then we conclude that
he can solve in one year, implementing an optimal algorithm,

(26) [
(4 ∗ 109

220
)] ∗ (60 ∗ 60 ∗ 24 ∗ 365) ≈ 235.

It is known that any new solution means a new point on the elliptic curve
E(Zp) [13, 14].
Parallel machine case
In [15] it is illustrated the parallel implementation of Pollard method, where
1000 processors are used in an implementation in Z2155 , and their conclusion
is that 1500 years are necessary to find all points.
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