ON THE HALL PRODUCT OF PREINJECTIVE KRONECKER MODULES

CSABA SZÁNTÓ

Abstract

Using some results on the Hall algebra of the Kronecker algebra $k K$ over the finite field k, we describe the Hall product of a finite number of isoclasses of preinjective indecomposable Kronecker modules. More precisely, we will characterize those isoclasses which appear with nonzero coefficient in the previously mentioned Hall product. A dual statement can be formulated also for preprojective modules.

MSC 2000. 16G20.
Key words. Kronecker algebra, Hall algebra, preinjective modules.

1. PRELIMINARIES

Let $K: 1 \underset{\beta}{\stackrel{\alpha}{\leftrightarrows}} 2$ be the Kronecker quiver and k a finite field with $|k|=q$.
We will consider the path algebra $k K$ of K over k (called Kronecker algebra) and the category mod- $k K$ of finite right modules over $k K$ which is equivalent with the category of finite dimensional representations over k of the quiver K. For $M \in \bmod -k K$ we will denote by $[M]$ the isomorphism class of M.

It is well known (see for example [1] or [2]) that up to isomorphism the indecomposables in mod- $k K$ are of three types: preinjectives, preprojectives and regulars. The preinjective indecomposables (seen as representations) up to isomorphism have the form $I_{n}: k^{n} \stackrel{(0 I)}{\leftrightarrows} k^{n+1}$.

A module with all its indecomposable direct summands preinjective will be called preinjective module and denoted by I.

The Hall algebra $\mathcal{H}(k K, \mathbb{Q})$ associated to the Kronecker algebra $k K$ is the free \mathbb{Q}-space having as basis the isomorphism classes in mod- $k K$ together with a multiplication defined by $\left[N_{1}\right]\left[N_{2}\right]=\sum_{[M]} F_{N_{1} N_{2}}^{M}[M]$, where the structure constants $F_{N_{1} N_{2}}^{M}=\left|\left\{M \supseteq U \mid U \cong N_{2}, M / U \cong N_{1}\right\}\right|$ are called Hall numbers.

More generally for $M, N_{1}, \ldots, N_{t} \in \bmod -k K$ we can define

$$
F_{N_{1} \ldots N_{t}}^{M}=\left|\left\{M=M_{0} \supseteq M_{1} \supseteq \cdots \supseteq M_{t}=0 \mid M_{i-1} / M_{i} \cong N_{i}, \forall 1 \leq i \leq t\right\}\right| .
$$

If $F_{N_{1} \ldots N_{t}}^{M} \neq 0$ then we will use the notation $[M] \in\left\{\left[N_{1}\right] \ldots\left[N_{t}\right]\right\}$ and call $[M]$ a term in $\left[N_{1}\right] \ldots\left[N_{t}\right],\left\{\left[N_{1}\right] \ldots\left[N_{t}\right]\right\}$ denoting the set of all terms in $\left[N_{1}\right] \ldots\left[N_{t}\right]$. So if every term in $\left[N_{1}\right] \ldots\left[N_{t}\right]$ is also a term in $\left[M_{1}\right] \ldots\left[M_{s}\right]$, then we will denote this by $\left\{\left[N_{1}\right] \ldots\left[N_{t}\right]\right\} \subseteq\left\{\left[M_{1}\right] \ldots\left[M_{s}\right]\right\}$.

Our aim is to determine the terms of $\left[I_{a_{1}}\right] \ldots\left[I_{a_{n}}\right]$, where $a_{i} \in \mathbb{N}$. Due to the associativity of the Hall algebra we have

$$
\sum_{[N]} F_{N_{1} N}^{M} F_{N_{2} N_{3}}^{N}=F_{N_{1} N_{2} N_{3}}^{M}=\sum_{[N]} F_{N_{1} N_{2}}^{N} F_{N N_{3}}^{M} .
$$

Using all the definitions and properties above we can easily see
Lemma 1. a) $[M] \in\left\{[N]\left[N_{3}\right]\right\}$ and $[N] \in\left\{\left[N_{1}\right]\left[N_{2}\right]\right\}$ implies $[M] \in$ $\left\{\left[N_{1}\right]\left[N_{2}\right]\left[N_{3}\right]\right\}$.
b) $[M] \in\left\{\left[N_{1}\right][N]\right\}$ and $[N] \in\left\{\left[N_{2}\right]\left[N_{3}\right]\right\}$ implies $[M] \in\left\{\left[N_{1}\right]\left[N_{2}\right]\left[N_{3}\right]\right\}$.
c) $\left\{\left[N_{1}\right] \ldots\left[N_{t}\right]\right\} \subseteq\left\{\left[M_{1}\right] \ldots\left[M_{s}\right]\right\}$ implies $\left\{[N]\left[N_{1}\right] \ldots\left[N_{t}\right]\right\} \subseteq$ $\left\{[N]\left[M_{1}\right] \ldots\left[M_{s}\right]\right\}$ and $\left\{\left[N_{1}\right] \ldots\left[N_{t}\right][N]\right\} \subseteq\left\{\left[M_{1}\right] \ldots\left[M_{s}\right][N]\right\}$

In \mathbb{Z}^{n} we define the following ordering: for $a=\left(a_{1}, \ldots a_{n}\right), b=\left(b_{1}, \ldots, b_{n}\right) \in$ \mathbb{Z}^{n} let $a \unlhd b$ iff $a_{1} \leq b_{1}, a_{1}+a_{2} \leq b_{1}+b_{2}, \ldots, a_{1}+\cdots+a_{n-1} \leq b_{1}+\cdots+b_{n-1}$ and $a_{1}+\ldots+a_{n}=b_{1}+\cdots+b_{n}$. The operator w will arrange the components of any element in \mathbb{Z}^{n} in decreasing order and for $1 \leq i<j \leq n$ and $k \in \mathbb{N}^{*}$ we define the operator

$$
R_{i, j}^{k}\left(a_{1}, \ldots, a_{n}\right)=\left(a_{1}, \ldots, a_{i}-k, \ldots, a_{j}+k, \ldots, a_{n}\right)
$$

Lemma 2. Let $a_{1} \geq \cdots \geq a_{n} \geq 0$ and $k \in \mathbb{N}^{*}$ such that $a_{i}-k \geq a_{j}+k$. Then $w R_{i, j}^{k}\left(a_{1}, \ldots, a_{n}\right) \unlhd\left(a_{1}, \ldots, a_{n}\right)$.

Proof. We will use induction on k. For $k=1$ suppose that $a_{i}=a$ and $a_{j}=d$, so $\left(a_{1}, \ldots, a_{i}, \ldots, a_{j}, \ldots, a_{n}\right)$ will have the form $(\ldots, a, \ldots, a, a, b, \ldots, b, \ldots, c, \ldots, c, d, d, \ldots, d, \ldots$.$) , where a-1 \geq b \geq c \geq$ $d+1$. This means that under our assumptions $w R_{i, j}^{1}\left(a_{1}, \ldots, a_{n}\right)$ will have the form ($\ldots, a, \ldots, a, a-1, b, \ldots, b, \ldots, c, \ldots, c, d+1, d, \ldots, d, \ldots$) so in this case we are clearly done. Suppose now, that $k>1$ and the lemma is true for $k-1$. Observe that

$$
w R_{i, j}^{k}\left(a_{1}, \ldots, a_{n}\right)=w R_{i_{0}, j_{0}}^{1} w R_{i, j}^{k-1}\left(a_{1}, \ldots, a_{n}\right),
$$

where $w R_{i, j}^{k-1}\left(a_{1}, \ldots, a_{n}\right)=\left(b_{1}, \ldots, b_{n}\right), b_{i_{0}}=a_{i}-k+1$ and $b_{j_{0}}=a_{j}+$ $k-1$, so we obtain $w R_{i, j}^{k}\left(a_{1}, \ldots, a_{n}\right)=w R_{i_{0}, j_{0}}^{1}\left(b_{1}, \ldots, b_{n}\right) \unlhd\left(b_{1}, \ldots, b_{n}\right)=$ $w R_{i, j}^{k-1}\left(a_{1}, \ldots, a_{n}\right) \unlhd\left(a_{1}, \ldots, a_{n}\right)$.

2. THE HALL PRODUCT OF PREINJECTIVES

We start from some formulas obtained by the author in [3] expressing the Hall product of two indecomposable preinjectives:

- $\left[I_{i}\right]\left[I_{j}\right]=\left[I_{i} \oplus I_{j}\right]$ for $i>j$,
- $\left[I_{i}\right]\left[I_{j}\right]=q^{j-i+1}\left[I_{j} \oplus I_{i}\right]+\left(q^{j-i+1}-q^{j-i-1}\right) \sum_{u=1}^{\left[\frac{i-i}{2}\right]}\left[I_{j-u} \oplus I_{i+u}\right]$ for $i<j$.

We also know (see [3]):

$$
\left[u I_{i}\right]\left[v I_{i}\right]=\frac{\left(q^{u+v}-1\right) \ldots\left(q^{u+1}-1\right)}{\left(q^{v}-1\right) \ldots(q-1)}\left[(u+v) I_{i}\right] .
$$

Using the formulas above one easily gets the following lemma
Lemma 3. a) For $i \geq j$ we have $[M] \in\left\{\left[I_{i}\right]\left[I_{j}\right]\right\} \Leftrightarrow[M]=\left[I_{i} \oplus I_{j}\right]$.
b) For $i<j$ we have $[M] \in\left\{\left[I_{i}\right]\left[I_{j}\right]\right\} \Leftrightarrow[M]=\left[I_{j} \oplus I_{i}\right]$ or $\left[I_{j-1} \oplus I_{i+1}\right]$ or \ldots or $\left[I_{j-\left[\frac{j-i}{2}\right]} \oplus I_{i+\left[\frac{j-i}{2}\right]}\right]$.

Now we are ready to determine the terms in a product of the form $\left[I_{a_{n}}\right] \ldots\left[I_{a_{1}}\right]$ denoted here for simplicity also by $\left[a_{1}, \ldots, a_{n}\right]$.

Lemma 4. Suppose $c_{1} \geq \cdots \geq c_{n} \geq 0$ and $\sigma \in S_{n}$. Then

$$
\left\{\left[I_{c_{\sigma(n)}}\right] \ldots\left[I_{c_{\sigma(1)}}\right]\right\} \subseteq\left\{\left[I_{c_{n}}\right] \ldots\left[I_{c_{1}}\right]\right\}
$$

Proof. Using the notation above, we will need to prove that $\left\{\left[c_{\sigma(1)}, \ldots, c_{\sigma(n)}\right]\right\} \subseteq\left\{\left[c_{1}, \ldots, c_{n}\right]\right\}$. Since by Lemma 2.1. we have

$$
\left\{\left[a_{1}, \ldots, a_{i-1}, a_{i+1}, a_{i}, a_{i+2}, \ldots, a_{n}\right]\right\} \subseteq\left\{\left[a_{1}, \ldots, a_{n}\right]\right\} \text { for } a_{i} \geq a_{i+1}
$$

denoting $\left[a_{1}, \ldots a_{i-1}, a_{j}, a_{i}, a_{i+1}, \ldots, a_{j-1}, a_{j+1}, \ldots, a_{n}\right]$ by $R_{i, j}\left[a_{1}, \ldots, a_{n}\right]$ after a finite number of steps we obtain that

$$
\left\{R_{i, j}\left[a_{1}, \ldots, a_{n}\right]\right\} \subseteq\left\{\left[a_{1}, \ldots, a_{n}\right]\right\} \text { for } i<j \text { and } a_{i} \geq a_{i+1} \geq \cdots \geq a_{j-1} \geq a_{j}
$$

Then the inclusion

$$
\left\{R_{\sigma(1), 1} \ldots R_{\sigma(n), n}\left[c_{1}, \ldots, c_{n}\right]=\left[c_{\sigma(1)}, \ldots, c_{\sigma(n)}\right]\right\} \subseteq\left\{\left[c_{1}, \ldots, c_{n}\right]\right\}
$$

easily follows.
Theorem 1. Suppose $c_{1} \geq \cdots \geq c_{n} \geq 0$. Then $[M] \in\left\{\left[I_{c_{n}}\right] \ldots\left[I_{c_{1}}\right]\right\}$ if and only if $[M]=\left[I_{d_{1}} \oplus \cdots \oplus I_{d_{n}}\right]$ with $d_{1} \geq \cdots \geq d_{n} \geq 0$ and $\left(d_{1}, \ldots, d_{n}\right) \unlhd$ $\left(c_{1}, \ldots, c_{n}\right)$.

Proof. " \Rightarrow " We will use lexicographical induction on $\left(c_{1}, \ldots, c_{n}\right) \in \mathbb{N}^{n}$ with $c_{1} \geq \cdots \geq c_{n} \geq 0$ and $c_{1}+\cdots+c_{n}=m$ fixed. One can easily see that the smallest such sequence will have the form $(a, \ldots, a, b, \ldots, b)$, where $a=b$ or $a=b+1$, so in this case the only term in $\left[I_{b}\right] \ldots\left[I_{b}\right]\left[I_{a}\right] \ldots\left[I_{a}\right]$ will be $\left[I_{a} \oplus \cdots \oplus I_{a} \oplus I_{b} \oplus \cdots \oplus I_{b}\right]$. In general observe that

$$
\begin{gathered}
\left\{\left[c_{1}, \ldots, c_{n}\right]\right\}=\left\{\left[I_{c_{1}} \oplus \cdots \oplus I_{c_{n}}\right]\right\} \\
\cup\left(\bigcup_{i<j, k=1,\left[\frac{c_{i}-c_{j}}{2}\right]}\left\{\left[c_{i+1}, \ldots, c_{j}+k, c_{i}-k, c_{j+1}, \ldots, c_{n}, c_{i-1}, \ldots, c_{1}\right]\right\}\right),
\end{gathered}
$$

so using the previous lemma we obtain that

$$
\left\{\left[c_{1}, \ldots, c_{n}\right]\right\} \subseteq\left\{\left[I_{c_{1}} \oplus \cdots \oplus I_{c_{n}}\right]\right\} \cup\left(\bigcup_{i<j, k=1,\left[\frac{c_{i}-c_{j}}{2}\right]}\left\{\left[w R_{i, j}^{k}\left(c_{1}, \ldots, c_{n}\right)\right]\right\}\right) .
$$

Now we use lemma 1.2. and the induction hypothesis.
" \Leftarrow " Let $c_{1} \geq \cdots \geq c_{n} \geq 0$ and $d_{1} \geq \cdots \geq d_{n} \geq 0$ such that $\left(d_{1}, \ldots, d_{n}\right) \triangleleft$ $\left(c_{1}, \ldots, c_{n}\right)$ adjacently. We will show that in this case $\left\{\left[d_{1}, \ldots, d_{n}\right]\right\} \subseteq$ $\left\{\left[c_{1}, \ldots, c_{n}\right]\right\}$. Let i be the smallest in $\{1, \ldots, n-1\}$ such that $c_{i}>d_{i}$
and k the smallest in $\{i+1, \ldots, n\}$ such that $c_{i}+\cdots+c_{k}=d_{i}+\cdots+d_{k}$. Such a k exists since we have $c_{i}+\cdots+c_{n}=d_{i}+\cdots+d_{n}$ and $i+1 \leq n$. Then the conditions on i, k and also $\left(d_{1}, \ldots, d_{n}\right) \triangleleft\left(c_{1}, \ldots, c_{n}\right)$ will imply that $c_{i}+\cdots+c_{k-1}>d_{i}+\cdots+d_{k-1}$, so $d_{k}>c_{k} \geq c_{k+1} \geq d_{k+1}$, where $c_{n+1}:=d_{n+1}:=0$. Finally let j the smallest in $\{i+1, \ldots, k\}$ such that $d_{j}>d_{j+1}$, so $d_{i+1}=\cdots=d_{j}>d_{j+1}$. Using all the conditions above we obtain

$$
\begin{aligned}
\left(d_{1}, \ldots, d_{n}\right) & \triangleleft\left(d_{1}, \ldots, d_{i-1}, d_{i}+1, d_{i+1}, \ldots, d_{j-1}, d_{j}-1, d_{j+1}, \ldots, d_{n}\right) \\
& \unlhd\left(c_{1}, \ldots, c_{n}\right),
\end{aligned}
$$

so by the adjacency we get

$$
\left(d_{1}, \ldots, d_{i-1}, d_{i}+1, d_{i+1}, \ldots, d_{j-1}, d_{j}-1, d_{j+1}, \ldots, d_{n}\right)=\left(c_{1}, \ldots, c_{n}\right)
$$

Since $d_{i+1}=\cdots=d_{j}$, by Lemma 1.1. and 2.1. we get

$$
\begin{aligned}
\left\{\left[c_{1}, \ldots, c_{n}\right]\right\} & =\left\{\left[d_{1}, \ldots, d_{i-1}, d_{i}+1, d_{j}-1, d_{i+1}, \ldots, d_{j-1}, d_{j+1}, \ldots, d_{n}\right]\right\} \\
& \subseteq\left\{\left[d_{1}, \ldots, d_{i-1}, d_{i}, d_{j}, d_{i+1}, \ldots, d_{j-1}, d_{j+1}, \ldots, d_{n}\right]\right\} \\
& =\left\{\left[d_{1}, \ldots, d_{n}\right]\right\}
\end{aligned}
$$

which finishes the proof.
Corollary 1. Let $c_{1} \geq \cdots \geq c_{n} \geq 0$ and $d_{1} \geq \cdots \geq d_{n} \geq 0$ such that $\left(d_{1}, \ldots, d_{n}\right) \unlhd\left(c_{1}, \ldots, c_{n}\right)$. Then $\left\{\left[d_{1}, \ldots, d_{n}\right]\right\} \subseteq\left\{\left[c_{1}, \ldots, c_{n}\right]\right\}$.
Acknowledgements The author thanks to the Institute for Research Programs of the Sapientia Foundation for support through an individual research grant in the period 2004/2005.

REFERENCES

[1] M. Auslander, I. Reiten and S. Smalø, Representation Theory of Artin Algebras, Cambridge Stud. in Adv. Math. 36, Cambridge Univ. Press, 1995.
[2] C. M. Ringel, Tame algebras and Integral Quadratic Forms, Lect. Notes Math. 1099, Springer-Verlag, Berlin-New York, 1984.
[3] Cs. SzÁntó, Hall numbers and the composition algebra of the Kronecker algebra, preprint, FDLIST (2004).

Received March 26, 2005
Faculty of Mathematics and Computer Science
"Babeş-Bolyai" University
Str. M. Kogălniceanu nr. 1
400084 Cluj-Napoca, Romania
E-mail: szanto@math.ubbcluj.ro

