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APPLICATIONS OF THE SOLUTIONS OF TWO ABSTRACT

MOMENT PROBLEMS TO THE CLASSICAL

MOMENT PROBLEM

LUMINIŢA LEMNETE NINULESCU, ALINA OLTEANU and OCTAV OLTEANU

Abstract. We apply Theorems 1 and 4 [12] to some classical moment problems
in spaces of analytic or real-differentiable functions, considered as real ordered
normed vector spaces. Our solutions are operator-valued and satisfy some nat-
ural sandwich-type conditions. The present work is related to the papers [6],
[10], [12], [13], [14], [16], [17].
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1. GENERAL-TYPE KNOWN RESULTS ON THE ABSTRACT MOMENT PROBLEM

Theorem 1. (Theorem 4 [12] or Theorem 2.1 [13]). Let V be a preordered

vector space, let Y be an order-complete vector lattice, {vj ; j ∈ J} ⊂ V ,

{yj ; j ∈ J} ⊂ Y , F, G ∈ L(V, Y ) two linear operators. Consider the following

assertions:

(a) there exists H ∈ L(V, Y ) such that

H(vj) = yj , j ∈ J ;

G(ϕ) ≤ H(ϕ) ≤ F (ϕ) ∀ϕ ∈ V+;

(b) for any finite subset J1 ⊂ J and any {αj ; j ∈ J1} ⊂ R, the implication

(1)
∑

j∈J1

αjvj = ϕ2 − ϕ1 with ϕ1, ϕ2 ∈ V+ ⇒
∑

j∈J1

αjyj ≤ F (ϕ2) − G(ϕ1)

holds.

If V is a vector lattice, we also consider the assertion

(b′) G(ϕ) ≤ F (ϕ) ∀ϕ ∈ V+, and for any finite subset J1 ⊂ J and any

{αj ; j ∈ J1} ⊂ R, we have

(1′)
∑

j∈J1

αjvj ≤ F









∑

j∈J1

αjvj





+

 − G









∑

j∈J1

αjvj





−



(where v+ := sup{v, 0}, v− := sup{−v, 0}, v = v+ − v−, |v| = v+ + v−,

∀v ∈ V ). Then (a) ⇔ (b) holds and, if V is a vector lattice, we have (b′) ⇔
(b) ⇔ (a).
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This theorem was published for the first time in [12], without proof. Its
proof may be found in [13]. For some of its applications see [10], [13], [14],
[17], [18]. Theorem 1 may be considered as a generalization of a result of
M.G. Krein [6] (see also [13]).

Now we recall another abstract moment problem, in which the solution H

is nonnegative.

Theorem 2. Let V, Y , {vj ; j ∈ J}, {yj ; j ∈ J} be as in Theorem 1. Let

P : V → Y be a convex operator. The following assertions are equivalent:

(a) there exists H ∈ L(V, Y ) such that

H(vj) = yj , j ∈ J,

H(ϕ) ≥ 0, ∀ϕ ∈ V+,

H(v) ≤ P (v), ∀v ∈ V ;

(b) for any finite subset J1 ⊂ J and any {αj ; j ∈ J1} ⊂ R we have
∑

j∈J1

αjvj ≤ v ∈ V ⇒
∑

j∈J1

αjyj ≤ P (v) in Y.

Theorem 2 was published for the first time in [12], without proof. Its proof
can be found in [14]. For some of its applications see [10], [12], [14], [15], [16],
[17].

2. APPLICATIONS TO THE CLASSICAL MOMENT PROBLEM

For the first applications stated below, V will be the space of all functions
v which can be represented as an absolutely convergent power series

v(z) =
∞

∑

j=0

ajz
j , aj ∈ R

in the open disc |z| < b, v being assumed to be continuous in the closed disc
|z| ≤ b. Endowed with the order relation defined by the convex cone

V+ :=







v ∈ V ; v(z) =
∑

j∈N

ajz
j , |z| < b, aj ≥ 0 ∀j ∈ N







,

V is a real ordered vector space. On V we consider the norm

||v|| := sup
|z|≤b

|v(z)|, v ∈ V.

On the other hand, let E be an arbitrary Hilbert space, and U0 ∈ A(E),
where A(E) is the real vector space of all self-adjoint (linear bounded) oper-
ators acting on E. Denote

A1 := {U ∈ A(E); U0U = UU0},

Y := {U ∈ A1; UV = V U ∀V ∈ A1},
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and
Y+ := {U ∈ Y ; 〈U(h), h〉 ≥ 0 ∀h ∈ E}.

It is well known that Y is an order-complete vector lattice, and a commutative
algebra of operators (see [4], pp. 303–305).

Now we can state the first application of Theorem 1.

Theorem 3. Let V, Y, U0 be as above. Denote vj(z) := zj, |z| ≤ b, j ∈ N.

Assume that b > 1 and let A ∈ Y be such that ||A|| < b. Let ε > 0 and

{Bj}j∈N ⊂ Y .

The following assertions are equivalent:

(a) there exists a linear operator H ∈ L(V, Y ) such that

H(vj) = Bj , ∀j ∈ N;

(2) ϕ(A) − εϕ(I) ≤ H(ϕ) ≤ ϕ(A) + εϕ(I) ∀ϕ ∈ V+ ,

(3) ||H(ϕ)|| ≤ 2[||ϕ|| + εϕ(1)] ∀ϕ ∈ V+

(b) we have

Aj − εI ≤ Bj ≤ Aj + εI, j ∈ N.

Proof. (a)⇒(b) is almost obvious, since (a) implies

Bj = H(vj)
(2)
∈ [vj(A) − εvj(I), vj(A) + εvj(I)] =

= [Aj − εI, Aj + εI], j ∈ N.

(b)⇒(a) We use Theorem 1, (b)⇒(a), for J = N. Let J1 ⊂ N be a finite
subset, such that

(4)
∑

j∈J1

αjvj = ϕ2 − ϕ1 =
∑

j∈N

ajvj −
∑

j∈N

bjvj ,

where ϕ1, ϕ2 ∈ V+, i.e. aj , bj ≥ 0, j ∈ N (ϕ2 =
∑

j∈N

ajvj , ϕ1 =
∑

j∈N

bjvj).

Then we have

αj = aj − bj ∀j ∈ J1, aj = bj ∀j ∈ N \ J1.

Since aj , bj are nonnegative, we have

−(aj + bj) ≤ −bj ≤ αj = aj − bj ≤ aj ≤ aj + bj , j ∈ J1,

which lead to

(5) |αj | ≤ aj + bj , j ∈ J1.

On the other hand, (b) leads to

(6) αjBj ≤ αjA
j + εαjI ∀j ∈ J+

1 , αjBj ≤ αjA
j − εαjI ∀j ∈ J−

1 ,

where
J+

1 := {j ∈ J1; αj ≥ 0}, J−
1 := {j ∈ J1; αj < 0}.
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The preceding relations yield
∑

j∈J1

αjBj =
∑

j∈J+

1

αjBj +
∑

j∈J−

1

αjBj

(6)

≤
∑

j∈J+

1

αjA
j + ε





∑

j∈J+

1

αj



 I +
∑

j∈J−

1

αjA
j − ε





∑

j∈J−

1

αj



 I

=
∑

j∈J1

αjA
j + ε





∑

j∈J1

|αj |



 I
(4)
= ϕ2(A) − ϕ1(A)

+ ε





∑

j∈J1

|αj |



 I
(5)

≤ ϕ2(A) − ϕ1(A) + ε





∑

j∈J1

(aj + bj)



 I

≤ ϕ2(A) − ϕ1(A) + ε





∑

j∈N

aj



 I + ε





∑

j∈N

bj



 I

= ϕ2(A) + εϕ2(1)I − [ϕ1(A) − εϕ1(1)I] = F (ϕ2) − G(ϕ1),

where

F (ϕ) := ϕ(A) + εϕ(1)I, G(ϕ) := ϕ(A) − εϕ(1)I, ϕ ∈ V.

Thus all conditions of the hypothesis of Theorem 1 are accomplished, and by
this Theorem, there exists a linear operator H ∈ L(V, Y ) such that H(vj) =
Bj =: yj , j ∈ N and (2) hold.

To prove (3), we use relations (2), which lead to

(7) |H(ϕ)| = sup{H(ϕ),−H(ϕ)}
(2)

≤ |ϕ(A)| + εϕ(I), ϕ ∈ V+.

On the other hand, using the spectral measure EA associated to the self-adjoint
operator A(||A|| < b by hypothesis), one obtains

(8) |ϕ(A)| =

∣

∣

∣

∣

∣

∫

σ(A)
ϕ(t)dEA(t)

∣

∣

∣

∣

∣

≤ ||ϕ||

∫

σ(A)
dEA(t) = ||ϕ||I ∀ϕ ∈ V ;

(||A|| < b ⇒ σ(A) ⊂] − b, b[⇒ |ϕ(t)| < ||ϕ|| := sup
|z|≤b

|ϕ(z)| ∀t ∈ σ(A),

where σ(A) is the spectrum of A).
Relations (7) and (8) lead to

(9) |H(ϕ)| ≤ ||ϕ||I + εϕ(I) = ||ϕ||I + εϕ(1)I = [||ϕ|| + εϕ(1)]I ∀ϕ ∈ V+.

On the other hand, for any ϕ ∈ V we obviously have |H(ϕ)| = (H(ϕ))+ +
(H(ϕ))−. Using this, from (9) one gets

(10) (H(ϕ))+ ≤ [||ϕ|| + εϕ(1)]I ∀ϕ ∈ V+.
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But it is easy to see that in the vector lattice Y we have

0 ≤ U ≤ V ⇒ ||U || = sup
||h||=1

〈U(h), h〉 ≤ sup
||h||=1

〈V (h), h〉 = ||V ||.

Whence (10) implies

||(H(ϕ))+|| ≤ ||[||ϕ|| + εϕ(1)]I|| = ||ϕ|| + εϕ(1), ϕ ∈ V+.

Similarly,
||(H(ϕ))−|| ≤ ||ϕ|| + εϕ(1), ϕ ∈ V+.

The conclusion is

||H(ϕ)|| = ||(H(ϕ))+ − (H(ϕ))−|| ≤

≤ ||(H(ϕ))+|| + ||(H(ϕ))−|| ≤ 2[||ϕ|| + εϕ(1)], ϕ ∈ V+,

i.e. (3) holds. The proof is complete. �

The scalar version of Theorem 3 is:

Corollary 1. Let V, vj, j ∈ N be as above, and assume that b > 1. Let

ε > 0, {yj}j∈N ⊂ R, a ∈] − b, b[.

The following assertions are equivalent:

(a) there exists a linear functional H ∈ V ∗ such that

H(vj) = yj ∀j ∈ N,

ϕ(a) − εϕ(1) ≤ H(ϕ) ≤ ϕ(a) + εϕ(1) ∀ϕ ∈ V+,

|H(ϕ)| ≤ 2[||ϕ|| + εϕ(1)] ∀ϕ ∈ V+;

(b) we have

aj − ε ≤ yj ≤ aj + ε ∀j ∈ N.

Problem. What can we say about the continuity of the linear operator H,
which is the solution of the moment problem stated in Theorem 3? If H is
continuous, find an estimation of ||H||.

We go on by an application of Theorem 2.

Theorem 4. Let b > 1, V, Y , {vj}j∈N be as above. Let A ∈ Y , with

σ(A) ⊂]0, b[, {Bj}j∈N ⊂ Y , ε > 0. Assume that

0 ≤ Bj ≤ Aj + εI ∀j ∈ N.

Then there exists a positive continuous linear operator H ∈ L+(V, Y ), such

that

H(vj) = Bj ∀j ∈ N,

(11) |H(v)| ≤ ||v||

[

(I − b−1A)−1 + ε
b

b − 1
I

]

∀v ∈ V,

(12) ||H|| ≤ 2 ·
b[(1 + ε)b − (1 + ε||A||)]

(b − 1)(b − ||A||)
.
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Proof. We shall apply Theorem 2, (b)⇒(a) to yj := Bj , j ∈ N. We have to
check the implication mentioned at (b), Theorem 2. Let J1 ⊂ N be a finite
subset, {αj ; j ∈ J1} ⊂ R such that

∑

j∈J1

αjvj ≤ v =
∑

j∈N

ajvj ∈ V (aj ∈ R, j ∈ N).

By the definition of the order relation on V , and using also the Cauchy in-

equalities for the analytic function v =
∑

j∈N

ajvj , one obtains

(13) αj ≤ aj ≤ |aj | ≤
||v||

bj
, j ∈ J1.

Put J+
1 := {j ∈ J1; αj ≥ 0}, J−

1 := {j ∈ J1; αj < 0}. From (13) and using the
relations

0 ≤ Bj ≤ Aj + ε I ∀j ∈ N

from the hypothesis of the present Theorem, one gets:
∑

j∈J1

αjBj ≤
∑

j∈J+

1

αjBj ≤
∑

j∈J+

1

αj(A
j + ε I)

(13)

≤ ||v||





∑

j∈J+

1

b−jAj + ε





∑

j∈J+

1

b−j



 I





≤ ||v||





∑

j∈N

b−jAj + ε





∑

j∈N

b−j



 I





= ||v||

[

(I − b−1A)−1 + ε
b

b − 1
I

]

=: P (v)

Thus the implication
∑

j∈J1

αjvj ≤ v ⇒
∑

j∈J1

αjBj ≤ P (v)

is proved, where P (v) := ||v||

[

(I − b−1A)−1 + ε
b

b − 1
I

]

, v ∈ V . Applying

(b)⇒(a) of Theorem 2, we infer that there exists a linear positive operator
H ∈ L+(V, Y ), such that H(vj) = Bj , j ∈ N and

H(v) ≤ P (v) = ||v||

[

(I − b−1A)−1 + ε
b

b − 1
I

]

, v ∈ V.

Since P (−v) = P (v), it follows that

(14) |H(v)| ≤ P (v), ∀v ∈ V,
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so that (11) is proved. Next we observe that (12) can be deduced from (11).
In fact, because of A ∈ A(E), σ(A) ⊂]0, b[, we have

||A|| = sup
||h||=1

〈A(h), h〉 = ΩA < b, i.e. ||b−1A|| < 1

(and A > 0). On the other hand, (14) implies

sup{(H(v))+, (H(v))−} ≤ P (v) ⇒ (H(v))+ ≤ P (v) ⇒ ||(H(v))+|| ≤ ||P (v)||

and also
||(H(v))−|| ≤ ||P (v)||.

It follows that

(15) ||H(v)|| = ||(H(v))+ − (H(v))−|| ≤ 2||P (v)||

On the other hand, we have by the definition of

P (v) := ||v||

[

(I − b−1A)−1 + ε
b

b − 1
I

]

;

||P (v)|| ≤ ||v||

[

||(I − b−1A)−1|| + ε
b

b − 1

]

= ||v||

[

||I + (b−1A) + (b−1A)2 + . . . || + ε
b

b − 1

]

≤ ||v||

[

1 +
||A||

b
+

||A||2

b2
+ . . . + ε

b

b − 1

]

= ||v||







1

1 −
||A||

b

+ ε
b

b − 1







= ||v|| ·
b[(1 + ε)b − (1 + ε||A||)]

(b − 1)(b − ||A||)
∀v ∈ V.

From this and using also (15), we get

||H(v)||
(15)

≤ 2||P (v)|| ≤ 2||v|| ·
b[(1 + ε)b − (1 + ε||A||)

(b − 1)(b − ||A||)
.

Thus (12) is proved and the proof is complete. �

Obviously, a “scalar version” of Theorem 4 can be deduced, taking Y = R,
I = 1, A = a ∈]0, b[, Bj = yj ∈ [0, aj + ε].

The last result is an application of Theorem 1, this time to a space of C∞
R

functions, which are not necessarily analytic. Denote V := C∞
R ([0, b]), where

b ≥ 1, and let ε > 0. Put vj(t) = tj , t ∈ [0, b], j ∈ N. We endow V with the
convex cone

V+ := {v ∈ V ; v(k)(t) ≥ 0 ∀t ∈ [0, b], ∀k ∈ N}.

Let Y be as above and {Bj}j∈N ⊂ Y .
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Let A ∈ Y be such that σ(A) ⊂ [0, b]. Under these assumptions, we have.

Theorem 5. The following assertions are equivalent:

(a) there exists a linear operator H ∈ L(V, Y ) such that H(vj) = Bj, j ∈ N,

ϕ(A) − εϕ(1)I ≤ H(ϕ) ≤ ϕ(A) + εϕ(1)I ∀ϕ ∈ V+ ;

(b) Aj − εI ≤ Bj ≤ Aj + εI ∀j ∈ N.

Proof. The implication (a)⇒(b) is almost obvious, because of the implica-

tion: vj ∈ V+ and Bj
(a)
= H(vj)

⇒ Bj = H(vj)
(a)
∈ [vj(A) − εvj(1)I, vj(A) + εvj(1)I] =

= [Aj − εI, Aj + εI].

To prove (b)⇒(a), we apply Theorem 1, (b)⇒(a). We have to prove the
implication at (b) of Theorem 1. Let J1 ⊂ N be a finite subset, {αj ; j ∈ J1} ⊂
R, ϕ1, ϕ2 ∈ V+ such that

∑

j∈J1

αjvj(t)



=
∑

j∈J1

αjt
j



 = ϕ2(t) − ϕ1(t) ∀t ∈ [0, b].

This implies αj =
ϕ

(j)
2 (0)

j!
−

ϕ
(j)
1 (0)

j!
, j ∈ J1. Since ϕ1, ϕ2 ∈ V+, we have in

particular

ϕ
(j)
k (0) ≥ 0 ∀j ∈ N, k ∈ {1, 2}.

It follows that

−
ϕ

(j)
1 (0)

j!
≤ αj ≤

ϕ
(j)
2 (0)

j!
,

which leads to

(16) |αj | ≤
ϕ

(j)
2 (0)

j!
+

ϕ
(j)
1 (0)

j!
, j ∈ J1.

If we denote J+
1 := {j ∈ J1; αj ≥ 0}, J−

1 := {j ∈ J1; αj < 0}, the preceding
relations lead to
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(17)

∑

j∈J1

αjBj =
∑

j∈J+

1

αjBj +
∑

j∈J−

1

αjBj

(b)

≤
∑

j∈J+

1

αj(A
j + εI) +

∑

j∈J−

1

αj(A
j − εI)

=
∑

j∈J1

αjA
j + ε





∑

j∈J1

|αj |



 I

= ϕ2(A) − ϕ1(A) + ε





∑

j∈J1

|αj |



 I

(16)

≤ ϕ2(A) − ϕ1(A) + ε





∑

j∈J1

ϕ
(j)
2 (0)

j!



 I + ε





∑

j∈J1

ϕ
(j)
1 (0)

j!



 I

≤ ϕ2(A) − ϕ1(A) + ε(ϕ2(1))I + ε(ϕ1(1))I = F (ϕ2) − G(ϕ1),

where

F (ϕ) := ϕ(A) + εϕ(1)I, G(ϕ) = ϕ(A) − εϕ(1)I.

Note that we have used Taylor’s formula and the definition of the order relation
on V when we write

∑

j∈J1

ϕ
(j)
k (0)

j!
≤ ϕk(1), k ∈ {1, 2}.

In fact, let n ∈ N be such that J1 ⊂ {0, 1, . . . , n}. Then we have

ϕk(1) =
n

∑

j=0

ϕ
(j)
k (0)

j!
+

ϕ
(n+1)
k (t)

(n + 1)!
≥

n
∑

j=0

ϕ
(j)
k (0)

j!
≥

∑

j∈J1

ϕ
(j)
k (0)

j!
,

k ∈ {1, 2}, becauseof ϕ
(n+1)
k (t) ≥ 0, ϕ

(j)
k (0) ≥ 0, ∀j ∈ N, k ∈ {1, 2}, ∀t ∈ [0, b].

Now, from (17) and using Theorem 1 (b)⇒(a), the conclusion follows. �
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060042 Bucharest, Romania

E-mail: luminita@sony.math.pub.ro

E-mail: alinaolteanu001@yahoo.ie

E-mail: olteanuoctav@yahoo.ie


