
MATHEMATICA, Tome 48 (71), No 2, 2006, pp. 191–201

A LAGRANGIAN RELAXATION APPROACH TO THE

GENERALIZED MINIMUM SPANNING TREE PROBLEM

PETRICĂ C. POP

Abstract. The Generalized Minimum Spanning Tree Problem, denoted GMST,
is a variant of the classical Minimum Spanning Tree problem, and consists of find-
ing a minimum-cost tree spanning a subset of nodes which includes exactly one
node from every cluster in an undirected graph whose nodes are partitioned into
clusters and whose edges are defined between nodes belonging to different clus-
ters. The GMST problem is NP -hard even when defined on trees. In this paper
we consider an approach based on Lagrangian relaxation of the bidirectional flow
formulation of the GMST problem. The subgradient method is used to obtained
lower bounds. Computational results are reported for many instances of the
problem.

MSC 2000. 05C05, 68R10, 90C05, 90C10, 90C27, 90C39.

Key words. Minimum spanning tree, generalized minimum spanning trees,
NP -hard, Lagrangian relaxation, subgradient method.

1. INTRODUCTION

We consider the generalized version of the minimum spanning tree problem
(MST) called the generalized minimum spanning tree problem (GMST). Given
an undirected graph whose nodes are partitioned into a number of subsets
(clusters), the GMST problem is then to find a minimum-cost tree which
includes exactly one node from each cluster. Therefore, the MST is a special
case of the GMST problem where each cluster consists of exactly one node.

The GMST problem has been introduced by Myung, Lee and Tcha in [7]
and the same authors showed that the problem is NP -hard. A stronger result
regarding its complexity has been provided by Pop [9] namely, the GMST
problem even defined on trees is NP -hard. The GMST problem has several
applications to location problems, telecommunications, (see [6] and [11]), net-
work design, railway optimization etc.

Myung et al. in [7] used a branch and bound procedure in order to solve
the GMST problem. Their lower procedure is a heuristic method which ap-
proximates the linear programming relaxation associated with the dual of the
multicommodity flow formulation of the GMST problem. They developed
also a heuristic algorithm which finds a primal feasible solution for the GMST
problem using the obtained dual solution. The GMST problem was solved to
optimality for nodes up to 200 by Feremans [3] using a branch-and-cut algo-
rithm. Pop [10] solved the problem to optimality for nodes up to 240 using a
rooting procedure based on a local-global formulation of the problem. More

192 Petrică C. Pop 2

information on the problem can be found on Feremans [3], Feremans et al. [4],
Myung, Lee and Tcha [7] and Pop [8, 9, 10] .

A variant of the GMST problem is the problem of finding a minimum cost
tree including at least one vertex from each cluster. This problem was intro-
duced by Dror et al. in [2]. These authors provide also five heuristics including
a genetic algorithm. In the present paper we confine ourselves to the problem
of choosing exactly one vertex per cluster.

Related work is to be found in [2] where Dror et al. present the generalized
version of several combinatorial optimization problems including the gener-
alized traveling salesman problem, the generalized Steiner tree problem, the
generalized assignment problem, etc.

2. PROBLEM DESCRIPTION

Let G = (V, E) be an n-node undirected graph. Let V1, . . . , Vm be a par-
tition of V into m subsets called clusters (i.e., V = V1 ∪ V2 ∪ . . . ∪ Vm and
Vl ∩Vk = ∅ for all l, k ∈ {1, . . . , m} with l 6= k) and denote by K = {1, . . . , m}
the index of the clusters. We assume that that edges are defined only between
nodes which belong to different clusters and we denote the cost of an edge
e = (i, j) ∈ E by cij or by c(i, j).

The generalized minimum spanning tree (GMST) problem asks for finding
a minimum-cost tree T spanning a subset of nodes which includes exactly one
node from each cluster Vi, i ∈ {1, . . . , m}. We will call such a tree a generalized

spanning tree.
In [7], Myung et al. proved that the GMST problem is NP -hard. We

proved in [9] a stronger result:

Theorem 1. The Generalized Minimum Spanning Tree problem on trees is

NP -hard.

The proof of this result is based on a polynomially reduction of the set cover
problem, which is known to be NP -hard (see for example [5]), to the GMST
problem defined on trees.

3. A STRONG INTEGER PROGRAMMING FORMULATION OF THE GMST PROBLEM

The GMST problem can be formulated as an integer program in many
different ways, cf. [3], [4], [7], [8] and [9]. For example, in [8] we proposed
a mixed integer programming formulation of the GMST problem, called the
bidirectional multicommodity flow formulation. In that model a cluster V1 ⊂
V is chosen to be the source offering |K| − 1 = m − 1 commodities, one
demanded by each of the remaining m − 1 clusters. Variables fk

ij , (i, j) ∈ A
and k = 1, ..., m − 1 indicate the flow amount of commodity k going through
the arc (i, j). Binary variables xij , with (i, j) ∈ E and zi, with i ∈ V control
the inclusion (xij = 1) or not (xij = 0) of edge (i, j), respectively the inclusion

3 Lagrangian relaxation 193

(zi = 1) or not (zi = 0) of node i in the solution. The GMST problem can be
formulated as follows:

min
∑

(i,j)∈E

cijxij

s.t. fk
ij + fk

′

ji ≤ xe, ∀ e = (i, j) ∈ E, ∀ k, k
′

∈ K1(1)

x(E) = m − 1(2)

z(Vk) = 1, ∀ k ∈ K = {1, ..., m}(3)
∑

(i,j)∈A

fk
ij ≥ zi, ∀ k ∈ K1, ∀ i ∈ V1(4)

∑

(j,i)∈A

fk
ji ≥ zi, ∀ k ∈ K1, ∀ i ∈ Vk(5)

∑

(i,j)∈A

fk
ij −

∑

(h,i)∈A

fk
hi ≥ 0, ∀ k ∈ K1, ∀ i ∈ V \ (V1 ∪ Vk)(6)

fk
ij ∈ {0, 1}, ∀ k ∈ K1, ∀ (i, j) ∈ A(7)

xij , zi ∈ {0, 1}, ∀ (i, j) ∈ E, ∀ i ∈ V.(8)

Constraints (1) allow a non-zero flow fk
ij or fk

′

ji of commodity k or k
′

through

an edge e = (i, j) only if the latter is included in the solution. Constraints
(2) and (3) guarantee that any feasible solution has m− 1 edges and contains
exactly one vertex from every cluster. Equations (4), (5) and (6), for a given
k ∈ K1, are the network flow equations for the problem of sending a flow
of value 1 from cluster V1 to cluster Vk. Note here that in this program we
implicitly set fk

ij = 0, ∀ k ∈ K1, ∀ (i, j) ∈ A with j ∈ V1 (i.e. delete all the

arcs in cluster V1).

4. DEFINING A LAGRANGIAN PROBLEM

Lagrangian relaxation [1] is a well-known technique to find lower bounds
for hard minimization problems in combinatorial optimization. The general
idea is to ”relax” (dualize) some (or all) constraints by adding them to the
objective function using Lagrangian multipliers. Choosing values for the La-
grangian multipliers is of key importance in terms of quality of the lower bound
generated.

We relax equations (4), (5) and (6) in a Lagrangian fashion. Let

tik (≥ 0, ∀ i /∈ V1 ∪ Vk, ∀ k ∈ K1)

be the Lagrange multipliers corresponding to (6),

t
(1)
ik (≥ 0, ∀ i ∈ V1, ∀ k ∈ K1)

194 Petrică C. Pop 4

be the Lagrange multipliers corresponding to (4) and let

t
(k)
ik (≥ 0, ∀ i ∈ Vk, ∀ k ∈ K1)

be the Lagrange multipliers corresponding to (5).
Then the coefficient Ck

ij of fk
ij in the objective function of the Lagrangian

dual program is given by

Ck
ij =

−t
(1)
ik − t

(k)
jk if i ∈ V1 and j ∈ Vk

−tik − t
(k)
jk if i /∈ V1 ∪ Vk and j ∈ Vk

−t
(1)
ik + tjk if i ∈ V1 and j /∈ V1 ∪ Vk

−tik + tjk if i /∈ V1 ∪ Vk and j /∈ V1 ∪ Vk

0 otherwise,

the coefficient of zi, pi is given by

pi =

m
∑

k=2

t
(1)
ik if i ∈ V1

m
∑

k=2

t
(k)
ik if i ∈ Vk,

and the Lagrangian dual program is:

min
∑

(i,j)∈E

cijxij +
∑

(i,j)∈A

∑

k∈K1

Ck
ijf

k
ij +

∑

i∈V

pizi

s.t. fk
ij + fk

′

ji ≤ xe, ∀ e = (i, j) ∈ E, ∀ k, k
′

∈ K1

x(E) = m − 1

z(Vk) = 1, ∀ k ∈ K = {1, ..., m}

fk
ij ∈ {0, 1}, ∀ k ∈ K1, ∀ (i, j) ∈ A

xij , zi ∈ {0, 1}, ∀ (i, j) ∈ E, ∀ i ∈ V.

From constraint (1), it is simple to deduce that the best contribution to the
dual objective function is given by:

bij := cij +
∑

k∈K1

min{0, Ck
ij , C

k
ji}

and therefore the Lagrangian dual program becomes:

min
∑

(i,j)∈E

bijxij +
∑

i∈V

pizi

x(E) = m − 1

z(Vk) = 1, ∀ k ∈ K = {1, ..., m}

xij , zi ∈ {0, 1}, ∀ (i, j) ∈ E, ∀ i ∈ V.

5 Lagrangian relaxation 195

Let (Xij), (Zi), (F k
ij), represent the optimum values of (xij), (zi), (fk

ij) in
the solution of the Lagrangian dual program; then the optimal value of the
Lagrangian dual program ZD (a lower bound on the optimal solution of the
GMST problem) is given by:

ZD =
∑

{i,j}∈E

bijXij +
∑

i∈V

piZi.

5. THE SUBGRADIENT PROCEDURE

Choosing values for the Lagrangian multipliers is of key importance in terms
of quality of lower bound generated by solving the Lagrangian dual problem.

In this section we use the subgradient method in an attempt to maximize the
lower bounds obtained from the Lagrangian relaxation of the GMST problem.
The procedure is as follows:

• Step 1. Set the initial values for the Lagrangian multipliers:

t
(1)
ik = 0, ∀ i ∈ V1, ∀ k ∈ K1,

t
(k)
ik = 0, ∀ i ∈ Vk, ∀ k ∈ K1,

tik = 0, ∀ i /∈ V1 ∪ Vk, ∀ k ∈ K1,

and initialize ZUB, the upper bound of the problem (e.g. from some
heuristic for the problem).

• Step 2. Solve the Lagrangian dual program with the current set of
multipliers and let the solution be ZD, (Xij), (Zi), (F k

ij).

• Step 3. If the Lagrangian solution (Xij), (Zi), (F k
ij) is a feasible so-

lution to the original problem then update ZUB, the upper bound on
the problem corresponding to a feasible solution, accordingly. Update
Zmax at each subgradient iteration using Zmax = max{Zmax, ZD},
where Zmax denotes the maximum lower bound found over all subgra-
dient iterations. Initially Zmax = −∞.

• Step 4. Stop if ZUB = Zmax since then ZUB is the optimal solution,
else go to Step 5.

• Step 5. Calculate the subgradients

H
(1)
ik = Zi −

∑

(i,j)∈A

F k
ij , ∀ i ∈ V1, ∀ k ∈ K1

H
(k)
ik = Zi −

∑

(j,i)∈A

F k
ji, ∀ i ∈ Vk, ∀ k ∈ K1

Hik =
∑

(j,i)∈A

F k
ji −

∑

(i,j)∈A

F k
ij ,∀ i /∈ V1 ∪ Vk, ∀ k ∈ K1.

196 Petrică C. Pop 6

• Step 6. Define a step size T by

T = α
(ZUB − ZD)

‖H‖
,

where 0 < α ≤ 2, and ‖H‖ is defined by

‖H‖ =
∑

i∈V1

∑

k∈K1

(H
(1)
ik)2 +

∑

i∈Vk

∑

k∈K1

(H
(k)
ik)2 +

∑

i/∈V1∪Vk

∑

k∈K1

(Hik)
2.

This step size depends upon the gap between the current lower bound
ZD and the upper bound ZUB and the user defined parameter α with
‖H‖ being a scaling factor.

• Step 7. Update the Lagrange multipliers by

t
(1)
ik = max{0, t

(1)
ik + TH

(1)
ik }, ∀ i ∈ V1, ∀ k ∈ K1,

t
(k)
ik = max{0, t

(k)
ik + TH

(k)
ik }, ∀ i ∈ Vk, ∀ k ∈ K1,

tik = max{0, tik + THik}, ∀ i /∈ V1 ∪ Vk, ∀ k ∈ K1,

• Step 8. Go to Step 2 to resolve the Lagrangian dual program with
this new set of multipliers unless a stopping criterium is met.

Initially we set α = 2. If Zmax is not improved (i.e. increased) in the last
N subgradient iterations with the current value of α then we halve α. Based
on experimenting (computationally) with different values of N , it seems to be
reasonable to choose the value N = 30.

In our experiments we set ZUB = ZOPT , where ZOPT is the optimal value
of the GMST problem calculated using the rooting procedure (see [8]).

6. COMPUTATIONAL RESULTS

According to the method of generating the edge costs, the problems gener-
ated are classified into three types:

• structured Euclidean case

• unstructured Euclidean case

• non-Euclidean case.

For the instances in the structured Euclidean case m squares (clusters) are
“packed in a square” and in each of these m clusters nc nodes are selected
randomly. The costs between nodes are the Euclidean distances between the
nodes. So in this model the clusters can be interpreted as physical clusters.
In the other models such an interpretation is not valid.

For the unstructured Euclidean case n = mnc nodes are generated randomly
in [0, 100]2 with costs given by the Euclidean distances. But then the clusters
are choosen randomly among these points. Finally in the non-Euclidean model
the edge costs are randomly generated on [0, 100].

Our computational experiments were performed on a HP 9000/735 com-
puter with a 125 MHz processor and 144 MB memory. Our Lagrangian relax-
ation scheme is written in C and compiled with a HP-UX cc compiler.

7 Lagrangian relaxation 197

Table 1: Computational Results for unstructured Euclidean problems

Problem no. subgradient
number m nc OPT LB Gap [%] CPU [s] iterations

1 8 3 90 89.998 0.00 0.09 25
2 4 88 87.996 0.00 0.12 30
3 6 60 59.999 0.00 0.43 65
4 8 46 45.941 0.13 36.93 160
5 10 45 44.953 0.10 48.18 180
6 10 3 108 107.998 0 7.08 35
7 4 91 90.976 0.03 16.14 50
8 6 85 84.972 0.03 20.73 65
9 8 67 66.951 0.07 41.83 125

10 10 62 61.943 0.09 55.27 140
11 12 3 116 115.947 0.05 13.03 45
12 4 107 106.916 0.08 24.94 75
13 6 89 88.836 0.18 78.53 150
14 8 75 74.759 0.32 174.43 275
15 15 3 135 134.987 0.01 13.72 30
16 4 124 123.985 0.01 16.91 45
17 6 96 95.899 0.11 72.88 105
18 8 91 90.869 0.14 134.29 175
19 18 3 153 152.991 0.01 15.29 40
20 4 132 131.985 0.01 25.65 45
21 6 127 126.909 0.07 84.28 110
22 8 112 111.849 0.14 204.12 215
23 20 3 175 174.981 0.01 16.39 35
24 4 147 146.972 0.02 44.71 75
25 6 129 128.959 0.04 65.78 95
26 8 108 107.795 0.19 220.43 200
27 25 3 182 181.975 0.01 23.79 60
28 4 159 158.969 0.02 61.55 90
29 6 142 141.893 0.08 92.37 125
30 8 127 126.825 0.14 289.78 250
31 30 3 196 195.926 0.04 41.27 75
32 4 174 173.889 0.06 101.35 150

198 Petrică C. Pop 8

Table 2: Computational Results for structured Euclidean problems

Problem no. subgrad.
number m nc OPT LB Gap [%] CPU [s] iterations

1 8 3 983 982.998 0.00 0.08 25
2 4 966 965.993 0.00 0.18 30
3 6 960 959.988 0.00 0.49 65
4 8 934 933.953 0.01 36.91 160
5 10 922 921.949 0.01 48.72 180
6 10 3 1251 1250.998 0.00 7.23 35
7 4 1243 1242.980 0.00 16.59 50
8 6 1240 1239.975 0.00 20.93 65
9 8 1225 1224.956 0.00 41.98 125

10 10 1208 61.943 0.00 55.31 140
11 12 3 1616 1615.951 0.00 14.63 45
12 4 1545 1544.908 0.01 25.76 75
13 6 1487 1486.841 0.01 78.96 150
14 8 1458 1457.745 0.02 174.81 275
15 15 3 1977 1976.985 0.00 14.79 30
16 4 1966 1965.981 0.00 18.85 45
17 6 1946 1945.909 0.00 75.81 105
18 8 1932 1931.899 0.01 138.77 175
19 18 3 2384 2383.992 0.00 17.16 40
20 4 2365 2364.985 0.00 27.70 45
21 6 2352 2351.904 0.00 89.22 110
22 8 2338 2337.863 0.01 225.08 215
23 20 3 2765 2764.972 0.00 17.32 35
24 4 2741 2740.968 0.00 46.81 75
25 6 2728 2727.956 0.00 69.77 95
26 8 2709 2708.797 0.01 231.48 200
27 25 3 3112 3111.967 0.00 24.72 60
28 4 3094 3093.958 0.00 64.51 90
29 6 3075 3074.795 0.01 97.38 125
30 8 3058 3057.715 0.01 298.89 250
31 30 3 3478 3477.832 0.00 52.13 75
32 4 3452 3451.787 0.01 138.96 150

9 Lagrangian relaxation 199

Table 3: Computational Results for non-Euclidean problems

Problem no. subgradient
number m nc OPT LB Gap [%] CPU [s] iterations

1 8 3 28 27.998 0.01 0.05 25
2 4 19 18.996 0.02 0.11 25
3 6 11 10.995 0.05 0.42 65
4 8 13 12.952 0.37 35.02 150
5 10 9 8.953 0.52 40.12 175
6 10 3 29 28.998 0.01 7.03 35
7 4 24 23.986 0.06 15.01 50
8 6 16 15.985 0.09 20.17 65
9 8 12 11.956 0.37 40.73 110

10 10 11 10.941 0.54 43.28 120
11 12 3 34 33.999 0.00 12.25 45
12 4 21 20.998 0.01 24.73 75
13 6 20 19.866 0.67 76.28 150
14 8 14 13.759 1.75 172.32 250
15 10 12 11.825 1.48 177.23 275
16 15 3 28 27.996 0.01 12.89 30
17 4 25 24.993 0.01 15.23 45
18 6 19 18.967 0.17 70.12 105
19 8 15 14.823 1.19 135.95 180
20 10 14 13.792 1.46 142.37 210
21 18 3 34 33.994 0.02 14.61 45
22 4 34 33.995 0.01 21.75 40
23 6 22 21.974 0.07 83.27 110
24 8 18 17.921 0.14 165.38 200
25 10 17 16.823 0.14 171.82 215
26 20 3 37 36.989 0.03 16.78 35
27 4 28 27.972 0.10 43.66 75
28 6 27 26.982 0.07 59.23 85
29 8 19 18.899 0.53 201.83 175
30 10 19 18.792 1.11 200.25 180
31 25 3 46 45.978 0.05 51.29 75
32 4 35 34.981 0.05 60.07 80
33 6 24 23.829 0.72 169.23 180
34 8 24 23.779 0.93 202.78 230
35 30 3 43 42.969 0.07 53.21 75
36 4 32 31.978 0.07 63.72 80
37 6 29 23.852 0.62 174.55 170
38 8 29 28.872 0.44 209.33 220
39 40 3 44 43.967 0.08 82.51 80
40 4 41 40.915 0.21 101.73 90

200 Petrică C. Pop 10

Each line corresponds to an instance. The first column is the problem
number. The next two columns give the number of clusters m and the num-
ber of nodes per cluster nc. The fourth column (OPT) contains the optimal
value of the GMST problem found by using the rooting procedure (see [8]).
The fifth column (LB) gives the lower bound obtained using the subgradi-
ent method. The next column (GAP %) gives the gap in percentage defined
by 100(OPT − LB)/LB. The last two columns give the CPU time and the
number of subgradient iterations necessary to find the lower bound.

Comparing these results with the lower bounds provided by the LP relax-
ation of the GMST problem (we did numerical experiments which are not
given here, solving the LP relaxation of the GMST problem by CPLEX), the
lower bounds obtained using our Lagrangian relaxation scheme are in general
better.

Remark 1. Here our experiments were made by setting ZUP = ZOPT ,
where ZOPT is the optimal value of the GMST problem calculated using the
rooting procedure (see Section 3.6). In practice the optimal value ZOPT is
unknown, therefore we only may have an upper bound ZUP ≈ ZOPT . But
numerical experiments have shown that even in this case the quality of the
gap is maintained. The values of the gap in percentage in the special non-
Euclidean case m = 15 and nc = 6, using different upper bounds, are reported
in the next table.

m nc OPT UB Gap [%)] CPU [s] no. subgrad. iterations

15 6 19 – 0.17 70.12 105
15 6 – 19.5 0.19 70.33 105
15 6 – 20 0.20 70.67 105
15 6 – 21 0.23 71.09 105

The first two columns give the number of clusters m and the number of
nodes per cluster nc. The third column (OPT) contains the optimal value of
the GMST problem found by using the rooting procedure (see Section 3.6).
The forth column (UB) gives the upper bound. The next column (GAP %)
gives the gap in percentage defined by 100(UB − LB)/LB. The last two
columns give the CPU time and the number of subgradient iterations.

7. CONCLUDING REMARKS

We presented a Lagrangian relaxation of a bidirectional multicommodity
flow formulation of the GMST problem. The subgradient optimization algo-
rithm was used to obtain lower bounds.

Computational experiments (by setting ZUP = ZOPT) show that using our
Lagrangian relaxation scheme are in general better than the lower bounds
provided by the linear programming relaxation of the GMST problem. This
result holds even in the case when we may have available an upper bound
ZUP ≈ ZOPT .

11 Lagrangian relaxation 201

REFERENCES

[1] Bertsimas, D. and Tsitsiklis, J.N., Introduction to Linear Optimization, Athena
Scientific, Belmont, Massachusetts, 1997.

[2] Dror, M., Haouari, M. and Chaouachi, J., Generalized Spanning Trees, European
Journal of Operational Research, 120 (2000), 583–592.

[3] Feremans, C., Generalized Spanning Trees and Extensions, PhD thesis, Universite
Libre de Bruxelles, Belgium, 2002.

[4] Feremans, C, Labbe, M. and Laporte, G., A Comparative Analysis of Several

Formulations of the Generalized Minimum Spanning Tree Problem, Networks Vol. 39

(2002), 29–34.
[5] Garey, M.R. and Johnson, D.S., Computers and Intractability, A Guide to the Theory

of NP-Completeness, Freeman, San Francisco, California, 1979.
[6] Gerla M. and Frata, L., Tree structured fiber optics MAN’s, IEEE J. Select. Areas

Comm. SAC, 6 (1988), 934–943.
[7] Myung, Y.S., Lee, C.H. and Tcha, D.W., On the Generalized Minimum Spanning

Tree Problem, Networks, 26 (1995), 231–241.
[8] Pop, P.C., The Generalized Minimum Spanning Tree Problem, PhD thesis, University

of Twente, The Netherlands, 2002.
[9] Pop, P.C., New Models of the Generalized Minimum Spanning Tree Problem, Journal

of Mathematical Modelling and Algorithms, 3 (2004), 153–166.
[10] Pop, P.C., A New Relaxation Method for the Generalized Minimum Spanning Tree

Problem, to appear in European Journal of Operations Research.
[11] Prisco, J.J., Fiber optic regional area networks in New York and Dallas, IEEE J.

Select. Areas Comm. SAC, 4 (1986), 750–757.

Received March 21, 2005 Faculty of Sciences,

North University of Baia Mare

Department of Mathematics and Computer Science

Baia Mare, 4800, Romania

E-mail: pop petrica@yahoo.com

