GENERALIZATION OF CERTAIN SUBCLASS OF CONVEX FUNCTIONS AND A CORRESPONDING SUBCLASS OF STARLIKE FUNCTIONS WITH NEGATIVE COEFFICIENTS

M. K. AOUF and G. S. SALAGEAN

Abstract. Making use of Salagean operators, D^n and D^{n+m} $(n \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}, m \in \mathbb{N} = \{1, 2, ...\})$, we define the class $T_j(n, m, \alpha, \beta)$ $(n \in \mathbb{N}_0, j, m \in \mathbb{N}, -1 \leq \alpha < 1, \beta \geq 0)$. In this paper, we obtain coefficient estimates, distortion theorem, closure theorems and radii of close - to - convexity, starlikeness and convexity for functions belonging to the class $T_j(n, m, \alpha, \beta)$. We consider integral operators associated with functions belonging to the class $T_j(n, m, \alpha, \beta)$. We also obtain several results for the modified Hadamard products of functions belonging to the class $T_j(n, m, \alpha, \beta)$. Finally, distortion theorems for the fractional calculus of functions in the class $T_j(n, m, \alpha, \beta)$ are obtained.

MSC 2000. 30C45

Key words. Analytic, Salagean operator, uniformly convex, closure theorems, modified Hadamard products.

1. INTRODUCTION

Let A_j denote the class of functions of the form :

(1.1)
$$f(z) = z + \sum_{k=j+1}^{\infty} a_k z^k \ (j \in \mathbb{N} = \{1.2, ...\})$$

which are analytic in the unit disc $U = \{z : |z| < 1\}$. For a function f(z) in A_i we define

(1.2)
$$D^0 f(z) = f(z),$$

(1.3)
$$D^1 f(z) = D f(z) = z f'(z),$$

(1.4)
$$D^n f(z) = D(D^{n-1}f(z)) \ (n \in \mathbb{N}).$$

The differential operator D^n was introduced by Salagean [16]. It is easy to see that

(1.5)
$$D^n f(z) = z + \sum_{k=2}^{\infty} k^n a_k z^k, \ n \in \mathbb{N}_0 = N \cup \{0\}.$$

With the help of the differential operator D^n , for $-1 \leq \alpha < 1$, $\beta \geq 0$, $j, m \in \mathbb{N}$ and $n \in \mathbb{N}_0$, we let $S_j(n, m, \alpha, \beta)$ denote the subclass of A_j consisting of

The work of this author was supported by the Grant 2-CEx 06-11-10 / 25.07.2006

functions f(z) of the form (1.1) and satisfying the analytic condition :

(1.6)
$$\operatorname{Re}\left\{\frac{D^{n+m}f(z)}{D^nf(z)} - \alpha\right\} > \beta \left|\frac{D^{n+m}f(z)}{D^nf(z)} - 1\right| , z \in U$$

The operator D^{n+m} was studied by Sekine [18], Aouf et al. ([3] and [4]) and Hossen et all. [7] and Aouf [2].

We note that :

(i) $S_j(1, 1, \alpha, \beta) = \beta - UCV(\alpha, j)$, is the class of β - uniformly convex functions of order α , $-1 \le \alpha < 1$, $\beta \ge 0$, $j \in \mathbb{N}$, that is the class

(1.7)
$$\left\{f(z) \in A_j : \operatorname{Re}\left\{1 + \frac{zf''(z)}{f'(z)} - \alpha\right\} > \beta \left|\frac{zf''(z)}{f'(z)}\right|, \ z \in U\right\}.$$

The class $\beta - UCV(0, 1) = \beta - UCV$ was introduced by Kanas and Wisniowska [10]. The class 1 - UCV(0, 1) = UCV was introduced by Ma and Minda [11] and Ronning [13].

(ii) $S_j(0, 1, \alpha, \beta) = \beta - S_p(\alpha, j)$, is the class of β - starlike functions of order $\alpha, -1 \leq \alpha < 1, \beta \geq 0, j \in \mathbb{N}$, that is the class

(1.8)
$$\left\{f(z) \in A_j : \operatorname{Re}\left\{\frac{zf'(z)}{f(z)} - \alpha\right\} > \beta \left|\frac{zf'(z)}{f(z)} - 1\right|, \ z \in U\right\}.$$

The class $\beta - S_p(0, 1) = \beta - S_p$ was introduced by Kanas and Wisniowska [9]. The class $1 - S_p(0, 1) = \beta - S_p$ was introduced by Ronning [14].

We denote by T_i the subclass of A_i consisting of functions of the form :

(1.9)
$$f(z) = z - \sum_{k=j+1}^{\infty} a_k z^k (a_k \ge 0; \ k \ge j+1; \ j \in \mathbb{N}).$$

Further, we define the class $T_i(n, m, \alpha, \beta)$ by

(1.10)
$$T_j(n,m,\alpha,\beta) = S_j(n,m,\alpha,\beta) \cap T_j.$$

Also we not that :

(i) $T_1(n, 1, \alpha, \beta) = TS(n, \alpha, \beta) \ (-1 \le \alpha < 1, \ \beta \ge 0, n \in \mathbb{N}_0)$ (Rosy and Murugusndaramoorth [15]);

(ii) $T_1(0, 1, \alpha, 0) = T^*(\alpha)$ and $T_1(1, 1, \alpha, 0) = C(\alpha)$ $(0 \le \alpha < 1)$ (Silverman [19]);

(iii) $T_j(0, 1, \alpha, 0) = T_\alpha(j)$ and $T_j(1, 1, \alpha, 0) = C_\alpha(j)$ $(0 \le \alpha < 1, j \in \mathbb{N})$ (Chatterjea [5] and Srivastava et al. [20]);

(iv) $T_j(n, m, \alpha, 0) = T_j(n, m, \alpha)$ ($0 \le \alpha < 1$; $j \in \mathbb{N}$) (Sekine [18] and Hossen et al. [7]);

(v) $T_1(n, 1, \alpha, 0) = T^*(n, \alpha) \ (0 \le \alpha < 1, n \in \mathbb{N}_0)$ (Hur and Oh [8]);

(vi) $T_j(n, 1, 0, \beta) = T_j(n, m, \alpha)$ $(0 \le \alpha < 1; j \in \mathbb{N}, n \in \mathbb{N}_0, \beta \ge 0)$ (Dixit and Pathak [6]).

LEMMA 1. Let the function f(z) be defined by (1.1) with j = 1. Then $f(z) \in S(n, m, \alpha, \beta)$ if

(2.1)
$$\sum_{k=2}^{\infty} k^n [k^m (1+\beta) - (\alpha+\beta)] |a_k| \le 1 - \alpha.$$

Proof. It suffices to show that

$$\beta \left| \frac{D^{n+m} f(z)}{D^n f(z)} - 1 \right| - \operatorname{Re} \left\{ \frac{D^{n+m} f(z)}{D^n f(z)} - 1 \right\} \le 1 - \alpha.$$

We have

$$\beta \left| \frac{D^{n+m} f(z)}{D^n f(z)} - 1 \right| - \operatorname{Re} \left\{ \frac{D^{n+m} f(z)}{D^n f(z)} - 1 \right\} \le (1+\beta) \left| \frac{D^{n+m} f(z)}{D^n f(z)} - 1 \right|$$
$$\le \frac{(1+\beta) \sum_{k=2}^{\infty} k^m (k^m - 1) |a_k|}{1 - \sum_{k=2}^{\infty} k^n |a_k|}.$$

This last expression is bounded above by $(1 - \alpha)$ if

$$\sum_{k=2}^{\infty} k^n [k^m (1+\beta) - (\alpha+\beta)] |a_k| \le 1 - \alpha,$$

and hence the proof is complete.

THEOREM 1. A necessary and sufficient condition for f(z) of the form (1.9) (with j = 1) to be in the class $T_1(n, m, \alpha, \beta)$ is that

(2.2)
$$\sum_{k=2}^{\infty} k^n [k^m (1+\beta) - (\alpha+\beta)] a_k \le 1 - \alpha.$$

Proof. In view of Lemma 1, we need only to prove the necessity. If $f(z) \in T_1(n, m, \alpha, \beta)$ and z is real, then (1.6) yields

$$\frac{1 - \sum_{k=2}^{\infty} k^{n+m} a_k z^{k-1}}{1 - \sum_{k=2}^{\infty} k^n a_k z^{k-1}} - \alpha \ge \beta \left| \frac{\sum_{k=2}^{\infty} k^n (k^m - 1) a_k z^{k-1}}{1 - \sum_{k=2}^{\infty} k^n a_k z^{k-1}} \right|.$$

Letting $z \to 1^-$ along the real axis, we obtain the desired inequality

(2.3)
$$\sum_{k=2}^{\infty} k^n [k^m (1+\beta) - (\alpha+\beta)] a_k \le 1 - \alpha.$$

THEOREM 2. Let the function f(z) be defined by (1.9). Then $f(z) \in T_j(n, \alpha, m, \beta)$ if and only if

$$\sum_{k=j+1}^{\infty} k^n [k^m (1+\beta) - (\alpha+\beta)] a_k \le 1 - \alpha.$$

 $\mathit{Proof.}$ Putting $a_k=0\;(k=2,3,...,j)$ in Theorem 1, we can prove the assertion of Theorem 2 .

COROLLARY 1. Suppose that the function f(z) defined by (1.9) is in the class $T_j(n, m, \alpha, \beta)$. Then

(2.4)
$$a_k \le \frac{1-\alpha}{k^n [k^m (1+\beta) - (\alpha+\beta)]} \quad (k \ge j+1).$$

The result is sharp for the function f(z) given by

(2.5)
$$f(z) = z - \frac{(1-\alpha)}{k^n [k^m (1+\beta) - (\alpha+\beta)]} z^k \quad (k \ge j+1).$$

3. GROWTH AND DISTORTION THEOREM

THEOREM 3. Suppose that the function f(z) defined by (1.9) is in the class $T_j(n, m, \alpha, \beta)$. Then

(3.1)
$$|D^i f(z)| \ge |z| - \frac{1-\alpha}{(j+1)^{n-i}[(j+1)^m(1+\beta) - (\alpha+\beta)]} |z|^{j+1}$$

and

(3.2)
$$|D^i f(z)| \le |z| + \frac{1-\alpha}{(j+1)^{n-i}[(j+1)^m(1+\beta) - (\alpha+\beta)]} |z|^{j+1}$$

for $z \in U$, where $0 \le i \le n$. The equalities in (3.1) and (3.2) are attained for the function f(z) given by

(3.3)
$$f(z) = z - \frac{1 - \alpha}{(j+1)^{n-i}[(j+1)^m(1+\beta) - (\alpha+\beta)]} z^{j+1}.$$

Proof. Note that $f(z) \in T_j(n,m,\alpha,\beta)$ if and only if $D^i f(z) \in T_j(n-i,m,\alpha,\beta)$ and that

(3.4)
$$D^{i}f(z) = z - \sum_{k=j+1}^{\infty} k^{i}a_{k}z^{k}.$$

Using Theorem 2, we know that

(3.5)
$$(j+1)^{n-i}[(j+1)^m(1+\beta) - (\alpha+\beta)] \sum_{k=j+1}^{\infty} k^i a_k$$
$$\leq \sum_{k=j+1}^{\infty} k^n [k^m(1+\beta) - (\alpha+\beta)] a_k \leq 1 - \alpha$$

that is, that

(3.6)
$$\sum_{k=2}^{\infty} k^{i} a_{k} \leq \frac{1-\alpha}{(j+1)^{n-i}[(j+1)^{m}(1+\beta) - (\alpha+\beta)]}.$$

It follows from (3.4) and (3.6) that

$$(3.7) \quad |D^{i}f(z)| \geq |z| - |z|^{j+1} \sum_{k=j+1}^{\infty} k^{i}a_{k}$$
$$\geq |z| - \frac{1-\alpha}{(j+1)^{n-i}[(j+1)^{m}(1+\beta) - (\alpha+\beta)]} |z|^{j+1}$$

 \sim

and

$$(3.8) |D^{i}f(z)| \leq |z| + |z|^{j+1} \sum_{k=j+1}^{\infty} k^{i}a_{k}$$
$$\leq |z| + \frac{1-\alpha}{(j+1)^{n-i}[(j+1)^{m}(1+\beta) - (\alpha+\beta)]} |z|^{j+1}.$$

Finally, we note that the equalities in (3.1) and (3.2) are attained for the function f(z) defined by

(3.9)
$$D^i f(z) = z - \frac{1-\alpha}{(j+1)^{n-i}[(j+1)^m(1+\beta) - (\alpha+\beta)]} z^{j+1} (z \in U).$$

This completes the proof of Theorem 3.

COROLLARY 2. Suppose that the function f(z) defined by (1.9) is in the class $T_j(n, m, \alpha, \beta)$. Then

(3.10)
$$|f(z)| \ge |z| - \frac{1-\alpha}{(j+1)^n [(j+1)^m (1+\beta) - (\alpha+\beta)]} |z|^{j+1}.$$

and

(3.11)
$$|f(z)| \le |z| + \frac{1-\alpha}{(j+1)^n [(j+1)^m (1+\beta) - (\alpha+\beta)]} |z|^{j+1}.$$

for $z \in U$. The equalities in (3.10) and (3.11) are attained for the function f(z) given by (3.3).

Proof. Taking i = 0 in Theorem 3, we can easily show (3.10) and (3.11).

COROLLARY 3. Suppose that the function f(z) defined by (1.9) is in the class $T_j(n, m, \alpha, \beta)$. Then

(3.12)
$$\left| f'(z) \right| \ge 1 - \frac{1-\alpha}{(j+1)^{n-1}[(j+1)^m(1+\beta) - (\alpha+\beta)]} |z|^j$$

and

(3.13)
$$\left| f'(z) \right| \le 1 + \frac{1-\alpha}{(j+1)^{n-1}[(j+1)^m(1+\beta) - (\alpha+\beta)]} |z|^j$$

for $z \in U$. The equalities in (3.12) and (3.13) are attained for the function f(z) given by (3.3).

Proof. Note that $D^1 f(z) = z f'(z)$. Hence, taking i = 1 in Theorem 3, we have Corollary 3.

4. CONVEX LINEAR COMBINATIONS

In this section, we shall prove that the class $T_j(n, m, \alpha, \beta)$ is closed under convex linear combinations.

THEOREM 4. The class $T_j(n, m, \alpha, \beta)$ is a convex set.

Proof. Let the functions

(4.1)
$$f_{\nu}(z) = z - \sum_{k=j+1}^{\infty} a_{k,\nu} z^k \quad (a_{k,\nu} \ge 0; \ \nu = 1, 2)$$

be in the class $T_j(n, m, \alpha, \beta)$. It is sufficient to show that the function h(z) defined by

(4.2)
$$h(z) = \lambda f_1(z) + (1 - \lambda) f_2(z) \quad (0 \le \lambda \le 1)$$

is also in the class $T_j(n, m, \alpha, \beta)$. Since, for $0 \le \lambda \le 1$,

(4.3)
$$h(z) = z - \sum_{k=j+1}^{\infty} \left\{ \lambda a_{k,1} + (1-\lambda)a_{k,2} \right\} z^k,$$

with the aid of Theorem 2, we have

(4.4)
$$\sum_{k=2}^{\infty} k^n [k^m (1+\beta) - (\alpha+\beta)] \{\lambda a_{k,1} + (1-\lambda)a_{k,2}\} \le 1 - \alpha$$

which implies that $h(z) \in T_j(n, m, \alpha, \beta)$. Hence $T_j(n, m, \alpha, \beta)$ is a convex set.

THEOREM 5. Let $f_j(z) = z$ and

(4.5)
$$f_k(z) = z - \frac{1-\alpha}{k^n [k^m (1+\beta) - (\alpha+\beta)]} z^k \ (k \ge j+1, \ n \in \mathbb{N}_0, \ m \in \mathbb{N}),$$

for $-1 \leq \alpha < 1$ and $\beta \geq 0$. Then f(z) is in the class $T_j(n, m, \alpha, \beta)$ if and only if it can be expressed in the form:

(4.6)
$$f(z) = \sum_{k=j}^{\infty} \lambda_k f_k(z),$$

where $\lambda_k \ge 0$ $(k \ge j)$ and $\sum_{k=j}^{\infty} \lambda_k = 1$.

Proof. Assume that

$$f(z) = \sum_{k=j}^{\infty} \lambda_k f_k(z) = z - \sum_{k=j+1}^{\infty} \frac{1-\alpha}{k^n [k^m (1+\beta) - (\alpha+\beta)]} \lambda_k z^k.$$

Then it follows that

(4.7)
$$\sum_{k=j+1}^{\infty} \frac{k^n [k^m (1+\beta) - (\alpha+\beta)]}{1-\alpha} \frac{1-\alpha}{k^n [k^m (1+\beta) - (\alpha+\beta)]} \lambda_k$$
$$= \sum_{k=j+1}^{\infty} \lambda_k = 1 - \lambda_j \le 1.$$

So by Theorem 2, $f(z) \in T_j(n, m, \alpha, \beta)$. Conversely, assume that the function f(z) defined by (1.9) belongs to the class $T_j(n, m, \alpha, \beta)$. Then

(4.8)
$$a_k \le \frac{1-\alpha}{k^n [k^m (1+\beta) - (\alpha+\beta)]} \quad (k \ge j+1; \ n \in \mathbb{N}_0; \ m \in \mathbb{N}).$$

Setting

(4.9)
$$\lambda_k = \frac{k^n [k^m (1+\beta) - (\alpha+\beta)]}{1-\alpha} a_k \quad (k \ge j+1; \ n \in \mathbb{N}_0; \ m \in \mathbb{N})$$

and

(4.10)
$$\lambda_j = 1 - \sum_{k=j+1}^{\infty} \lambda_k$$

we can see that f(z) can be expressed in the form (4.6). This completes the proof of Theorem 5.

COROLLARY 4. The extreme points of the class $T_j(n, m, \alpha, \beta)$ are the functions $f_k(z)$ $(k \ge j)$ given by Theorem 5.

5. RADII OF CLOSE-TO-CONVEXITY, STARLIKENESS AND CONVEXITY

THEOREM 6. Suppose that the function f(z) defined by (1.9) is in the class $T_j(n, m, \alpha, \beta)$. Then f(z) is close-to-convex of order ρ ($0 \le \rho < 1$) in $|z| < r_1$, where

(5.1)
$$r_1 = r_1(n, m, \alpha, \beta, \rho) = \inf_k \left\{ \frac{(1-\rho)k^{n-1}[k^m(1+\beta) - (\alpha+\beta)]}{1-\alpha} \right\}^{\frac{1}{k-1}},$$

 $(k \ge j+1).$

The result is sharp, the extremal function f(z) being given by (2.5).

Proof. We must show that

$$|f'(z) - 1| \le 1 - \rho$$
 for $|z| < r_1(n, m, \alpha, \beta, \rho),$

-

8

where $r_1(n, m, \alpha, \beta, \rho)$ is given by (5.1). Indeed we find from the definition (1.9) that

$$|f'(z) - 1| \le \sum_{k=j+1}^{\infty} ka_k |z|^{k-1}$$

Thus

$$\left|f'(z) - 1\right| \le 1 - \rho$$

if

(5.2)
$$\sum_{k=2}^{\infty} \left(\frac{k}{1-\rho}\right) a_k \left|z\right|^{k-1} \le 1.$$

But, by Theorem 2, (5.2) will be true if

$$(\frac{k}{1-\rho})|z|^{k-1} \le \frac{k^n[k^m(1+\beta) - (\alpha+\beta)]}{1-\alpha},$$

that is, if

(5.3)
$$|z| \le \left\{ \frac{(1-\rho)k^{n-1}[k^m(1+\beta) - (\alpha+\beta)]}{1-\alpha} \right\}^{\frac{1}{k-1}} \quad (k \ge j+1).$$

Theorem 6 follows easily from (5.3).

THEOREM 7. Suppose that the function f(z) defined by (1.9) is in the class $T_j(n, m, \alpha, \beta)$. Then the function f(z) is starlike of order ρ ($0 \le \rho < 1$) in $|z| < r_2$, where (5.4)

$$r_2 = r_2(n, m, \alpha, \beta, \rho) = \inf_k \left\{ \frac{(1-\rho)k^n [k^m (1+\beta) - (\alpha+\beta)]}{(k-\rho)(1-\alpha)} \right\}^{\frac{1}{k-1}} \quad (k \ge j+1).$$

The result is sharp, with the extremal function f(z) given by (2.5).

Proof. It is sufficient to show that

$$\left|\frac{zf'(z)}{f(z)} - 1\right| \le 1 - \rho \text{ for } |z| < r_2(n, m, \alpha, \beta, \rho),$$

where $r_2(n, m, \alpha, \beta, \rho)$ is given by (5.4). Indeed we find, again from the definition (1.9) that

$$\left|\frac{zf'(z)}{f(z)} - 1\right| \le \frac{\sum_{k=j+1}^{\infty} (k-1)a_k |z|^{k-1}}{1 - \sum_{k=j+1}^{\infty} a_k |z|^{k-1}}$$

Thus

$$\left|\frac{zf'(z)}{f(z)} - 1\right| \le 1 - \rho$$

(5.5)
$$\sum_{k=j+1}^{\infty} \left(\frac{k-\rho}{1-\rho}\right) a_k |z|^{k-1} \le 1.$$

But, by Theorem 2, (5.5) will be true if

$$\left(\frac{k-\rho}{1-\rho}\right)|z|^{k-1} \le \frac{k^n[k^m(1+\beta) - (\alpha+\beta)]}{1-\alpha},$$

that is, if

(5.6)
$$|z| \le \left\{ \frac{(1-\rho)k^n [k^m (1+\beta) - (\alpha+\beta)]}{(1-\alpha)} \right\}^{\frac{1}{k-1}} \quad (k \ge j+1).$$

Theorem 7 follows easily from (5.6).

COROLLARY 5. Suppose that the function f(z) defined by (1.9) is in the class $T_j(n, m, \alpha, \beta)$. Then f(z) is convex of order ρ ($0 \le \rho < 1$) in $|z| < r_3$, where

(5.7)
$$r_3 = r_3(n, m, \alpha, \beta, \rho) = \inf_k \left\{ \frac{(1-\rho)k^{n-1}[k^m(1+\beta) - (\alpha+\beta)]}{(k-\rho)(1-\alpha)} \right\}^{\frac{1}{k-1}}$$

 $(k \ge j+1).$

The result is sharp, with the extremal function f(z) given by (2.5).

6. A FAMILY OF INTEGRAL OPERATORS

THEOREM 8. Suppose that the function f(z) defined by (1.9) is in the class $T_j(n, m, \alpha, \beta)$ and let c be a real number such that c > -1. Then the function F(z) defined by

(6.1)
$$F(z) = \frac{c+1}{z^c} \int_0^z t^{c-1} f(t) dt \quad (c > -1)$$

also belongs to the class $T_j(n, m, \alpha, \beta)$.

Proof. From the representation (6.1) of F(z), it follows that

$$F(z) = z - \sum_{k=j+1}^{\infty} b_k z^k,$$

where

$$b_k = \left(\frac{c+1}{c+k}\right)a_k.$$

Therefore, we have

$$\sum_{k=j+1}^{\infty} k^n [k^m (1+\beta) - (\alpha+\beta)] b_k = \sum_{k=j+1}^{\infty} k^n [k^m (1+\beta) - (\alpha+\beta)] \left(\frac{c+1}{c+k}\right) a_k$$

127

1

$$\leq \sum_{k=j+1}^{\infty} k^n [k^m (1+\beta) - (\alpha+\beta)] a_k \leq 1 - \alpha,$$

since $f(z) \in T_j(n, m, \alpha, \beta)$. Hence, by Theorem 2, $F(z) \in T_j(n, m, \alpha, \beta)$.

THEOREM 9. Let the function $F(z) = z - \sum_{k=j+1}^{\infty} a_k z^k$ $(a_k \ge 0)$ be in the class $T_j(n, m, \alpha, \beta)$, and let c be a real number such that c > -1. Then the function f(z) given by (6.1) is univalent in $|z| < R^*$, where

(6.2)
$$R^* = \inf_k \left\{ \frac{k^{n-1} [k^m (1+\beta) - (\alpha+\beta)](c+1)}{(1-\alpha)(c+k)} \right\}^{\frac{1}{k-1}} \quad (k \ge j+1).$$

The result is sharp.

Proof. Form (6.1), we have

$$f(z) = \frac{z^{1-c}(z^c F(z))'}{c+1} = z - \sum_{k=j+1}^{\infty} \left(\frac{c+k}{c+1}\right) a_k z^k.$$

In order to obtain the required result, it suffices to show that

|f'(z) - 1| < 1 wherever $|z| < R^*$,

where R^* is given by (6.2). Now

$$|f'(z) - 1| \le \sum_{k=j+1}^{\infty} \frac{k(c+k)}{(c+1)} a_k |z|^{k-1}.$$

Thus |f'(z) - 1| < 1 if

(6.3)
$$\sum_{k=j+1}^{\infty} \frac{k(c+k)}{(c+1)} a_k |z|^{k-1} < 1.$$

But Theorem 2 confirms that

(6.4)
$$\sum_{k=j+1}^{\infty} \frac{k^n [k^m (1+\beta) - (\alpha+\beta)]}{1-\alpha} a_k \le 1.$$

Hence (6.3) will be satisfied if

$$\frac{k(c+k)}{(c+1)} |z|^{k-1} < \frac{k^n [k^m (1+\beta) - (\alpha+\beta)]}{1-\alpha},$$

that is , if

(6.5)
$$|z| < \left\{ \frac{k^{n-1} [k^m (1+\beta) - (\alpha+\beta)](c+1)}{(1-\alpha)(c+k)} \right\}^{\frac{1}{k-1}} \quad (k \ge j+1).$$

Therefore, the function f(z) given by (6.1) is univalent in $|z| < R^*$. Sharpness of the result follows if we take

(6.6)
$$f(z) = z - \frac{(1-\alpha)(c+k)}{k^n [k^m (1+\beta) - (\alpha+\beta)](c+1)} z^k \quad (k \ge j+1).$$

7. MODIFIED HADAMARD PRODUCTS

Let the functions $f_{\nu}(z)$ ($\nu = 1, 2$) be defined by (4.1). The modified Hadamard product of $f_1(z)$ and $f_2(z)$ is defined by

(7.1)
$$(f_1 \circledast f_2)(z) = z - \sum_{k=j+1}^{\infty} a_{k,1} a_{k,2} z^k.$$

THEOREM 10. Let each of the functions $f_{\nu}(z)$ ($\nu = 1, 2$) defined by (4.1) be in the class $T_j(n, m, \alpha, \beta)$. Then $(f_1 \circledast f_2)(z) \in T_j(n, m, \delta(j, n, m, \alpha, \beta), \beta)$, where

(7.2)
$$\delta(j,n,m,\alpha,\beta) = 1 - \frac{[(j+1)^m - 1](1+\beta)(1-\alpha)^2}{(j+1)^n[(j+1)^m(1+\beta) - (\alpha+\beta)]^2 - (1-\alpha)^2}.$$

The result is sharp.

Proof. Employing the technique used earlier by Schild and Silverman [17], we need to find the largest $\delta = \delta(j, n, m, \alpha, \beta)$ such that

(7.3)
$$\sum_{k=j+1}^{\infty} \frac{k^n [k^m (1+\beta) - (\delta+\beta)]}{1-\delta} a_{k,1} a_{k,2} \le 1.$$

Since

(7.4)
$$\sum_{k=j+1}^{\infty} \frac{k^n [k^m (1+\beta) - (\alpha+\beta)]}{1-\alpha} a_{k,1} \le 1,$$

and

(7.5)
$$\sum_{k=j+1}^{\infty} \frac{k^n [k^m (1+\beta) - (\alpha+\beta)]}{1-\alpha} a_{k,2} \le 1,$$

by the Cauchy-Schwarz inequality, we have

(7.6)
$$\sum_{k=j+1}^{\infty} \frac{k^n [k^m (1+\beta) - (\alpha+\beta)]}{1-\alpha} \sqrt{a_{k,1} a_{k,2}} \le 1.$$

Thus it is sufficient to show that

$$\frac{k^{n}[k^{m}(1+\beta) - (\delta+\beta)]}{1-\delta}a_{k,1}a_{k,2} \le \frac{k^{n}[k^{m}(1+\beta) - (\alpha+\beta)]}{1-\alpha}\sqrt{a_{k,1}a_{k,2}}$$
(7.7)
$$(k \ge j+1),$$

that is, that

(7.8)
$$\sqrt{a_{k,1}a_{k,2}} \le \frac{[k^m(1+\beta) - (\alpha+\beta)](1-\delta)}{[k^m(1+\beta) - (\delta+\beta)](1-\alpha)} \quad (k \ge j+1).$$

Note that

(7.9)
$$\sqrt{a_{k,1}a_{k,2}} \le \frac{(1-\alpha)}{k^n[k^m(1+\beta) - (\alpha+\beta)](1-\alpha)} \quad (k \ge j+1).$$

Consequently, we need only to prove that

(7.10)
$$\frac{1-\alpha}{k^n[k^m(1+\beta) - (\alpha+\beta)]} \le \frac{[k^m(1+\beta) - (\alpha+\beta)](1-\delta)}{[k^m(1+\beta) - (\delta+\beta)](1-\alpha)} \quad (k \ge j+1),$$

or, equivalently, that

(7.11)
$$\delta \le 1 - \frac{(k^m - 1)(1 + \beta)(1 - \alpha)^2}{k^n [k^m (1 + \beta) - (\alpha + \beta)]^2 - (1 - \alpha)^2} \quad (k \ge j + 1).$$

Since

(7.12)
$$\Phi(k) = 1 - \frac{(k^m - 1)(1 + \beta)(1 - \alpha)^2}{k^n [k^m (1 + \beta) - (\alpha + \beta)]^2 - (1 - \alpha)^2}$$

is an increasing function of $k(k \ge j+1)$, letting k = j+1 in (7.12), we obtain

(7.13)
$$\delta \leq \Phi(j+1) = 1 - \frac{[(j+1)^m - 1](1+\beta)(1-\alpha)^2}{(j+1)^m [(j+1)^m (1+\beta) - (\alpha+\beta)]^2 - (1-\alpha)^2},$$

which proves the main assertion of Theorem 10.

Finally, by taking the functions $f_{\nu}(z)$ ($\nu = 1, 2$) given by

(7.14)
$$f_{\nu}(z) = z - \frac{1-\alpha}{(j+1)^{n}[(j+1)^{m}(1+\beta) - (\alpha+\beta)]} z^{j+1} \quad (\nu = 1, 2),$$

we can see that the result is sharp.

THEOREM 11. Suppose that the function $f_1(z)$ defined by (4.1) is in the class $T_j(n, m, \alpha, \beta)$, and the function $f_2(z)$ defined by (4.1) is in the class $T_j(n, m, \gamma, \beta)$. Then $(f_1 \circledast f_2)(z) \in T_j(n, m, \xi(j, n, m, \alpha, \gamma, \beta), \beta)$, where

(7.15)
$$\begin{aligned} \xi(j,n,m,\alpha,\gamma,\beta) &= 1 \\ -[(j+1)^m - 1](1+\beta)(1-\alpha)(1-\gamma) \\ \times \{(j+1)^n [(j+1)^m (1+\beta) \\ -(\alpha+\beta)][(j+1)^m (1+\beta) - (\gamma+\beta)] - (1-\alpha)(1-\gamma)\}^{-1}. \end{aligned}$$

The result is the best possible for the functions

(7.16)
$$f_1(z) = z - \frac{1-\alpha}{(j+1)^n [(j+1)^m (1+\beta) - (\alpha+\beta)]} z^{j+1}$$

and

(7.17)
$$f_2(z) = z - \frac{1 - \gamma}{(j+1)^n [(j+1)^m (1+\beta) - (\gamma+\beta)]} z^{j+1}.$$

Proof. Proceeding as in the proof of Theorem 10, we get

$$\xi \le 1 - \frac{(k^m - 1)(1 + \beta)(1 - \alpha)(1 - \gamma)}{k^n [k^m (1 + \beta) - (\alpha + \beta)] [k^m (1 + \beta) - (\gamma + \beta)] - (1 - \alpha)(1 - \gamma)}$$

$$(7.18) (k \ge j+1).$$

Since the right-hand side of (7.18) is an increasing function of k, setting k = j + 1 in (7.18), we obtain (7.15). This completes the proof of Theorem 11.

COROLLARY 6. Let the functions $f_{\nu}(z)$ ($\nu = 1, 2, 3$) defined by (4.1) be in the class $T_j(n, m, \alpha, \beta)$. Then $(f_1 \circledast f_2 \circledast f_3)(z)$ belongs to the class $T_j(n, m, \zeta(j, n, m, \alpha, \beta), \beta)$, where (7.19)

$$\zeta(j,n,m,\alpha,\beta) = 1 - \frac{[(j+1)^m - 1](1+\beta)(1-\alpha)^3}{(j+1)^{2n}[(j+1)^m(1+\beta) - (\alpha+\beta)]^3 - (1-\alpha)^3}.$$

The result is the best possible for the functions $f_{\nu}(z)$ ($\nu = 1, 2, 3$) given by

(7.20)
$$f_{\nu}(z) = z - \frac{1-\alpha}{(j+1)^n [(j+1)^m (1+\beta) - (\alpha+\beta)]} z^{j+1} \quad (\nu = 1, 2, 3).$$

Proof. From Theorem 10, we have $(f_1 \circledast f_2)(z) \in T_j(n, m, \delta(j, n, m, \alpha, \beta), \beta)$, where δ is given by (7.2). Now, using Theorem 11, we get $(f_1 \circledast f_2 \circledast f_3)(z) \in T_j(n, m, \zeta(j, n, m, \alpha, \beta), \beta)$, where

$$\zeta(j,n,m,\alpha,\beta) = 1 - \frac{[(j+1)^m - 1](1+\beta)(1-\alpha)^3}{(j+1)^{2n}[(j+1)^m(1+\beta) - (\alpha+\beta)]^3 - (1-\alpha)^3}$$

This completes the proof of Corollary 6.

THEOREM 12. Let the functions $f_{\nu}(z)$ ($\nu = 1, 2$) defined by (4.1) be in the class $T_j(n, m, \alpha, \beta)$. Then the function

(7.21)
$$h(z) = z - \sum_{k=j+1}^{\infty} (a_{k,1}^2 + a_{k,2}^2) z^k$$

belongs to the class $T_j(n, m, \tau(j, n, m, \alpha, \beta), \beta)$, where

(7.22)
$$\tau(j,n,m,\alpha,\beta) = 1 - \frac{2[(j+1)^m - 1](1+\beta)(1-\alpha)^2}{(j+1)^m [(j+1)^m (1+\beta)(\alpha+\beta)]^2 - 2(1-\alpha)^2}$$

The result is sharp for the functions $f_{\nu}(z)$ ($\nu = 1, 2$) defined by (7.14).

Proof. By virtue of Theorem 2, we obtain

$$\sum_{k=j+1}^{\infty} \left\{ \frac{k^n [k^m (1+\beta) - (\alpha+\beta)]}{1-\alpha} \right\}^2 a_{k,1}^2$$

(7.23)
$$\leq \left\{ \sum_{k=j+1}^{\infty} \frac{k^n [k^m (1+\beta) - (\alpha+\beta)]}{1-\alpha} a_{k,1} \right\}^2 \leq 1$$

and

$$\sum_{k=j+1}^{\infty} \left\{ \frac{k^n [k^m (1+\beta) - (\alpha+\beta)]}{1-\alpha} \right\}^2 a_{k,2}^2$$

(7.24)
$$\leq \left\{ \sum_{k=j+1}^{\infty} \frac{k^n [k^m (1+\beta) - (\alpha+\beta)]}{1-\alpha} a_{k,2} \right\}^2 \leq 1.$$

It follows from (7.23) and (7.24) that

(7.25)
$$\sum_{k=j+1}^{\infty} \frac{1}{2} \left\{ \frac{k^n [k^m (1+\beta) - (\alpha+\beta)]}{1-\alpha} \right\}^2 \left(a_{k,1}^2 + a_{k,2}^2 \right) \le 1.$$

Therefore, we need to find the largest $\tau = \tau(j, n, m, \alpha, \beta)$ such that (7.26)

$$\frac{k^n [k^m (1+\beta) - (\tau+\beta)]}{1-\tau} \le \frac{1}{2} \left\{ \frac{k^n [k^m (1+\beta) - (\alpha+\beta)]}{1-\alpha} \right\}^2 \quad (k \ge j+1),$$

that is,

(7.27)
$$\tau \le 1 - \frac{2(k^m - 1)(1 + \beta)(1 - \alpha)^2}{k^n [k^m (1 + \beta) - (\alpha + \beta)]^2 - 2(1 - \alpha)^2} (k \ge j + 1).$$

Since

(7.28)
$$D(k) = 1 - \frac{2(k^m - 1)(1 + \beta)(1 - \alpha)^2}{k^n [k^m (1 + \beta) - (\alpha + \beta)]^2 - 2(1 - \alpha)^2}$$

is an increasing function of $k(k \geq j+1), \text{we readily have}$

(7.29)
$$\tau \le D(j+1) = 1 - \frac{2[(j+1)^m - 1](1+\beta)(1-\alpha)^2}{(j+1)^n[(j+1)^m(1+\beta) - (\alpha+\beta)]^2 - 2(1-\alpha)^2},$$

and Theorem 12 follows at once.

8. APPLICATIONS OF FRACTIONAL CALCULUS

We begin with the statements of the following definitions of fractional calculus (that is, fractional derivative and fractional integral) which were defined by Owa [12].

DEFINITION 1. The fractional integral of order μ is defined, for a function f(z), by

(8.1)
$$D_z^{-\mu} f(z) = \frac{1}{\Gamma(\mu)} \int_0^z \frac{f(\zeta)}{(z-\zeta)^{1-\mu}} d\zeta(\mu>0),$$

DEFINITION 2. The fractional derivative of order μ is defined , for a function f(z) , by

(8.2)
$$D_{z}^{\mu}f(z) = \frac{1}{\Gamma(\mu)} \frac{d}{dz} \int_{0}^{z} \frac{f(\zeta)}{(z-\zeta)^{\mu}} d\zeta \quad (0 \le \mu < 1),$$

where f(z) is constrained, and the multiplicity of $(z - \zeta)^{-\mu}$ is removed, as in Definition 1.

DEFINITION 3. Under the hypotheses of Definition 2, the fractional derivative of order $n + \mu$ is defined by

(8.3)
$$D_z^{n+\mu}f(z) = \frac{d^n}{dz^n} D_z^{\mu}f(z) \quad (0 \le \mu < 1; \ n \in \mathbb{N}_0)$$

THEOREM 13. Suppose that the function f(z) defined by (1.9) is in the class $T_j(n, m, \alpha, \beta)$. Then

$$(8.4) |D_z^{-\mu}(D^i f(z))| \\ \ge \frac{|z|^{1+\mu}}{\Gamma(2+\mu)} \left\{ 1 - \frac{(1-\alpha)\Gamma(j+2)\Gamma(2+\mu)}{(j+1)^{n-i}[(j+1)^m(1+\beta) - (\alpha+\beta)]\Gamma(j+2+\mu)} |z|^j \right\}$$

and

$$(8.5) \left| D_z^{-\mu}(D^i f(z)) \right| \\ \leq \frac{|z|^{1+\mu}}{\Gamma(2+2\mu)} \left\{ 1 + \frac{(1-\alpha)\Gamma(j+2)\Gamma(2+\mu)}{(j+1)^{n-i}[(j+1)^m(1+\beta) - (\alpha+\beta)]\Gamma(j+2+\mu)} \, |z|^j \right\} \\ (\mu > 0 \ ; \ 0 \le i \le n \ ; \ z \in U).$$

The result is sharp

Proof. Let

$$(8.6)F(z) = \Gamma(2+\mu)z^{-\mu}D_z^{-\mu}(D^if(z)) = z - \sum_{k=j+1}^{\infty} \frac{\Gamma(k+1)\Gamma(2+\mu)}{\Gamma(k+1+\mu)}k^i a_k z^k = z - \sum_{k=j+1}^{\infty} \Psi(k)k^i a_k z^k,$$

where

(8.7)
$$\Psi(k) = \frac{\Gamma(k+1)\Gamma(2+\mu)}{\Gamma(k+1+\mu)} \quad (k \ge j+1).$$

Since

(8.8)
$$0 < \Psi(k) \le \Psi(j+1) = \frac{\Gamma(j+2)\Gamma(2+\mu)}{\Gamma(j+2+\mu)},$$

Therefore, by using (3.6) and (8.8), we see that

(8.9)
$$|F(z)| \ge |z| - \Psi(j+1) |z|^{j+1} \sum_{k=j+1}^{\infty} k^i a_k$$

 $\ge |z| - \frac{(1-\alpha)\Gamma(j+2)\Gamma(2+\mu)}{(j+1)^{n-i}[(j+1)^m(1+\beta) - (\alpha+\beta)]\Gamma(j+2+\mu)} |z|^{j+1}$

and

(8.10)
$$|F(z)| \le |z| + \Psi(j+1) |z|^{j+1} \sum_{k=j+1}^{\infty} k^i a_k$$

 $\ge |z| + \frac{(1-\alpha)\Gamma(j+2)\Gamma(2+\mu)}{(j+1)^{n-i}[(j+1)^m(1+\beta) - (\alpha+\beta)]\Gamma(j+2+\mu)} |z|^{j+1},$

which proves the inequalities (8.4) and (8.5) of Theorem 13. The equalities in (8.4) and (8.5) are attained for the function f(z) given by

(8.11)
$$D_{z}^{-\mu}(D^{i}f(z)) = \frac{z^{1+\mu}}{\Gamma(2+\mu)} \left\{ 1 - \frac{(1-\alpha)\Gamma(j+2)\Gamma(2+\mu)}{(j+1)^{n-i}[(j+1)^{m}(1+\beta) - (\alpha+\beta)]\Gamma(j+2+\mu)} z^{j} \right\}$$

or , equivalently , by

(8.12)
$$D^{i}f(z) = z - \frac{(1-\alpha)}{(j+1)^{n-i}[(j+1)^{m}(1+\beta) - (\alpha+\beta)]} z^{j+1}.$$

Thus we complete the proof of Theorem 13 .

Taking i = 0 in Theorem 13, we have

COROLLARY 7. Suppose that the function f(z) defined by (1.9) is in the class $T_j(n, m, \alpha, \beta)$. Then

(8.13)
$$|D_z^{-\mu} f(z)| \ge \frac{|z|^{1+\mu}}{\Gamma(2+\mu)}$$

 $\times \left\{ 1 - \frac{(1-\alpha)\Gamma(j+2)\Gamma(2+\mu)}{(j+1)^n[(j+1)^m(1+\beta) - (\alpha+\beta)]\Gamma(j+2+\mu)} |z|^j \right\}$

and

(8.14)
$$|D_z^{-\mu} f(z)| \leq \frac{|z|^{1+\mu}}{\Gamma(2+\mu)} \\ \times \left\{ 1 + \frac{(1-\alpha)\Gamma(j+2)\Gamma(2+\mu)}{(j+1)^n[(j+1)^m(1+\beta) - (\alpha+\beta)]\Gamma(j+2+\mu)} |z|^j \right\} \\ (\mu > 0 \ ; \ z \in U).$$

The equalities in (8.13) and (8.14) are attained for the function f(z) given by (3.3).

REMARK 1. We note that the results obtained by Rosy and Murugusundarmoothy [14, Theorem 4 and Corollary 2] are not correct. The correct results are given by Theorem 13 and Corollary 7 after putting j = m = 1.

THEOREM 14. Suppose that the function f(z) defined by (1.9) is in the class $T_j(n, m, \alpha, \beta)$. Then

(8.15)
$$|D_z^{-\mu}(D^i f(z))| \ge \frac{|z|^{1-\mu}}{\Gamma(2-\mu)} \\ \left\{ 1 - \frac{(1-\alpha)\Gamma(j+2)\Gamma(2-\mu)}{(j+1)^{n-i}[(j+1)^m(1+\beta) - (\alpha+\beta)]\Gamma(j+2+\mu)} \, |z|^j \right\}$$

and

(8.16)
$$|D_z^{-\mu}(D^i f(z))| \leq \frac{|z|^{1-\mu}}{\Gamma(2-\mu)} \\ \left\{ 1 + \frac{(1-\alpha)\Gamma(j+2)\Gamma(2-\mu)}{(j+1)^{n-i}[(j+1)^m(1+\beta) - (\alpha+\beta)]\Gamma(j+2+\mu)} |z|^j \right\} \\ (0 \leq \mu < 1; \ 0 \leq i \leq n-1; \ z \in U).$$

The result is sharp.

Proof. Let

(8.17)
$$G(z) = \Gamma(2-\mu)z^{\mu}D_{z}^{\mu}(D^{i}f(z)) = z - \sum_{k=j+1}^{\infty} \frac{\Gamma(k+1)\Gamma(2+\mu)}{\Gamma(k+1+\mu)}k^{i}a_{k}z^{k}$$
$$= z - \sum_{k=j+1}^{\infty} \theta(k)k^{i+1}a_{k}z^{k},$$

where

(8.18)
$$\theta(k) = \frac{\Gamma(k+1)\Gamma(2+\mu)}{\Gamma(k+1+\mu)} (k \ge j+1).$$

It is easily seen from (8.18) that

(8.19)
$$0 < \theta(k) \le \theta(j+1) = \frac{\Gamma(j+1)\Gamma(2-\mu)}{\Gamma(j+2-\mu)}.$$

Consequently, with the aid of (3.6) and (8.19), we have

(8.20)
$$|G(z)| \ge |z| - \theta(j+1) |z|^{j+1} \sum_{k=j+1}^{\infty} k^{i+1} a_k$$

 $\ge |z| - \frac{(1-\alpha)\Gamma(j+2)\Gamma(2-\mu)}{(j+1)^{n-i}[(j+1)^m(1+\beta) - (\alpha+\beta)]\Gamma(j+2+\mu)} |z|^{j+1}$

and

(8.21)
$$|G(z)| \le |z| + \theta(j+1) |z|^{j+1} \sum_{k=j+1}^{\infty} k^{i+1} a_k$$

 $\le |z| + \frac{(1-\alpha)\Gamma(j+2)\Gamma(2-\mu)}{(j+1)^{n-i}[(j+1)^m(1+\beta) - (\alpha+\beta)]\Gamma(j+2+\mu)} |z|^{j+1}.$

Now (8.15) and (8.16) follows from (8.20) and (8.21), respectively.

Since the equalities in (8.15) and (8.16) are attained for the function f(z) given by

(8.22)
$$\left| D_{z}^{\mu}(D^{i}f(z)) \right| \leq \frac{|z|^{1-\mu}}{\Gamma(2-\mu)} \times \left\{ 1 - \frac{(1-\alpha)\Gamma(j+2)\Gamma(2-\mu)}{(j+1)^{n-i}[(j+1)^{m}(1+\beta) - (\alpha+\beta)]\Gamma(j+2+\mu)} |z|^{j} \right\}$$

or for the function $D^i f(z)$ given by (8.12), the proof of Theorem 14 is thus completed

Taking i = 0 in Theorem 14, we have

COROLLARY 8. Suppose that the function f(z) defined by (1.9) is in the class $T_j(n, m, \alpha, \beta)$. Then

(8.23)
$$|D_z^{\mu} f(z)| \ge \frac{|z|^{1-\mu}}{\Gamma(2-\mu)}$$

 $\times \left\{ 1 - \frac{(1-\alpha)\Gamma(j+2)\Gamma(2-\mu)}{(j+1)^{n-i}[(j+1)^m(1+\beta) - (\alpha+\beta)]\Gamma(j+2-\mu)} |z|^j \right\}$

and

$$(8.24) \qquad |D_z^{\mu} f(z)| \le \frac{|z|^{1-\mu}}{\Gamma(2-\mu)} \\ \left\{ 1 + \frac{(1-\alpha)\Gamma(j+2)\Gamma(2-\mu)}{(j+1)^{n-i}[(j+1)^m(1+\beta) - (\alpha+\beta)]\Gamma(j+2+\mu)} \, |z|^j \right\} \\ (0 \le \mu < 1 \ ; \ z \in U).$$

The equalities in (8.23) and (8.24) are attained for the function f(z) given by (3.3).

REMARK 2. We note that the results obtained by Rosy and Murugusundarmoothy [14, Theorem 5 and Corollary 3] are not correct. The correct results are given by Theorem 14 and Corollary 8, respectively, after putting j = m = 1.

REFERENCES

- BUSENBERG, S.N., FISCHER, D.C. and MARTELLI, M., Better Bounds for Periodic Solutions of Differential Equations in Banach Spaces, Proc. Amer. Math. Soc., 98 (1986), 376–378.
- [2] AOUF, M. K., Neighborhoods of certain classes of analytic functions with negative coefficients, Internat. J. Math. Math. Sci. Vol. 2006, Article ID, 38258, 1–6.
- [3] AOUF, M. K., DARWISH, H. E. and ATTIYA, A. A., Generalization of certain subclasses of analytic functions with negative coefficients, Studia Univ. Babes-Bolyai, Math. 45 (2000), no.1, 11–22.
- [4] AOUF, M. K., HOSSEN, H. M. and LASHIN, A. Y., On certain families of analytic function with negative coefficients, Indian J. Pure Appl. Math. **31** (2000), no.8, 999– 1015.
- [5] CHATTERJEA, S. K., On starlike functions, J. Pure Math.1 (1981), 23-26.
- [6] DIXIT, K. K., PATHAK, A. L., A new subclass of analytic functions defined by Salagean operator, Indian J. Pure Appl. Math. 37 (2006).
- [7] HOSSEN, H.M., SALAGEAN, G. S. and AOUF, M. K., Notes on certain classes of analytic functions with negative coefficients, Mathematica (Cluj) 39 (62) (1997), no.2, 165–179.
- [8] HUR, M. D. and OH, G. H., On certain class of analytic functions with negative coefficients, Pusan Kyongnam Math. J. 5 (1989), 69–80.
- [9] KANAS, S. and WISNIOWSKA, A., Conic regions and starlike functions, Rev. Roum. Math. Pures Appl. Math. Soc. 45 (2000), no.4, 647–657.
- [10] KANAS, S. and WISNIOWSKA, A., Conic regions and k-uniformly convexity, J. Comput. Appl. Math. 105 (1999), 327–336.
- [11] MA, W. and MINDA, D., Uniformly convex functions, Ann. Polon. Math. 57 (1992), 165–175.
- [12] OWA, S., On the distortion theorems. I, Kyungpook Math. J. 18 (1978), 53–59.
- [13] RONNING, F., Uniformly convex functions with a corresponding class of starlike functions, Proc. Amer. Math. Soc. 118 (1993), no.1, 190–196.
- [14] RONNING, F., On starlike functions associated with parabolic regions, Ann. Univ Mariae Curie - Sklodowska Sect. A 45 (1991), 117–122.
- [15] ROSY, T. and MURUGUSUNDARNOORTHY, G., Fractional calculus and their appliciations to certain subclass of uniformly convex functions, Far East J. Math. Sci. (FJMS) 15 (2004), no.2, 231–242.
- [16] SALAGEAN, G. S., Subclasses of univalent functions, Lecture Notes in Math., Springer - Verlag, 1013 (1983), 362–372.
- [17] SCHILD, A. and SILVERMAN, H., Convolution of univalent functions with negative coefficients, Ann. Univ. Mariae Curie - Sklodowska Sect. A 45 (1991), 117–122.
- [18] SEKINE, T., Generalization of certain subclasses of analytic functions, Internat J. Math. Math. Sci. 10 (1987), no.4, 725–732.
- [19] SILVERMAN, H., Univalent functions with negative cofficients, Proc. Amer. Math. Soc. 51 (1975), 109–116.
- [20] SRIVASTAVA, H. M., OWA, S. and CHATTERJEA, S. K., A note on certain classes of starlike functions, Rend. Sem. Mat. Univ. Padova 77 (1987), 115–124.

Received December 12, 2007

Mansoura University Faculty of Science, Department of Mathematics 35516 Mansoura, Egypt E-mail: mkaouf127@yahoo.com

"Babeş-Bolyai" University Faculty of Mathematics and Computer Science Str. Mihail Kogălniceanu Nr. 1 400084 Cluj-Napoca, Romania E-mail: salagean@math.ubbcluj.ro