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THE NUMBER OF REMAK DECOMPOSITIONS OF A FINITE
ABELIAN GROUP

SIMION BREAZ

Abstract. Although the fundamental theorem of finite Abelian groups states
that every finite Abelian group has a decomposition into a direct sum of primary
cyclic groups which is unique up to isomorphisms and the order of terms, this
decomposition is not unique up to equalities and the order of terms. We present
here a way to count the number of direct decompositions into a direct sum of
primary cyclic groups for a finite Abelian group up to the order of terms, i.e.
the number of Remak decompositions of a finite Abelian group.
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1. INTRODUCTION

An obvious induction on the order of a finite group G leads us to the con-
clusion that we can decompose every finite group G into an internal direct
product of indecomposable (normal) subgroups. Such a direct decomposition
whose factors are not trivial groups is said to be a Remak decomposition, [6].
The order of the direct factors is such a direct decomposition is not important,
so it is usual to look at Remak decompositions up to the order of factors. Many
authors call such a direct decomposition a Krull-Schmidt decomposition, but
we prefer here the terminology of [3] and [6] since we consider these direct
decompositions only up to the order of factors (and not up to isomorphisms;
see Theorem 1 and the discussion which comes after it). The fundamental
result concerning Remak decompositions for finite groups was proved by J.
Wedderburn and R. Remak in the beginning of XX-century:

Theorem 1. [6, Theorem III.7] Every two Remak decompositions of a finite
groups have the same numbers of factors and these factors can be renumbered
to obtain that they are pairwise isomorphic (in other terminology: every finite
group has a unique Krull-Schmidt decomposition).

Despite this theorem, there are groups G such that the Remak decom-
position is not unique. For example the Klein group K = {0, a, b, c} with
a+a = b+ b = c+ c = 0 and x+ y = z for all nonzero elements x 6= y 6= z 6= x
(we shall use the additive notation for Abelian groups) has three Remak de-
compositions: K = {0, a} ⊕ {0, b} = {0, a} ⊕ {0, c} = {0, b} ⊕ {0, c}.
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In this paper we shall answer to the question “How many Remak decom-
position has a finite Abelian group G 6= 0?”. If G is a finite group, we denote
by RG the number of Remak decompositions of G.

Theorem 1 gives for Abelian groups a version of the well-known fundamental
theorem of finite Abelian groups [5, Theorem 1.12.2 and Theorem 1.12.3]. It
says us that every finite Abelian group G 6= 0 is a direct sum of non-zero cyclic
indecomposable groups

(?) G = C1 ⊕ · · · ⊕ Ck

and that such a decomposition is unique up to isomorphisms and the order in
which the cyclic groups appear in (?) , i.e. if

(?′) G = C ′
1 ⊕ · · · ⊕ C ′

l

is another direct decomposition of in a direct sum of non-zero indecomposable
groups then k = l, and there exists a bijection σ ∈ Sk such that Ci

∼= C ′
σ(i) for

all i ∈ {1, . . . , k}.
If m is a positive integer we denote, as in [5, Section 1.1], by Z(m) the

group of all residues modulo m with the addition modulo m. We recall here
that every non-zero finite cyclic group is isomorphic to a group Z(m) for some
positive integer m, and every non-zero finite indecomposable Abelian group
is primary cyclic, hence it is isomorphic to Z(pn) for some prime p and some
positive integer n. Hence every non-zero finite Abelian group A is isomorphic
to a direct sum

G ∼= Z(pn1
1 )k1 ⊕ · · · ⊕ Z(pns

s )ks ,

where p1, . . . , ps are primes and n1, . . . , ns, k1, . . . , ks are positive integers,
uniquely determined by G.

The paper is divided into three sections. In the first we study the general
case of finite Abelian groups, and we show that the calculation of RG for such
a group can be reduced to the calculation of RGp for all primary components
Gp of G.

In the next two sections we are concerned with Abelian p-groups. Let G 6= 0
be a finite Abelian p-group. By the fundamental theorem there exists a unique
family of positive integers n1 > · · · > ns and k1, . . . , kl such that

G ∼= Z(pn1)k1 ⊕ · · · ⊕ Z(pns)ks .

If s = 1 then we say that G is homogeneous. If B ∼= Z(pnj )kj is a direct
summand of G, then we call it a homogeneous component of G. In Section
3 we reduce the calculation of RG to the homogeneous case. Theorem 14
together with the last part of Lemma 13 do this job. In the last section we
obtain the number RG for a homogeneous p-group G. As an additional result
we obtain the number of automorphisms of a homogeneous Abelian p-group G.
This is a particular case of the general result of Shoda [4, Section 1]. In order
to do this we use a method similar to the classical way of counting the number
of all bases of a finite dimensional vector space over a finite field. I want to
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mention that this method can be extended to the case of non-homogeneous
Abelian p-groups, but a little more care is required.

2. THE GENERAL CASE: REDUCTION TO PRIMARY GROUPS

If G is a finite Abelian group and p is a prime then the set Gp = {x ∈
G | ord(x) is a power of p} is a subgroup of G. Moreover A has a direct
decomposition

(]) G = Gp1 ⊕ · · · ⊕Gpl

where p1, . . . pl are primes, [5, Theorem 1.12.1]. Since every indecomposable
Abelian group is a primary group, every subgroup Ci which appears in a
decomposition (?) is a subgroup of a primary component Gpj . For all j ∈
{1, . . . , l} we obtain direct decompositions

(?j) Gpj =
⊕

Ci is a pj−group

Ci.

If (?′) is another direct decomposition of G then it induces direct decomposi-
tions

(?′j) Gpj =
⊕

C′
i is a pj−group

C ′
i.

Therefore, if we have two different direct decomposition of G, (?) and (?′),
then there exists a prime pj such that these two direct decompositions induce
different direct decompositions of Gpj , (?j) and (?′j).

Conversely, if we want to obtain a decomposition (?) for a finite Abelian
group G we can proceed in the following way: first consider the direct decom-
position (]), which is unique; then we decompose each primary component
Gpj into a direct sum of cyclic groups (?j). Therefore, in order to obtain two
different decomposition of G it is necessarily and sufficient to consider two dif-
ferent direct decompositions (?j) and (?′j) for a primary component of G. All
these give us a first formula, which reduces our calculation to primary groups:

Proposition 2. If G = Gp1 ⊕ · · · ⊕Gpl
is a finite Abelian group then

RG = RGp1
· · ·RGpl

.

Corollary 3. For a finite Abelian group G we have RG = 1 if and only if
G is a cyclic group.

Proof. If G is cyclic of order m = pk1
1 · · · pks

s then G ∼= Z(pk1
1 )⊕· · ·⊕Z(pks

s ),
hence RG = RZ(p

k1
1 )
· · ·RZ(pks

s )
= 1.

If G is not cyclic, then it has a direct summand isomorphic to H = Z(pm)⊕
Z(pn) for a prime p and two integers m,n > 0. Therefore it is enough to prove
that RH > 1, and this is obvious since H = 〈(1, 0)〉 ⊕ 〈(0, 1)〉 = 〈(1, 0)〉 ⊕
〈(1, 1)〉 = 〈(1, 1)〉 ⊕ 〈(0, 1)〉. �

From the proof of this corollary we obtain:
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Corollary 4. If G is a finite Abelian group then RG2 ≥ 3.

Corollary 4 is not valid for groups which are not Abelian.

Example 5. If n ≥ 5 then RS2
n

= 1.

Proof. First, we observe that Sn is indecomposable, hence every factor of
a Remak decomposition of S2

n should be isomorphic to Sn. We denote by
πi : S2

n → Sn, i ∈ {1, 2}, the canonical projections of the direct product, and
we suppose that K ∼= Sn is a normal subgroup of S2

n. We shall prove that
K = Sn × {1} or K = {1} × Sn.

Suppose that K 6= Sn × {1} and K 6= {1} × Sn. Then for i ∈ {1, 2} the
subgroup πi(K) ≤ Sn is not {1} and it is normal, hence πi(K) ∈ {An, Sn}.
Moreover, since K has not normal subgroups of order 2, πi(K) 6= An (oth-
erwise, the kernel of the restriction πi|K : K → Sn would be of order 2).
Therefore, πi(K) = Sn and the restrictions πi|K : K → Sn are isomorphisms
for all i ∈ {1, 2}. Then for every element x = (σ1, σ2) ∈ K the permutations
σ1 and σ2 have the same order.

Let (τ1, τ2) ∈ K be a pair of two transpositions. Since the subgroup 〈τ2〉 ≤
Sn is not normal, there exists σ ∈ Sn such that τ = σ−1τ2σ 6= τ2. Since K is
a normal subgroup of S2

n, (1, σ−1)(τ1, τ2)(1, σ) ∈ K, hence (τ1, τ) ∈ K and the
restriction π1|K is not injective, a contradiction. The proof is complete. �

Remark 6. The property stated in Example 5 is valid for all powers of the
symmetric groups Sn, n ≥ 3, as a consequence of the general result presented
in [6, Theorem III.14].

3. THE PRIMARY CASE: REDUCTION TO HOMOGENEOUS GROUPS

In this section G shall be a nonzero finitely Abelian p-group. Hence there
exists an isomorphism

G ∼= Z(pn1)k1 ⊕ · · · ⊕ Z(pns)ks ,

where n1, . . . , ns, k1, . . . , ks are positive integers and n1 > · · · > ns. We say
that G is of type τ = ((n1, k1), . . . , (ns, ks)).

At this point we need to recall some notions and properties concerning
elements of a finite p-group G. If g ∈ G is an element of order pe then e is
called the exponent of g, and it is denoted by expG(g). If g 6= 0, the height
of g is the maximal positive integer t such that the equation ptx = g has a
solution in G. It is denoted by hG(g). By definition, hG(0) = ∞.

Lemma 7. Let G be an finite Abelian p-group, G1, . . . , Gs ≤ G and g ∈ G.
a) G = G1⊕· · ·⊕Gs if and only if for all g ∈ G there exists a unique s-uple

(g1, . . . , gs) ∈ G1 × · · · ×Gs such that g = g1 + · · ·+ gs.
b) If G = G1 ⊕ · · · ⊕Gs and g = g1 + · · ·+ gs ∈ G are like in a) then

i) expG(g) = max(expG1
(g1), . . . , expGs

(gs));
ii) hG(g) = min(hG1(g1), . . . , hGs(gs)).
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Proof. a) is well known (see, for example, [5, Lemma 1.10.2]), and b) is a
consequence of a). �

Lemma 8. If C is a cyclic p-group of order pn and c ∈ C then

expC(c) = max(0, n− hC(c)).

Proof. We can suppose C = Z(pn). If c = 0 the equality is obvious (here
n −∞ = −∞). If c 6= 0 then c = pld with l < n and gcd(p, d) = 1. Then
expC(c) = n− l > 0 and hC(c) = l. �

Proposition 9. Suppose that τ = ((n1, k1), . . . , (ns, ks)) is the type of a
finite Abelian p-group G. If A is a (homogeneous) direct summand of G of type
((n1, k1)) and B is a direct summand of G of type τ = ((n2, k2), . . . , (ns, ks))
then G = A⊕B.

Proof. It is enough to prove A ∩ B = 0 since in this case the subgroup
A+B = A⊕B of G has the same cardinality as G. Let x ∈ A∩B. By Lemma
7 we have expG(x) = expA(x) = expB(x) and hG(x) = hA(x) = hB(x).

We consider a direct decomposition A = C1 ⊕ · · · ⊕ Ck1 with Ci
∼= Z(pn1)

for all i ∈ {1, . . . , k1}, and we write x = c1 + · · · + ck1 with ci ∈ Ci for all
i ∈ {1, . . . , k1}. Using Lemma 7 and Lemma 8 we obtain

expA(x) = max(expC1
(c1), . . . , expCn1

(ck1))

= max(max(0, n1 − hC1(c1)), . . . ,max(0, n1 − hCk1 (ck1)))

= max(0,max(n1 − hC1(c1), . . . , n1 − hCk1 (ck1)))

= max(0, n1 −min(hC1(c1), . . . , hCk1 (ck1)))

= max(0, n1 − hA(x)) = max(0, n1 − hG(x)).

In a similar way, we consider a direct decomposition B = D1 ⊕ · · · ⊕ Dt,
where Di are cyclic groups of order pmj < pn for all j ∈ {1, . . . , t}. We write
x = d1 + · · ·+dt with dj ∈ Dj for all i ∈ {1, . . . , t}. Using again Lemma 7 and
Lemma 8 we obtain

expB(x) = max(expD1
(d1), . . . , expDt

(dt))

= max(max(0,m1 − hD1(d1)), . . . ,max(0,mt − hDt(dt)))

≤ max(max(0, n1 − hD1(d1)), . . . ,max(0, n1 − hDt(dt)))

= max(0, n1 −min(hD1(d1), . . . , hDt(dt)))

= max(0, n1 − hB(x)) = max(0, n1 − hG(x)),

and we observe that the equality holds if and only if d1 = · · · = dt = 0, hence
x = 0, and the proof is complete. �

From the first part of the proof we obtain a generalization of Lemma 8.

Corollary 10. If G is a finite Abelian p-group which is homogeneous of
type (n, k) and g ∈ G then expG(g) = max(0, n− hG(g)).
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If A is a direct summand of a group G, we denote by

C(A) = {B ≤ G | A+B = A⊕B = G},

the set of all complements of A.

Corollary 11. Let τ = ((n1, k1), . . . , (ns, ks)) be the type of a finite Abelian
p-group G. If G = A⊕B such that A is (homogeneous) of type ((n1, k1)) and
B is of type ((n2, k2), . . . , (ns, ks)) then

RG = |C(B)|RA|C(A)|RB.

Proof. By Proposition 9 we observe that G = A′ ⊕B′ or all A′ ∈ C(B) and
B′ ∈ C(A). The conclusion is now obvious. �

In order to count the cardinalities of the sets C(B) and C(A) we need a
reformulation of [1, Lemma 9.5]. We present here a complete proof for reader’s
convenience.

Let us recall that every direct decomposition G = A ⊕ B induces a pair
(π, ρ) of idempotent orthogonal endomorphisms of A such that π + ρ = 1G.
These endomorphisms are constructed in the following way: if g ∈ G, there
exists a unique pair (ag, bg) ∈ A × B such that g = ag + bg; then π(g) = ag

and ρ(g) = bg. Hence A = π(G) and B = ρ(G). Conversely, every such a
pair of endomorphisms induces a direct decomposition G = π(G)⊕ ρ(G). We
remark that if we restrict the ranges of π and ρ to A, respectively B, then
we obtain the canonical projections associated to the direct decomposition
G = A⊕B. Moreover, as in the classical linear algebra, every element g ∈ G

can be viewed as a column g =
(
ag

bg

)
and every endomorphism α of G can be

identified with a matrix α = [α] =
[
αAA αBA

αAB αBB

]
, where αXY ∈ Hom(X,Y )

are obtained as compositions of the canonical projection onto Y , α and the
inclusion map X ↪→ G (X,Y ∈ {A,B}). This matrix is called the standard
matrix form of α with respect the direct decomposition G = A ⊕ B. The

image α(g) is obtained as a matrices multiplication α(g) = [α]
(
ag

bg

)
. We

also recall that the map

End(G) →
[

End(A) Hom(B,A)
Hom(A,B) End(B)

]
, α 7→ [α]

is a ring isomorphism: it is bijective, [α + β] = [α] + [β] and [β ◦ α] = [β][α]
for all α, β ∈ End(G).

Proposition 12. If G = A⊕B is direct decomposition of an Abelian group
then

|C(A)| = |Hom(B,A)|.
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Proof. Let G = A⊕B′ be a direct decomposition of G with the correspond-
ing pair of idempotent endomorphisms (π′, ρ′). We consider the standard

matrix form ρ′ = [ρ′] =
[
ρ′AA ρ′BA
ρ′AB ρ′BB

]
with respect the direct decomposition

G = A⊕B. Since ρ′(a) = 0 for all a ∈ A, we obtain immediately ρ′AA = 0 and
ρ′AB = 0. If (π, ρ) is the pair of idempotent endomorphisms of A associated
to the direct decomposition G = A⊕B then ρπ′ = 0 since π′(G) ⊆ A. Hence

ρρ′ = ρρ′ + ρπ′ = ρ(ρ′ + π′) = ρ.

Using the standard matrix form ρ = [ρ] =
[

0 0
0 1B

]
, we obtain ρ′BB = 1B.

Therefore the standard matrix form for ρ′ is

(\) [ρ′] =
[

0 ρ′BA
0 1B

]
,

where ρ′BA ∈ Hom(B,A). Conversely, every endomorphism φ of A which has
a standard matrix form with respect the decomposition G = A ⊕ B as in (\)
is idempotent and it determines a complement of A: G = A ⊕ ψ(G) since
(1G − ψ)(G) = A.

Now we define a bijective function Ψ : C(A) → Hom(B,A). If B′ ∈ C(A)
with the corresponding pair of idempotents (π′, ρ′) then Ψ(B′) = ρ′BA. Let
us remark that Φ is well defined since every decomposition in a direct sum
with two terms determines a unique pair of idempotent endomorphisms. Con-
versely, we consider the function Φ : Hom(B,A) → C(A), Φ(α) = ρα(G) where

ρα is the idempotent endomorphism of G for which [ρα] =
[

0 α
0 1B

]
is the

standard matrix form with respect the direct decomposition G = A⊕B. It is
not hard to verify that ΨΦ = 1Hom(A,B) and ΦΨ = 1C(A). �

Lemma 13. If τ = ((n1, k1), . . . , (ns, ks)) is a type, the groups

Hom(Z(pn1)k1 ,Z(pn2)k2 ⊕ · · · ⊕ Z(pns)ks)

and
Hom(Z(pn2)k2 ⊕ · · · ⊕ Z(pns)ks ,Z(pn1)k1)

have the same cardinality, and this is

mτ = pk1
∑s

i=2 niki .

Proof. Since Hom(−,−) commutes with finite direct products (sums) of
Abelian groups by [5, Problems 1.10.2, 1.10.3], and we have group isomor-
phisms

Hom(Z(pn1),Z(pni)) ∼= Hom(Z(pni),Z(pn1)) ∼= Z(pni)

for all i ∈ {2, . . . , s}, we obtain
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mτ = |Hom(Z(pn1)k1 ,Z(pn2)k2 ⊕ · · · ⊕ Z(pns)ks)|

=
s∏

i=2

|Hom(Z(pn1)k1 ,Z(pni)ki)|

=
s∏

i=2

|Hom(Z(pn1),Z(pni))|k1ki =
s∏

i=2

pk1niki ,

and a analogous calculation for Hom(Z(pn2)k2 ⊕· · ·⊕Z(pns)ks ,Z(pn1)k1) gives
the same result. The proof is complete. �

Theorem 14. Let G ∼= Z(pn1)k1 ⊕ · · · ⊕ Z(pns)ks , be a finite Abelian p-
group of type τ = ((n1, k1), . . . , (ns, ks)). If τi = ((ni, ki), . . . , (ns, ks)) for all
i ∈ {1, . . . , s− 1} then

RG = RZ(pn1 )k1 · · ·RZ(pns )ksm
2
τ1 · · ·m

2
τs−1

.

Proof. Using Corollary 11, Proposition 12 and Lemma 13 we obtain

RG = RZ(pn1 )k1RZ(pn2 )k2⊕···⊕Z(pns )ksm
2
τ1 = · · ·

= RZ(pn1 )k1 · · ·RZ(pni )kiRZ(pni+1 )ki+1⊕···⊕Z(pns )ksm
2
τ1 · · ·m

2
τi

= RZ(pn1 )k1 · · ·RZ(pns )ksm
2
τ1 · · ·m

2
τs−1

,

and the proof is complete. �

4. THE HOMOGENEOUS CASE

Let G ∼= Z(pn)k be a homogeneous finite Abelian group. In order to decom-
pose G we need a few lemmas.

Lemma 15. If g1, . . . , gl are elements of maximal order in a finite Abelian p-
group G such that 〈g1, . . . , gl〉 = ⊕l

i=1〈gi〉, then 〈g1, . . . , gl〉 is a direct summand
of G.

Proof. Let K = 〈g1, . . . , gl〉 = ⊕l
i=1〈gi〉 and ord(g1) = · · · = ord(gl) = pn.

We consider a subgroup H ≤ G which is maximal with the property K∩H = 0
and suppose K + H 6= G. Therefore the p-group G/(K + H) is not trivial,
hence there exists an element g + (K +H) of order p. Therefore g /∈ K +H
and pg ∈ K +H. If pg = k + h with h ∈ H and k ∈ K, then 0 = pn−1pg =
pn−1k+pn−1h. SinceK+H = K⊕H, we obtain pn−1k = 0, hence ord(k) < pn.
By Corollary 10, it follows that there exists k0 ∈ K such that k = pk0.

Let g0 = g − k0. Then pg0 = p(g − k0) = pg − pk0 = h ∈ H. Suppose that
x ∈ K ∩ (H + 〈g0〉). Then x = h0 +mg0 and mg0 ∈ K +H, hence p | m since
the element g0 + (K + H) = g + (K + H) ∈ G/(K + H) is of order p. But,
in these conditions mg0 = m′pg0 ∈ H, hence x ∈ H. From x ∈ K we deduce
x = 0. Therefore K ∩ (H + 〈g0〉) = 0. This contradicts the choice of H, and
the proof is complete. �
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Remark 16. The case l = 1 is often used in proofs of fundamental theorem
for finite abelian groups, see [5, Lemma 1.12.3] or [2].

Remark 17. The hypothesis 〈g1, . . . , gl〉 = ⊕l
i=1〈gi〉 is essential. If G =

Z(4)⊕Z(4), g1 = (1, 0), g2 = (1, 2) then 〈g1, g2〉 = Z(4)⊕2Z(4) is not a direct
summand of G.

Recall that for any abelian group G and any integer q, G[q] = {g ∈ G |
qg = 0} is a subgroup of G.

Lemma 18. Let G = K ⊕ H ∼= Z(pn)k be a homogeneous finite Abelian
group. An element x ∈ G has the properties:

(i) K + 〈x〉 = K ⊕ 〈x〉 and
(ii) K ⊕ 〈x〉 is a direct summand of G

if and only if x /∈ K ⊕H[pn−1].

Proof. (⇒) We write x = k+h with k ∈ K and h ∈ H. Since 〈x〉 is a direct
summand of G, the order of x is pn, hence k /∈ K[pn−1] or h /∈ H[pn−1]. Using
(i) we observe that ord(h) ≥ ord(k), since if we suppose the contrary then 0 6=
ord(h)k = ord(h)x ∈ 〈x〉 ∩K. Therefore h /∈ H[pn−1], and x /∈ K ⊕H[pn−1].

(⇐) If x /∈ K ⊕H[pn−1] then x = k + h with ord(h) = pn. Then mx ∈ K
if and only if pn | m and this proves (i).

(ii) is a consequence of the Lemma 15. �

We are ready to decompose G and to count the possibilities:
Step 1: We choose an element x1 ∈ G such that 〈x1〉 is a direct summand

of G. Using Lemma 15 for the case l = 1, x1 has this property if and only if
x1 ∈ G \G[pn−1] = G \ pG. Therefore we have

a1 = pkn − pk(n−1) = pk(n−1)(pk − 1)

possibilities. But for each cyclic direct summand C of G we have C = 〈x〉 for
all x ∈ C \ pC. Hence the number of possibilities for the choice a first direct
summand is

b1 =
a1

pn − pn−1
=
p(n−1)(k−1)(pk − 1)

p− 1
.

Step i + 1: Suppose that after i steps we have a direct decomposition
G = C1⊕· · ·⊕Ci⊕Hi with C1 . . . , Ci cyclic groups. By Lemma 18, we observe
that xi+1 ∈ G has the property (C1⊕· · ·⊕Ci)+〈xi+1〉 = C1⊕· · ·⊕Ci⊕〈xi+1〉
and this is a direct summand of G if and only if xi+1 /∈ C1⊕· · ·⊕Ci⊕Hi[pn−1].
Since C1 ⊕ · · · ⊕ Ci ⊕Hi[pn−1] ∼= Z(pn)i ⊕ Z(pn−1)k−i, we have

ai+1 = pkn − pk(n−1)+i = pk(n−1)(pk − pi)

possibilities for the choice of xi+1 and

bi =
ai+1

pn − pn−1
=
p(n−1)(k−1)(pk − pi)

p− 1
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possibilities to choose a subgroup Ci+1 such that C1 ⊕ · · · ⊕ Ci ⊕ Ci+1 is a
direct summand of G.

Since we need exactly k-steps to obtain a direct decomposition of G into a
direct sum of cyclic subgroups, we have

b = b1 · · · bk =
p(n−1)k(k−1)(pk − 1) · · · (pk − pk−1)

(p− 1)k

direct decompositions for G. But these b direct decompositions depend on the
order of direct summands, hence we have

Theorem 19. If G ∼= Z(pn)k then

RG =
p(n−1)k(k−1)(pk − 1) · · · (pk − pk−1)

(p− 1)kk!

Remark 20. The number a = a1 · · · ak = pk2(n−1)(pk − 1) · · · (pk − pk−1)
equals the number of bases for the free Z(pn)-module G ([4, p.678]). It also
represents the cardinality of the general linear group GLk(Z(pn)).

Remark 21. It is not hard to see that if G ∼= Z(pn1)k1 ⊕· · ·⊕Z(pns)ks then
every isomorphism Z(pn1)k1 ⊕ · · · ⊕ Z(pns)ks

∼=→ G induces a Remak decompo-
sition for G. It is an open problem to characterize the following equivalence
relation: for two isomorphisms f, g : Z(pn1)k1 ⊕ · · ·⊕Z(pns)ks

∼=→ G, we define
f ∼ g if and only if f and g induce the same Remak decomposition for G.
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