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BOUNDS ON THE COEFFICIENTS OF CERTAIN ANALYTIC
AND UNIVALENT FUNCTIONS

K. O. BABALOLA

Abstract. For the real number α > 1, we use a technique due to Nehari and
Netanyahu and an application of certain integral iteration of Caratheodory func-
tions to find the best-possible upper bounds on the coefficients of functions of
the class T α

n (β) introduced in [4] by Opoola.
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1. INTRODUCTION

Let A denote the class of functions:

(1) f(z) = z + a2z
2 + · · · .

which are analytic in the unit disk E = {z ∈ C : |z| < 1}. In [4], Opoola
introduced the subclass Tα

n (β) consisting of functions f ∈ A which satisfy:

(2) Re
Dnf(z)α

αnzα
> β .

where α > 0 is real, 0 ≤ β < 1, Dn(n ∈ N0 = {0, 1, 2, . . . }) is the Salagean
derivative operator defined as: Dnf(z) = D(Dn−1f(z)) = z[Dn−1f(z)]′ with
D0f(z) = f(z) and powers in (2) meaning principal determinations only. The
geometric condition (2) slightly modifies the one given originally in [4] (see
[1]).

The object of the present work is the extension of some earlier results re-
garding the bounds on the coefficients, ak, of functions belonging to the class
Tα

n (β). Babalola and Opoola have begun to solve this problem in [2]. They
determined sharp bounds on ak for some α > 0 and gave some rough estimate
of the general coefficient bounds using the logarithmic coefficient approach.
The sharp bounds were stated as follows:

Theorem 1. Let f ∈ Tα
n (β). Define

Bm =
2m(1− β)mαm(n−1)

∏m−1
j=0 (1− jα)

m!
,

Ak(n, α, β) =
k−1∑
m=1

BmQ
(m)
k−1,
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Ak−1(n, α, β) =
k−2∑
m=1

BmQ
(m)
k−1,

where for each m = 1, 2, . . . , Q
(m)
k−1 is defined by the power series( ∞∑

k=1

zk

(α + k)n

)m

= Q(m)
m zm + Q

(m)
m+1z

m+1 + Q
(m)
m+2z

m+2 + · · · .

Also let
Ω1 = {α|0 < α < (k − 2)−1, k = 2, 3, . . . },

Ω2 = {α|(k − 2)−1 ≤ α ≤ (k − 3)−1, k = 4, 6, . . . },
Ω3 = {α|(k − 2)−1 ≤ α < (k − 3)−1, k = 3, 5, . . . }.

Then

|ak| ≤
{

Ak if α ∈ Ω1 ∪ Ω2,
Ak−1 if α ∈ Ω3.

The inequalities are sharp. Equalities are attained for f(z) satisfying

Dnf(z)α

αnzα
=

{
1+(1−2β)z

1−z if α ∈ Ω1 ∪ Ω2,
1+(1−2β)z2

1−z2 if α ∈ Ω3.

The rough estimate was also given as:

Theorem 2. Let f ∈ Tα
n (β), n ∈ N . Suppose

f(z)α

zα
=

∞∑
k=0

Ak+1(α)zk, A1(α) = 1.

Then

|Ak+1(α)| < exp

0.624α2 +
(

2α2 − 1
2

) k∑
j=1

1
j

 .

From Theorem 1, which is best-possible, it is obvious that the problem has
only been solved completely for a2 and a3 for all values of the index α. For
k ≥ 4, the problem has remained open for all α > (k− 3)−1. In this article we
proceed with the proof of the sharp bounds on the coefficients of functions in
the class Tα

n (β), α > 1. Our result is the following:

Theorem 3. Let f ∈ Tα
n (β). If α > 1, we have the sharp inequalities

(3) |ak| ≤
2(1− β)αn−1

(α + k − 1)n
, k = 2, 3, 4, . . . .

Equalities are attained for f(z) satisfying

Dnf(z)α

αnzα
=

1 + (1− 2β)zk−1

1− zk−1
.
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For k = 2, 3, the above result is contained in Theorem 1 above. The proof
here is however new. Also Singh [6] proved the same result for k = 2, 3, 4 for
the particular case n = 1 and β = 0. In our proof we combine a method of
classical analysis due to Nehari and Netanyau [3] (also used by Singh [6]) with
an application of certain integral iteration of the Caratheodory functions [1].
That is presented in Section 3. In the next section we state and prove some
preliminary lemmas.

2. PRELIMINARY LEMMAS

Let P be the class of functions

(4) p(z) = 1 + b1z + b2z
2 + · · ·

which are analytic in E and have positive real part. In [1] the following integral
iteration of each p ∈ P was identified:

Definition 1. [1] Let p ∈ P and α > 0 be real. The nth iterated integral
transform of p(z), z ∈ E is defined as

pn(z) =
α

zα

∫ z

0
tα−1pn−1(t)dt, n ≥ 1,

with p0(z) = p(z). The family of the nth integral iteration of p ∈ P was
denoted by Pn. Functions pn(z) in Pn have series expansion:

(5) pn(z) = 1 +
∞∑

k=1

αn

(α + k)n
bkz

k.

Furthermore if Re pn(z) > β, (0 ≤ β < 1), we denote by Pn(β) the family of
such functions given by:

pn(z) = 1 + (1− β)
∞∑

k=1

αn

(α + k)n
bkz

k.

In the proof of our main result we require the following lemmas:

Lemma 1. [3] If p(z) = 1 +
∑∞

k=1 bkz
k and q(z) = 1 +

∑∞
k=1 ckz

k belong to
P , then r(z) = 1 + 1

2

∑∞
k=1 bkckz

k also belongs to P .

Lemma 2. [3] Let h(z) = 1 +
∑∞

k=1 dkz
k and 1 + G(z) = 1 +

∑∞
k=1 b′kz

k be
functions in P . Set

(6) γm =
1

2m

1 +
1
2

m∑
µ=1

(
m

µ

)
dµ

 , γ0 = 1.

If Ak is defined by
∞∑

m=1

(−1)m+1γm−1G
m
1 (z) =

∞∑
k=1

Akz
k.
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Then

|Ak| ≤ 2, k = 1, 2, . . . .

If, in the proof of the above lemma (as contained in [3]), we define hn(z)
as the n-th iterated integral transform of h0(z) = h(z) we immediately obtain
the following corollary.

Corollary 1. Let hn(z) be the nth integral iteration of h0(z) = 1 +∑∞
k=1 dkz

k with Re hn(z) > β, and 1 + G(z) = 1 +
∑∞

k=1 b′kz
k be functions in

P . Define γm as in (6) and

(7) ηm =
(1− β)αn

(α + m)n
γm, η0 = 1− β.

If Ak is defined by

(8)
∞∑

m=1

(−1)m+1ηm−1G
m
1 (z) =

∞∑
k=1

Akz
k.

Then

(9) |Ak| ≤
2(1− β)αn

(α + k)n
, k = 1, 2, . . . .

Lemma 3. [2] Let G(z) =
∑∞

k=0 ckz
k be a power series. Then the mth

integer product of G(z) is Gm(z) =
∑∞

k=0 c
(m)
k zk where c

(1)
k = ck and c

(m)
k =∑k

j=0 cjc
(m−1)
k−j , m ≥ 2.

We now turn to the proof of the main result.

3. PROOF OF THE MAIN RESULT

Let f ∈ Tα
n (β). Then there exists an analytic functions pn ∈ Pn such that

(10) f(z)α = zα[β + (1− β)pn(z)],

where pn(z) given by (5) is the nth iterated integral transform of an analytic
function p ∈ P defined by (4) (see Lemma 4.2 of [1]). The first part of the
proof involves obtaining expression for the coefficients, ak, of f(z) in terms of
the coefficients, bk, of the function p ∈ P . This is contained in [2] and adapted
here for completeness. We have, using (5) in (10),

(11) f(z) = z

(
1 + (1− β)

∞∑
k=1

αn

(α + k)n
bkz

k

) 1
α

.
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Equation (11) expands binomially as

(12)

f(z)
z

= 1+
(1− β)αn

α

∞∑
k=1

bkz
k

(α + k)n
+

(1− β)2α2n(1− α)
2!α2

( ∞∑
k=1

bkz
k

(α + k)n

)2

+

· · ·+
(1− β)mαmn

∏m−1
j=0 (1− jα)

m!αm

( ∞∑
k=1

bkz
k

(α + k)n

)m

+ · · · .

Using Lemma 3 in (12) we get

f(z)
z

= 1 +
∞∑

k=1

B̃1C
(1)
k zk + · · ·+

∞∑
k=1

B̃mC
(m)
k zk + · · · ,

where

B̃m =
(1− β)mαm(n−1)

∏m−1
j=0 (1− jα)

m!

and C
(m)
k , m = 1, 2, . . . ; k = m,m + 1, . . . is defined by( ∞∑

k=1

bkz
k

(α + k)n

)m

=
∞∑

k=1

C
(m)
k zk,

having the general form

(13) C
(m)
k =

k∑
j=1

Cj

m∏
l=1

bρl
l

(α + l)nρl

for some nonnegative constants Cj , j = 1, 2, . . . k and indices ρl, l = 1, 2, . . . ,m
taking values in the set M = {0, 1, 2, . . . ,m} such that ρl + ρ2 + · · ·+ ρm = m
(see page 10 of [2]). From (12) we write

(14) f(z) = z +
∞∑

k=2

Ã
(m)
k zk,

where

Ã
(m)
k =

k−1∑
m=1

B̃mC
(m)
k−1, k = 2, 3, . . . .

Comparing coefficients in (1) and (14), we see that ak = Ã
(m)
k which gives

(15) ak =
k−1∑
m=1

(1− β)mαm(n−1)
∏m−1

j=0 (1− jα)
m!

 k∑
j=1

Cj

m∏
l=1

bρl
l

(α + l)nρl

 .
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Now we compute the leading coefficients, Av, in the expression (8). From (8)
we have

∞∑
m=1

(−1)m+1ηm−1G
m
1 (z) = G1(z)− η1G

2
1(z) + · · · =

∞∑
v=1

Avz
v(16)

with G1(z) =
∑∞

v=1 b′vz
v. Using Lemma 3 again we have

(17) Gm
1 (z) =

∞∑
v=m

C(m)
v zv, m = 1, 2, . . . ,

where

(18) C(m)
v =

v∑
j=1

Cj

m∏
l=1

b′
ρl
l

with Cj and indices ρl as already defined for (13). Using (17) and (18) in (16)
we get

∞∑
m=1

(−1)m+1ηm−1G
m
1 (z) =

∞∑
v=1

(
v∑

m=1

(−1)m+1ηm−1C
(m)
v

)
zv

=
∞∑

v=1

 v∑
m=1

(−1)m+1ηm−1

 v∑
j=1

Cj

m∏
l=1

b′
ρl
l

 zv

=
∞∑

v=1

Avz
v,

so that

Av =
v∑

m=1

(−1)m+1ηm−1

 v∑
j=1

Cj

m∏
l=1

b′
ρl
l

 zv.

By corollary 1, these coefficients, Av, satisfy the inequality (9) if 1 + G(z) =
1 + b′1z + b′2z

2 + · · · is a function of the class P , and by Lemma 1 we may
set b′l = 1

2blcl where p(z) = 1 + b1z + b2z
2 + · · · is the function (4) and

H(z) = 1 + c1z + c2z
2 + · · · is an arbitrary function in P . Then

(19) |Av| =

∣∣∣∣∣∣
v∑

m=1

(−1)m+1 ηm−1

2m

 v∑
j=1

Cj

m∏
l=1

bρl
l cρl

l

∣∣∣∣∣∣ ≤ 2(1− β)αn

(α + v)n
.

Using (7) together with the fact that α > 0, we can write (19) equivalently as
(20)

|Av| =

∣∣∣∣∣∣
v∑

m=1

(−1)m+1 (1− β)αn

(α + m− 1)n

γm−1

2mα

 v∑
j=1

Cj

m∏
l=1

bρl
l cρl

l

∣∣∣∣∣∣ ≤ 2(1− β)αn−1

(α + v)n
.
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Since for each m = 1, 2, . . . and any α > 0,
m∏

l=1

αnρl

(α + l)nρl
≤

m∏
l=1

αnρl

(α + 1)nρl
=

αmn

(α + 1)mn
≤ αn

(α + m− 1)n
,

it is evident that for each v = 1, 2, . . .

v∑
m=1

(−1)m+1 γm−1

2mα

 v∑
j=1

Cj

m∏
l=1

(1− β)ρlαnρl

(α + l)nρl
bρl
l cρl

l

 ≤

v∑
m=1

(−1)m+1 (1− β)αn

(α + m− 1)n

γm−1

2mα

 v∑
j=1

Cj

m∏
l=1

bρl
l cρl

l

 .

Therefore by (20), we have∣∣∣∣∣∣
v∑

m=1

(−1)m+1 γm−1

2mα

 v∑
j=1

Cj

m∏
l=1

(1− β)ρlαnρl

(α + l)nρl
bρl
l cρl

l

∣∣∣∣∣∣ ≤ 2(1− β)αn−1

(α + v)n

that is,
(21)∣∣∣∣∣∣

v∑
m=1

(−1)m+1 (1− β)mαmn−1γm−1

2m

 v∑
j=1

Cj

m∏
l=1

bρl
l cρl

l

(α + l)nρl

∣∣∣∣∣∣ ≤ 2(1− β)αn−1

(α + v)n
.

Now comparing (15) and the term in the absolute value in (21) (with v = k−1),
we would conclude that the inequalities (3) hold if we are able to find two
members h(z) = 1+d1z+d2z

2+· · · and H(z) = 1+c1z+c2z
2+· · · of P which

give rise to the constants γm (as required by (6)) and cl. For H ∈ P , a natural
choice of the Moebius function is suitable. That is, H(z) = (1 + z)/(1− z) =
1 + 2z + 2z2 + · · · . Thus we have cl = 2, l = 1, 2, . . . . Using this in (21) we
get
(22)∣∣∣∣∣∣

k−1∑
m=1

(−1)m+1(1− β)mαmn−1γm−1

k−1∑
j=1

Cj

m∏
l=1

bρl
l

(α + l)nρl

∣∣∣∣∣∣ ≤ 2(1− β)αn−1

(α + k − 1)n
.

Comparing (15) and the term in the absolute value in (22) we find that

(−1)m+1 γm−1

α
=

∏m−1
j=0 (1− jα)

m!αm

that is

(23) γm−1 =

∏m−1
j=1 (jα− 1)
m!αm−1

, γ0 = 1.
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Now with dµ, µ = 1, 2, . . . ,m− 1 defined by

(24)
1

2m−1

1 +
1
2

m−1∑
µ=1

(
m− 1

µ

)
dµ

 =

∏m−1
j=1 (jα− 1)
m!αm−1

,

we need to find h(z)k, corresponding to each ak, k = 2, 3, 4, . . . ., such that
the coefficients dµ, µ = 1, 2, . . . ,m− 1 of each h(z)k satisfy (24) and the proof
would be complete. Observe from (22) that m = 1, 2, . . . , k− 1 as we begin to
implement our scheme for each k = 2, 3, 4, . . . .

k = 2: In this case m = 1. Hence by (23) γ0 = 1 and we can therefore
define dµ = 0 for all µ so that h(z)2 = 1.

k = 3: Here we have m = 1, 2. Using (24) we get d1 = − 2
α , so that

h(z)3 =
α− 1

α
+

1
α

(
1− z

1 + z

)
= 1− 2

α
z + · · · .

k = 4: Now m = 1, 2, 3. From (24) we have

1
4

(
1 +

1
2
(2d1 + d2)

)
=

(α− 1)(2α− 1)
3!α2

.

Taking d1 = 0, we get d2
2 = α2−6α+2

3α2 (note that |d2| ≤ 2), and we have

h(z)4 =


2(α2+3α−1)

3α2 + α2−6α+2
3α2

(
1+z2

1−z2

)
if α ≥ α0,

2(2α2−3α+1)
3α2 + 6α−α2−2

3α2

(
1−z2

1+z2

)
if 1 < α ≤ α0

= 1 +
2(α2 − 6α + 2)

3α2
z2 + · · · ,

where α0 > 1 is the solution of α2 − 6α + 2 = 0.
k = 5: In this case m = 1, 2, 3, 4., and from (24) we get

1
8

(
1 +

1
2
(3d1 + 3d2 + d3)

)
=

(α− 1)(2α− 1)(3α− 1)
4!α3

.

Taking d1 = d2 = 0, we get d3
2 = 3α3−11α2+6α−1

3α3 (note also that |d3| ≤ 2) and

h(z)5 =


11α2−6α+1

3α3 + 3α3−11α2+6α−1
3α3

(
1+z3

1−z3

)
if α ≥ α0,

6α3−11α2+6α−1
3α3 + 1−6α+11α2−3α3

3α3

(
1−z3

1+z3

)
if 1 < α ≤ α0

= 1 +
2(3α3 − 11α2 + 6α− 1)

3α3
z3 + · · · .

In this case α0 > 1 is the solution of 3α3 − 11α2 + 6α− 1 = 0.
k ≥ 6: In general, m = 1, 2, 3, . . . , k − 1. In (24) we set d1 = −2

m−1 , d2 =
d4 = · · · = dξ = σ where ξ equals m− 1 if m− 1 is even and m− 2 otherwise,
and d3 = d5 = · · · = dω = 0 where ω equals m − 1 if m − 1 is odd and

m − 2 otherwise. With this we get σ
2 =

2m−1
∏m−1

j=1

(
jα−1

jα

)
m

(
(m−1

2 )+(m−1
4 )+···+(m−1

ξ )
) . In this
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sense |dµ| ≤ 2 for all µ = 1, 2, . . . ,m − 1. Setting m = k − 1, we now define
h(z)k, k ≥ 6 as follows

h(z)k = 1− 2
k − 2

−
2k−2

∏k−2
j=1

(
jα−1

jα

)
(k − 1)

((
k−2
2

)
+
(
k−2
4

)
+ · · ·+

(
k−2

ξ

)) +
2

k − 2
(1− z)

+
2k−2

∏k−2
j=1

(
jα−1

jα

)
(k − 1)

((
k−2
2

)
+
(
k−2
4

)
+ · · ·+

(
k−2

ξ

)) (1 + z2

1− z2

)
.

In other words,

h(z)k = 1− 2
k − 2

z +
2k−2

∏k−2
j=1

(
jα−1

jα

)
(k − 1)

((
k−2
2

)
+
(
k−2
4

)
+ · · ·+

(
k−2

ξ

))z2

+
2k−2

∏k−2
j=1

(
jα−1

jα

)
(k − 1)

((
k−2
2

)
+
(
k−2
4

)
+ · · ·+

(
k−2

ξ

))z4 + · · · .

That these functions h(z)k belong to P follows from the fact that the function
λ1f1+λ2f2+· · ·+λmfm belongs to P if f1, f2, . . . , fm belong, λ1, λ2,. . . ,λm ≥ 0
and λ1 + λ2 + · · ·+ λm = 1. This completes the proof of the theorem.

Remark 1. We compute h(z)6, . . . , h(z)10 for the purpose of illustration.

h(z)6 = 1− 1
2
z +

4(α− 1)(2α− 1) . . . (4α− 1)
105α4

z2

4(α− 1)(2α− 1) . . . (4α− 1)
105α4

z4 + · · · ,

h(z)7 = 1− 2
5
z +

4(α− 1)(2α− 1) . . . (5α− 1)
675α5

z2

4(α− 1)(2α− 1) . . . (5α− 1)
675α5

z4 + · · · ,

h(z)8 = 1− 1
3
z +

8(α− 1)(2α− 1) . . . (6α− 1)
10765α6

z2

8(α− 1)(2α− 1) . . . (6α− 1)
10765α6

z4 + · · · ,

h(z)9 = 1− 2
7
z +

2(α− 1)(2α− 1) . . . (7α− 1)
19845α7

z2

2(α− 1)(2α− 1) . . . (7α− 1)
19845α7

z4 + · · · ,
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h(z)10 = 1− 1
4
z +

4(α− 1)(2α− 1) . . . (8α− 1)
360045α8

z2

4(α− 1)(2α− 1) . . . (8α− 1)
360045α8

z4 + · · · .

With this work the coefficient problem of functions in the class Tα
n (β) is

settled for any α > 1. Of course the case α = 1 is trivial as this simply gives
|ak| ≤ 2(1−β)

(k+1)n , k ≥ 2, as can be seen easily from (12). Thus the problem only
remains open for (k−3)−1 ≤ α < 1, k ≥ 5. Finally, we note a humble attempt
at this problem made by the authors in [5]. Their results depended wholly on
the triangle inequality, and were not sharp.
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