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BOUNDS ON THE COEFFICIENTS OF CERTAIN ANALYTIC
AND UNIVALENT FUNCTIONS

K. O. BABALOLA

Abstract. For the real number @ > 1, we use a technique due to Nehari and
Netanyahu and an application of certain integral iteration of Caratheodory func-
tions to find the best-possible upper bounds on the coefficients of functions of
the class T;7 () introduced in [4] by Opoola.
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1. INTRODUCTION

Let A denote the class of functions:
(1) fz)=z+a2® +---.

which are analytic in the unit disk £ = {z € C: |2|] < 1}. In [4], Opoola
introduced the subclass T)¥(3) consisting of functions f € A which satisfy:

D)

az¢

(2) R > f.

where @ > O isreal, 0 < < 1, D"(n € Ny = {0,1,2,...}) is the Salagean
derivative operator defined as: D"f(z) = D(D" 1 f(2)) = z[D" "' f(2)]" with
Df(2) = f(2) and powers in (2) meaning principal determinations only. The
geometric condition (2) slightly modifies the one given originally in [4] (see
1)).

The object of the present work is the extension of some earlier results re-
garding the bounds on the coefficients, ag, of functions belonging to the class
T%(3). Babalola and Opoola have begun to solve this problem in [2]. They
determined sharp bounds on a for some o > 0 and gave some rough estimate
of the general coefficient bounds using the logarithmic coefficient approach.
The sharp bounds were stated as follows:

THEOREM 1. Let f € T (). Define

~2m(1 - BymameD [P — ja)
- m)!

m i

k—1
Ap(n,a,8) = Y BnQ"),
m=1
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k—2
Ak‘—l(na «, /6) — Z BmQ](;f)lv
m=1

where for each m =1,2,... 7Q§£)1 1s defined by the power series
0 Zk m
E ’ _ NH(m) m (m) _m+1 (m) m+2 | .
<k_1 k)~ Onn A G
Also let

QG ={al0<a<(k-2""k=23...1,
W={a|(k-2"'<a<(k-3)"Lk=4,6..1},
WB={a|(k-2)"'<a<(k-3)"Lk=3,5...1}.

Then
A if a € Q1 U,
|ak| = { A1 if a € Qs.

The inequalities are sharp. Equalities are attained for f(z) satisfying
Drf(z)e [ MO yra e 0 Uy,
1+(1-2p)2% if a € Q.

az®
1—22
The rough estimate was also given as:

THEOREM 2. Let f € T2(5),n € N. Suppose
f(z)*

ZO&

= ZAk+1(O[)Zk, Al(a) =1.
k=0
Then

k
1 1
|Agy1(a)| < exp{ 0.624a* + <2a2 - 2> jg_l ;

From Theorem 1, which is best-possible, it is obvious that the problem has
only been solved completely for as and as for all values of the index «. For
k > 4, the problem has remained open for all a > (k —3)~!. In this article we
proceed with the proof of the sharp bounds on the coefficients of functions in
the class T.¥(8), o > 1. Our result is the following:

THEOREM 3. Let f € T (5). If a > 1, we have the sharp inequalities
2(1 — B)ant
(a+k—1)""
Equalities are attained for f(z) satisfying

DUf(2)° 1+ (1—28)25!
alz® = 1— Zkfl :

(3) lax| < k=2 34,....
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For k = 2, 3, the above result is contained in Theorem 1 above. The proof
here is however new. Also Singh [6] proved the same result for k = 2, 3, 4 for
the particular case n = 1 and 8 = 0. In our proof we combine a method of
classical analysis due to Nehari and Netanyau [3] (also used by Singh [6]) with
an application of certain integral iteration of the Caratheodory functions [1].
That is presented in Section 3. In the next section we state and prove some
preliminary lemmas.

2. PRELIMINARY LEMMAS
Let P be the class of functions
(4) p(z) =1+brz+bpz? + -

which are analytic in E' and have positive real part. In [1] the following integral
iteration of each p € P was identified:

DEFINITION 1. [1] Let p € P and a > 0 be real. The nth iterated integral
transform of p(2), z € E is defined as

with po(z) = p(z). The family of the nth integral iteration of p € P was
denoted by P,. Functions p,(z) in P, have series expansion:

(5) pn(z) =1+ ; mbkzk

Furthermore if Re p,(z) > (3, (0 < 8 < 1), we denote by P,(3) the family of
such functions given by:

D1 (1-p)S Yk
pn( ) 1+(1 ﬁ)kZ:l(a_’_k)nbk

In the proof of our main result we require the following lemmas:

LEMMA 1. [3] If p(2) = 1+ 372, bp2® and q(2) = 14 332, cxz® belong to
P, then r(z) =1+ 5332 byerz® also belongs to P.

LEMMA 2. [3] Let h(z) = 1+ Y po, diz® and 1+ G(2) = 1+ S50 bj.2F be
functions in P. Set

1 1e=/m
(6) 7m:27m 1+§Z 1 du , 7% =1

If Ay is defined by

Do G (z) = ) A
= k=1

m=1



142 K. O. Babalola 4

Then
Ap| <2, k=1,2, ....
If, in the proof of the above lemma (as contained in [3]), we define h,(z)

as the n-th iterated integral transform of ho(z) = h(z) we immediately obtain
the following corollary.

COROLLARY 1. Let hy(z) be the nth integral iteration of ho(z) = 1 +
S di2® with Re hy(2) > B, and 1+ G(2) = 1+ Y poy b,.2" be functions in
P. Define vy, as in (6) and

(1= p)a” _
(7) = gy T 0= 1-5.

If Ay is defined by

(8) Z (—1)m+177m71G71n(z) = Z Akzk.
m=1 k=1
Then
2(1 - pB)a" B
(9) |Ak|§W, k=1,2, ....

LEMMA 3. [2] Let G(2) = Y72, ckz® be a power series. Then the mth
integer product of G(z) is G™(z) = > 1o, c,gm)zk where c,(cl) = ¢, and c,(cm) =
Z?ZO cjcgf;l), m > 2.

We now turn to the proof of the main result.

3. PROOF OF THE MAIN RESULT

Let f € T¥(3). Then there exists an analytic functions p, € P, such that

(10) f(2)* =2+ (1 = B)pn(2)],

where p,(2) given by (5) is the nth iterated integral transform of an analytic
function p € P defined by (4) (see Lemma 4.2 of [1]). The first part of the
proof involves obtaining expression for the coefficients, ay, of f(z) in terms of
the coefficients, by, of the function p € P. This is contained in [2] and adapted
here for completeness. We have, using (5) in (10),

(11) fz2)==z <1 +1=-8) mbkzk> "

k=1
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Equation (11) expands binomially as

(12)
fE) (=Bt S b (1B S :
=1
z LA— kZ(a—i—k‘) * 2'042 ; a—l—k +
1—B)mam It (- > S\
N (1-75) IT=0 ( Z
mla™ (a + k)n
k=1
Using Lemma 3 in (12) we get
1S
z k ’
k=1 =1
where
5 _(Q-pgmarty 15 (1—ja)
" m!
and C’,im), m=1,2,...; k=m,m+1,... is defined by
> ZC A,
<k 7 (@ o )
having the general form
13 cm =%"¢,
(13) Ezj j IH @ H
for some nonnegative constants Cj, j = 1,2,...k and indices p;, | = 1,2,...,m

taking values in the set M = {0,1,2,...,m} such that pj+p2+---+ pm =m
(see page 10 of [2]). From (12) we write

(14) =2+ Z Al ok,
where

-1
A" =3N"B.0", k=23, ...
=1

A(m)

Comparing coefficients in (1) and (14), we see that a; = A,

k—1 _ gym,m(n—1) 7ym—1 1 _ k m Pl
(1= B)mam DT (1 - jo) bl
(15) ar=, TR 2 Gl
m=1 j=1

which gives
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Now we compute the leading coefficients, A,, in the expression (8). From (8)
we have

(16) Y (1" 1GY(2) = Gi(z) - mGi (2 ZAZ

m=1

with Gi(z) = Y o0 b),2". Using Lemma 3 again we have

(17) GT'(z) =Y CiMz", m=1,2, ...,
where
(18) o =3 G [Iv?

j=1 I=1

with C; and indices p; as already defined for (13). Using (17) and (18) in (16)
we get

()" 01 G (2) =Y ( (=)™ O™ >>

m=1 v=1

— i ( m+1 ZC Hb/Pl S
J=1 =1
A

so that

<

A, =Y (1)t ZC Hb’f’l 2,
= J=1 =1

By corollary 1, these coefficients, A,, satisfy the inequality (9) if 1 + G(z) =
1+ by z + bhy2? + - -+ is a function of the class P, and by Lemma 1 we may
set b) = 3bic; where p(z) = 1+ bz + bez® + -+ is the function (4) and
H(z) =1+ c1z+ cgz? + -+ is an arbitrary function in P. Then

v

-1 [ X T 2(1 — B)a™
19) 1A= | Dy B (ST T e < 20— )"

m=1 j=1 i=1 (

Using (7) together with the fact that o > 0, we can write (19) equivalently as
(20)

v

= | S e L ZC Hbm p|| < 2= Blam
L

a+m—1)" 2ma (a+v)"
m=1
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Since for each m =1,2,... and any a > 0,
H ﬁ a™Pl _ a™mmn - a™ ,
= (a +l e (a+ 1) (a+1)™ = (a+m—1)"

it is evident that for each v =1,2, ...

(2 v m
m41 Ym=1 (1—p)rram”
Z(_l) " 2m oy ZCjH (a—i—l)"pl blplc{)l <
j=1 1

m=1 =

- m+1_ (1= B)a" ym_1 »
(=0 (a+m—1)" 2ma ;C I;Ibp

m=1

Therefore by (20), we have

- m+1’7m 1 5 pza P pPL P < 2(1 _ﬂ)an_l
mz:l( 2m ey jzl H (a —|— Drew “ ~ (a4o)"
that is,
(21)
v 1— ﬂ)mamn 1 mn bPl 2(1 o Ig)anfl
-1 me1 < ——
W;( ) 2m ; Jl:[ a+l”m ~ (a+4o)"

Now comparing (15) and the term in the absolute value in (21) (with v = k—1),
we would conclude that the inequalities (3) hold if we are able to find two
members h(z) = 1+djz+dyz?+- - and H(z) = 1+c12+c2%+- -+ of P which
give rise to the constants -, (as required by (6)) and ¢;. For H € P, a natural
choice of the Moebius function is suitable. That is, H(z) = (1 +2)/(1 —z) =

14224222+, Thus we have ¢; =2, [ =1, 2, .... Using this in (21) we
get
(22)
k—1 k—1 m
bPl 2(1 _ ,B)an_l
-1 m+1 1 — B)ma™mn— 1 C <
Z( A= 8)"a JH (a+Dmee )| = (a+k—1)"

m=1 Jj=1 l:l

Comparing (15) and the term in the absolute value in (22) we find that

(_1)m+1’}’m—1 - HT:Bl(l —ja)

o mla™
that is
—1,.
H;n=1 (jao—1)

(23) Tm—1 = T olam—1 Yo = 1.



146 K. O. Babalola 8

Now with d,, p=1,2,...,m — 1 defined by

1 1 fm—1 ma—1
(24) — |1+ Z m dy| = M’
2m— 2 = w mlam—1
we need to find h(z)g, corresponding to each ax, k = 2,3,4,...., such that

the coefficients d,,, 1 =1,2,...,m —1 of each h(z);, satisfy (24) and the proof
would be complete. Observe from (22) that m =1,2,...,k —1 as we begin to
implement our scheme for each k =2,3,4,....

k = 2: In this case m = 1. Hence by (23) 79 = 1 and we can therefore
define d,, = 0 for all p so that h(z) = 1.

k = 3: Here we have m = 1,2. Using (24) we get d; = —Z, so that

-1 1 /1-— 2
h(z)gza +< Z)zl—az—k-'-.

o a\l+z
k =4: Now m = 1,2,3. From (24) we have
1 1 (a—1)(2a—1)
(1422 = :
4 < 5 d1+d2)> 3102

Taking d; = 0, we get %2 = % (note that |d2| < 2), and we have

2(a?43a—1) a?2—6a+2 [ 1+22 :
3a? T 32 1—22 if @ > ag,

h(z)4: 2 2 2 .
2(2aga:3a+1) +6a532—2 (L—L;> if 1 <a<ag
2(a?® — 6a + 2
3a?

where ag > 1 is the solution of a? — 6a + 2 = 0.
k = 5: In this case m = 1,2, 3,4., and from (24) we get

1 1 (a—1)2a —1)(3ax — 1)

(14 =(3d1 +3d2+d3) | = .

8<+2( L 2+3)> 4103

Taking d; = dy = 0, we get %3 = % (note also that |d3| < 2) and
» llo®—ga+l 4 ga-lla’t6a-1 (}J_rji) if @ > ay,
2)5 =
6a3—113i23+6a—1 + 1—6a+31i3a2—3a3 (L—rii) if 1 <a<ag
_it 2(3a3 — 110423+ 6o — 1)23 N
3a

In this case ag > 1 is the solution of 3a3 — 11a? + 6ac — 1 = 0.

k > 6: In general, m = 1,2,3,...,k — 1. In (24) we set d; = m;—zu dy =
dy = --- = d¢ = 0 where { equals m — 1 if m — 1 is even and m — 2 otherwise,
and d3 = ds = --- = d, = 0 where w equals m — 1 if m — 1 is odd and

. o L (1922) :
m — 2 otherwise. With this we get § = 4 . In this

P (CRECRE= D)
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sense |d,| < 2 forall p=1,2,...,m — 1. Setting m = k — 1, we now define
h(z)k, k > 6 as follows
9k—2 k2 (jO{—1>
2 =1 a 2
h(z)e=1— - L + = (1-2)

k—2 (k_l)((k;2)+(k22)+”_+(kg2)> k—2

N k=2 T]h2 (ﬂ}gl) (1 +22>
_ _ _ — 2 )
(k—1) ((kQQ) + (k42) +oet (szz)) 1==
In other words,
gh—2T[k=2 (ia1
h(z)e = 1— 2 ot J—1(3a> 52

FEE k- () (D) o ()
+ #1La (J%l) 2t +
(k=1 (3 + () ++ ()

That these functions h(z)x belong to P follows from the fact that the function
A fi+As fot+- - -4+ fin belongs to Pif f1, fo, ..., fim belong, A1, Aa,... A\, >0
and Ay + Ao + -+ + A\, = 1. This completes the proof of the theorem.

REMARK 1. We compute h(z2)g, ..., h(z)10 for the purpose of illustration.

1 da—1)2a—-1)...(da—1) 4

M)g=1-32+ 10507 ‘
4a-1)2a—-1)...(4da—1) 4
1050* A
2 Aa-1)2a—-1)...(ba—1) ,
= 1 —_ —
h(z)7 % + 67505 z
4a-—1)2a—-1)...(ba—1) 4
67505 et
1 8(a—1)2a—1)...(6a—1) ,
1=
Tz)s 37T 1076506 :
8(a—1)2a—1)...(6a—1) 4
1076505 ZE

2 2@ —1)2a—1)...(Ta—1) ,
W) =1— =
(2)o 72T 1984507 “

2 —1)2a—-1)...(Ta—1) 4
1984507 A




148 K. O. Babalola 10

1 4a—1)2a—-1)...8a—1) 4
3600450 :
4a—1)2a—-1)...8a—1) 4
3600450° R
With this work the coefficient problem of functions in the class T)%(3) is
settled for any o > 1. Of course the case o = 1 is trivial as this simply gives

lag| < ?,Sr_l?,z, k > 2, as can be seen easily from (12). Thus the problem only

remains open for (k—3)~! < a < 1, k > 5. Finally, we note a humble attempt

at this problem made by the authors in [5]. Their results depended wholly on
the triangle inequality, and were not sharp.
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