APPLICATIONS OF THE SOLUTIONS OF TWO ABSTRACT MOMENT PROBLEMS TO THE CLASSICAL MOMENT PROBLEM

LUMINIŢA LEMNETE NINULESCU, ALINA OLTEANU and OCTAV OLTEANU

Abstract

We apply Theorems 1 and 4 [12] to some classical moment problems in spaces of analytic or real-differentiable functions, considered as real ordered normed vector spaces. Our solutions are operator-valued and satisfy some natural sandwich-type conditions. The present work is related to the papers [6], [10], [12], [13], [14], [16], [17].

MSC 2000. MSC 2000 47A57, 46A22, 30A10, 46A40, 47A50, 47A62.
Key words. Operator-valued sandwich-type moment problems in spaces of analytic or C_{R}^{∞} functions.

1. GENERAL-TYPE KNOWN RESULTS ON THE ABSTRACT MOMENT PROBLEM

Theorem 1. (Theorem 4 [12] or Theorem 2.1 [13]). Let V be a preordered vector space, let Y be an order-complete vector lattice, $\left\{v_{j} ; j \in J\right\} \subset V$, $\left\{y_{j} ; j \in J\right\} \subset Y, F, G \in L(V, Y)$ two linear operators. Consider the following assertions:
(a) there exists $H \in L(V, Y)$ such that

$$
\begin{gathered}
H\left(v_{j}\right)=y_{j}, \quad j \in J \\
G(\varphi) \leq H(\varphi) \leq F(\varphi) \quad \forall \varphi \in V_{+}
\end{gathered}
$$

(b) for any finite subset $J_{1} \subset J$ and any $\left\{\alpha_{j} ; j \in J_{1}\right\} \subset \mathbf{R}$, the implication

$$
\begin{equation*}
\sum_{j \in J_{1}} \alpha_{j} v_{j}=\varphi_{2}-\varphi_{1} \text { with } \varphi_{1}, \varphi_{2} \in V_{+} \Rightarrow \sum_{j \in J_{1}} \alpha_{j} y_{j} \leq F\left(\varphi_{2}\right)-G\left(\varphi_{1}\right) \tag{1}
\end{equation*}
$$

holds.
If V is a vector lattice, we also consider the assertion
($\left.\mathrm{b}^{\prime}\right) G(\varphi) \leq F(\varphi) \forall \varphi \in V_{+}$, and for any finite subset $J_{1} \subset J$ and any $\left\{\alpha_{j} ; j \in J_{1}\right\} \subset \mathbf{R}$, we have

$$
\sum_{j \in J_{1}} \alpha_{j} v_{j} \leq F\left(\left(\sum_{j \in J_{1}} \alpha_{j} v_{j}\right)^{+}\right)-G\left(\left(\sum_{j \in J_{1}} \alpha_{j} v_{j}\right)^{-}\right)
$$

(where $v^{+}:=\sup \{v, 0\}, v^{-}:=\sup \{-v, 0\}, v=v^{+}-v^{-},|v|=v^{+}+v^{-}$, $\forall v \in V$). Then (a) \Leftrightarrow (b) holds and, if V is a vector lattice, we have (b^{\prime}) \Leftrightarrow (b) \Leftrightarrow (a).

This theorem was published for the first time in [12], without proof. Its proof may be found in [13]. For some of its applications see [10], [13], [14], [17], [18]. Theorem 1 may be considered as a generalization of a result of M.G. Krein [6] (see also [13]).

Now we recall another abstract moment problem, in which the solution H is nonnegative.

Theorem 2. Let $V, Y,\left\{v_{j} ; j \in J\right\},\left\{y_{j} ; j \in J\right\}$ be as in Theorem 1. Let $P: V \rightarrow Y$ be a convex operator. The following assertions are equivalent:
(a) there exists $H \in L(V, Y)$ such that

$$
\begin{array}{ll}
H\left(v_{j}\right)=y_{j}, & j \in J, \\
H(\varphi) \geq 0, & \forall \varphi \in V_{+}, \\
H(v) \leq P(v), & \forall v \in V
\end{array}
$$

(b) for any finite subset $J_{1} \subset J$ and any $\left\{\alpha_{j} ; j \in J_{1}\right\} \subset \mathbf{R}$ we have

$$
\sum_{j \in J_{1}} \alpha_{j} v_{j} \leq v \in V \Rightarrow \sum_{j \in J_{1}} \alpha_{j} y_{j} \leq P(v) \text { in } Y .
$$

Theorem 2 was published for the first time in [12], without proof. Its proof can be found in [14]. For some of its applications see [10], [12], [14], [15], [16], [17].

2. APPLICATIONS TO THE CLASSICAL MOMENT PROBLEM

For the first applications stated below, V will be the space of all functions v which can be represented as an absolutely convergent power series

$$
v(z)=\sum_{j=0}^{\infty} a_{j} z^{j}, \quad a_{j} \in \mathbf{R}
$$

in the open disc $|z|<b, v$ being assumed to be continuous in the closed disc $|z| \leq b$. Endowed with the order relation defined by the convex cone

$$
V_{+}:=\left\{v \in V ; v(z)=\sum_{j \in \mathbf{N}} a_{j} z^{j},|z|<b, a_{j} \geq 0 \forall j \in \mathbf{N}\right\},
$$

V is a real ordered vector space. On V we consider the norm

$$
\|v\|:=\sup _{|z| \leq b}|v(z)|, \quad v \in V .
$$

On the other hand, let E be an arbitrary Hilbert space, and $U_{0} \in \mathcal{A}(E)$, where $\mathcal{A}(E)$ is the real vector space of all self-adjoint (linear bounded) operators acting on E. Denote

$$
\begin{gathered}
\mathcal{A}_{1}:=\left\{U \in \mathcal{A}(E) ; U_{0} U=U U_{0}\right\}, \\
Y:=\left\{U \in \mathcal{A}_{1} ; U V=V U \quad \forall V \in \mathcal{A}_{1}\right\},
\end{gathered}
$$

and

$$
Y_{+}:=\{U \in Y ;\langle U(h), h\rangle \geq 0 \quad \forall h \in E\}
$$

It is well known that Y is an order-complete vector lattice, and a commutative algebra of operators (see [4], pp. 303-305).

Now we can state the first application of Theorem 1.
Theorem 3. Let V, Y, U_{0} be as above. Denote $v_{j}(z):=z^{j},|z| \leq b, j \in \mathbf{N}$. Assume that $b>1$ and let $A \in Y$ be such that $\|A\|<b$. Let $\varepsilon>0$ and $\left\{B_{j}\right\}_{j \in \mathbf{N}} \subset Y$.

The following assertions are equivalent:
(a) there exists a linear operator $H \in L(V, Y)$ such that

$$
\begin{gather*}
H\left(v_{j}\right)=B_{j}, \quad \forall j \in \mathbf{N} \\
\varphi(A)-\varepsilon \varphi(I) \leq H(\varphi) \leq \varphi(A)+\varepsilon \varphi(I) \quad \forall \varphi \in V_{+}, \tag{2}\\
\|H(\varphi)\| \leq 2[\|\varphi\|+\varepsilon \varphi(1)] \quad \forall \varphi \in V_{+} \tag{3}
\end{gather*}
$$

(b) we have

$$
A^{j}-\varepsilon I \leq B_{j} \leq A^{j}+\varepsilon I, \quad j \in \mathbf{N}
$$

Proof. $(\mathrm{a}) \Rightarrow(\mathrm{b})$ is almost obvious, since (a) implies

$$
\begin{gathered}
B_{j}=H\left(v_{j}\right) \stackrel{(2)}{\in}\left[v_{j}(A)-\varepsilon v_{j}(I), v_{j}(A)+\varepsilon v_{j}(I)\right]= \\
=\left[A^{j}-\varepsilon I, A^{j}+\varepsilon I\right], \quad j \in \mathbf{N}
\end{gathered}
$$

$(\mathrm{b}) \Rightarrow(\mathrm{a})$ We use Theorem $1,(\mathrm{~b}) \Rightarrow(\mathrm{a})$, for $J=\mathbf{N}$. Let $J_{1} \subset \mathbf{N}$ be a finite subset, such that

$$
\begin{equation*}
\sum_{j \in J_{1}} \alpha_{j} v_{j}=\varphi_{2}-\varphi_{1}=\sum_{j \in \mathbf{N}} a_{j} v_{j}-\sum_{j \in \mathbf{N}} b_{j} v_{j}, \tag{4}
\end{equation*}
$$

where $\varphi_{1}, \varphi_{2} \in V_{+}$, i.e. $a_{j}, b_{j} \geq 0, j \in \mathbf{N}\left(\varphi_{2}=\sum_{j \in \mathbf{N}} a_{j} v_{j}, \varphi_{1}=\sum_{j \in \mathbf{N}} b_{j} v_{j}\right)$.
Then we have

$$
\alpha_{j}=a_{j}-b_{j} \quad \forall j \in J_{1}, \quad a_{j}=b_{j} \quad \forall j \in \mathbf{N} \backslash J_{1}
$$

Since a_{j}, b_{j} are nonnegative, we have

$$
-\left(a_{j}+b_{j}\right) \leq-b_{j} \leq \alpha_{j}=a_{j}-b_{j} \leq a_{j} \leq a_{j}+b_{j}, \quad j \in J_{1}
$$

which lead to

$$
\begin{equation*}
\left|\alpha_{j}\right| \leq a_{j}+b_{j}, \quad j \in J_{1} \tag{5}
\end{equation*}
$$

On the other hand, (b) leads to

$$
\begin{equation*}
\alpha_{j} B_{j} \leq \alpha_{j} A^{j}+\varepsilon \alpha_{j} I \quad \forall j \in J_{1}^{+}, \alpha_{j} B_{j} \leq \alpha_{j} A^{j}-\varepsilon \alpha_{j} I \quad \forall j \in J_{1}^{-} \tag{6}
\end{equation*}
$$

where

$$
J_{1}^{+}:=\left\{j \in J_{1} ; \alpha_{j} \geq 0\right\}, \quad J_{1}^{-}:=\left\{j \in J_{1} ; \alpha_{j}<0\right\} .
$$

The preceding relations yield

$$
\begin{aligned}
\sum_{j \in J_{1}} \alpha_{j} B_{j} & =\sum_{j \in J_{1}^{+}} \alpha_{j} B_{j}+\sum_{j \in J_{1}^{-}} \alpha_{j} B_{j} \\
& \stackrel{(6)}{\leq} \sum_{j \in J_{1}^{+}} \alpha_{j} A^{j}+\varepsilon\left(\sum_{j \in J_{1}^{+}} \alpha_{j}\right) I+\sum_{j \in J_{1}^{-}} \alpha_{j} A^{j}-\varepsilon\left(\sum_{j \in J_{1}^{-}} \alpha_{j}\right) I \\
& =\sum_{j \in J_{1}} \alpha_{j} A^{j}+\varepsilon\left(\sum_{j \in J_{1}}\left|\alpha_{j}\right|\right) I \stackrel{(4)}{=} \varphi_{2}(A)-\varphi_{1}(A) \\
& +\varepsilon\left(\sum_{j \in J_{1}}\left|\alpha_{j}\right|\right) I \stackrel{(5)}{\leq} \varphi_{2}(A)-\varphi_{1}(A)+\varepsilon\left(\sum_{j \in J_{1}}\left(a_{j}+b_{j}\right)\right) I \\
& \leq \varphi_{2}(A)-\varphi_{1}(A)+\varepsilon\left(\sum_{j \in \mathbf{N}} a_{j}\right) I+\varepsilon\left(\sum_{j \in \mathbf{N}^{\prime}} b_{j}\right) I \\
& =\varphi_{2}(A)+\varepsilon \varphi_{2}(1) I-\left[\varphi_{1}(A)-\varepsilon \varphi_{1}(1) I\right]=F\left(\varphi_{2}\right)-G\left(\varphi_{1}\right)
\end{aligned}
$$

where

$$
F(\varphi):=\varphi(A)+\varepsilon \varphi(1) I, G(\varphi):=\varphi(A)-\varepsilon \varphi(1) I, \quad \varphi \in V .
$$

Thus all conditions of the hypothesis of Theorem 1 are accomplished, and by this Theorem, there exists a linear operator $H \in L(V, Y)$ such that $H\left(v_{j}\right)=$ $B_{j}=: y_{j}, j \in \mathbf{N}$ and (2) hold.

To prove (3), we use relations (2), which lead to

$$
\begin{equation*}
|H(\varphi)|=\sup \{H(\varphi),-H(\varphi)\} \stackrel{(2)}{\leq}|\varphi(A)|+\varepsilon \varphi(I), \quad \varphi \in V_{+} . \tag{7}
\end{equation*}
$$

On the other hand, using the spectral measure E_{A} associated to the self-adjoint operator $A(\|A\|<b$ by hypothesis), one obtains

$$
\begin{gather*}
|\varphi(A)|=\left|\int_{\sigma(A)} \varphi(t) d E_{A}(t)\right| \leq\|\varphi\| \int_{\sigma(A)} d E_{A}(t)=\|\varphi\| I \quad \forall \varphi \in V ; \tag{8}\\
(\|A\|<b \Rightarrow \sigma(A) \subset]-b, b\left[\Rightarrow|\varphi(t)|<\|\varphi\|:=\sup _{|z| \leq b}|\varphi(z)| \quad \forall t \in \sigma(A),\right.
\end{gather*}
$$

where $\sigma(A)$ is the spectrum of $A)$.
Relations (7) and (8) lead to

$$
\begin{equation*}
|H(\varphi)| \leq\|\varphi\| I+\varepsilon \varphi(I)=\|\varphi\| I+\varepsilon \varphi(1) I=[\|\varphi\|+\varepsilon \varphi(1)] I \quad \forall \varphi \in V_{+} \tag{9}
\end{equation*}
$$

On the other hand, for any $\varphi \in V$ we obviously have $|H(\varphi)|=(H(\varphi))^{+}+$ $(H(\varphi))^{-}$. Using this, from (9) one gets

$$
\begin{equation*}
(H(\varphi))^{+} \leq[\|\varphi\|+\varepsilon \varphi(1)] I \quad \forall \varphi \in V_{+} . \tag{10}
\end{equation*}
$$

But it is easy to see that in the vector lattice Y we have

$$
0 \leq U \leq V \Rightarrow\|U\|=\sup _{\|h\|=1}\langle U(h), h\rangle \leq \sup _{\|h\|=1}\langle V(h), h\rangle=\|V\| .
$$

Whence (10) implies

$$
\left\|(H(\varphi))^{+}\right\| \leq\|[\|\varphi\|+\varepsilon \varphi(1)] I\|=\|\varphi\|+\varepsilon \varphi(1), \quad \varphi \in V_{+} .
$$

Similarly,

$$
\left\|(H(\varphi))^{-}\right\| \leq\|\varphi\|+\varepsilon \varphi(1), \quad \varphi \in V_{+} .
$$

The conclusion is

$$
\begin{gathered}
\|H(\varphi)\|=\left\|(H(\varphi))^{+}-(H(\varphi))^{-}\right\| \leq \\
\leq\left\|(H(\varphi))^{+}\right\|+\left\|(H(\varphi))^{-}\right\| \leq 2[\|\varphi\|+\varepsilon \varphi(1)], \quad \varphi \in V_{+},
\end{gathered}
$$

i.e. (3) holds. The proof is complete.

The scalar version of Theorem 3 is:
Corollary 1. Let $V, v_{j}, j \in \mathbf{N}$ be as above, and assume that $b>1$. Let $\left.\varepsilon>0,\left\{y_{j}\right\}_{j \in \mathbf{N}} \subset \mathbf{R}, a \in\right]-b, b[$.

The following assertions are equivalent:
(a) there exists a linear functional $H \in V^{*}$ such that

$$
\begin{gathered}
H\left(v_{j}\right)=y_{j} \quad \forall j \in \mathbf{N} \\
\varphi(a)-\varepsilon \varphi(1) \leq H(\varphi) \leq \varphi(a)+\varepsilon \varphi(1) \quad \forall \varphi \in V_{+}, \\
|H(\varphi)| \leq 2[\|\varphi\|+\varepsilon \varphi(1)] \quad \forall \varphi \in V_{+}
\end{gathered}
$$

(b) we have

$$
a^{j}-\varepsilon \leq y_{j} \leq a^{j}+\varepsilon \quad \forall j \in \mathbf{N} .
$$

Problem. What can we say about the continuity of the linear operator H, which is the solution of the moment problem stated in Theorem 3? If H is continuous, find an estimation of $\|H\|$.

We go on by an application of Theorem 2.
Theorem 4. Let $b>1, V, Y,\left\{v_{j}\right\}_{j \in \mathbf{N}}$ be as above. Let $A \in Y$, with $\sigma(A) \subset] 0, b\left[,\left\{B_{j}\right\}_{j \in \mathbf{N}} \subset Y, \varepsilon>0\right.$. Assume that

$$
0 \leq B_{j} \leq A^{j}+\varepsilon I \quad \forall j \in \mathbf{N} .
$$

Then there exists a positive continuous linear operator $H \in L_{+}(V, Y)$, such that

$$
\begin{gather*}
H\left(v_{j}\right)=B_{j} \quad \forall j \in \mathbf{N} \\
|H(v)| \leq\|v\|\left[\left(I-b^{-1} A\right)^{-1}+\varepsilon \frac{b}{b-1} I\right] \quad \forall v \in V, \tag{11}\\
\|H\| \leq 2 \cdot \frac{b[(1+\varepsilon) b-(1+\varepsilon\|A\|)]}{(b-1)(b-\|A\|)} \tag{12}
\end{gather*}
$$

Proof. We shall apply Theorem 2, (b) \Rightarrow (a) to $y_{j}:=B_{j}, j \in \mathbf{N}$. We have to check the implication mentioned at (b), Theorem 2. Let $J_{1} \subset \mathbf{N}$ be a finite subset, $\left\{\alpha_{j} ; j \in J_{1}\right\} \subset \mathbf{R}$ such that

$$
\sum_{j \in J_{1}} \alpha_{j} v_{j} \leq v=\sum_{j \in \mathbf{N}} a_{j} v_{j} \in V \quad\left(a_{j} \in \mathbf{R}, j \in \mathbf{N}\right) .
$$

By the definition of the order relation on V, and using also the Cauchy inequalities for the analytic function $v=\sum_{j \in \mathbf{N}} a_{j} v_{j}$, one obtains

$$
\begin{equation*}
\alpha_{j} \leq a_{j} \leq\left|a_{j}\right| \leq \frac{\|v\|}{b^{j}}, \quad j \in J_{1} . \tag{13}
\end{equation*}
$$

Put $J_{1}^{+}:=\left\{j \in J_{1} ; \alpha_{j} \geq 0\right\}, J_{1}^{-}:=\left\{j \in J_{1} ; \alpha_{j}<0\right\}$. From (13) and using the relations

$$
0 \leq B_{j} \leq A^{j}+\varepsilon I \quad \forall j \in \mathbf{N}
$$

from the hypothesis of the present Theorem, one gets:

$$
\begin{aligned}
\sum_{j \in J_{1}} \alpha_{j} B_{j} & \leq \sum_{j \in J_{1}^{+}} \alpha_{j} B_{j} \leq \sum_{j \in J_{1}^{+}} \alpha_{j}\left(A^{j}+\varepsilon I\right) \\
& \stackrel{(13)}{\leq}\|v\|\left[\sum_{j \in J_{1}^{+}} b^{-j} A^{j}+\varepsilon\left(\sum_{j \in J_{1}^{+}} b^{-j}\right) I\right] \\
& \leq\|v\|\left[\sum_{j \in \mathbf{N}} b^{-j} A^{j}+\varepsilon\left(\sum_{j \in \mathbf{N}} b^{-j}\right) I\right] \\
& =\|v\|\left[\left(I-b^{-1} A\right)^{-1}+\varepsilon \frac{b}{b-1} I\right]=: P(v)
\end{aligned}
$$

Thus the implication

$$
\sum_{j \in J_{1}} \alpha_{j} v_{j} \leq v \Rightarrow \sum_{j \in J_{1}} \alpha_{j} B_{j} \leq P(v)
$$

is proved, where $P(v):=\|v\|\left[\left(I-b^{-1} A\right)^{-1}+\varepsilon \frac{b}{b-1} I\right], v \in V$. Applying $(\mathrm{b}) \Rightarrow$ (a) of Theorem 2, we infer that there exists a linear positive operator $H \in L_{+}(V, Y)$, such that $H\left(v_{j}\right)=B_{j}, j \in \mathbf{N}$ and

$$
H(v) \leq P(v)=\|v\|\left[\left(I-b^{-1} A\right)^{-1}+\varepsilon \frac{b}{b-1} I\right], \quad v \in V .
$$

Since $P(-v)=P(v)$, it follows that

$$
\begin{equation*}
|H(v)| \leq P(v), \quad \forall v \in V \tag{14}
\end{equation*}
$$

so that (11) is proved. Next we observe that (12) can be deduced from (11). In fact, because of $A \in \mathcal{A}(E), \sigma(A) \subset] 0, b[$, we have

$$
\|A\|=\sup _{\|h\|=1}\langle A(h), h\rangle=\Omega_{A}<b, \quad \text { i.e. }\left\|b^{-1} A\right\|<1
$$

(and $A>0$). On the other hand, (14) implies

$$
\sup \left\{(H(v))^{+},(H(v))^{-}\right\} \leq P(v) \Rightarrow(H(v))^{+} \leq P(v) \Rightarrow\left\|(H(v))^{+}\right\| \leq\|P(v)\|
$$

and also

$$
\left\|(H(v))^{-}\right\| \leq\|P(v)\| .
$$

It follows that

$$
\begin{equation*}
\|H(v)\|=\left\|(H(v))^{+}-(H(v))^{-}\right\| \leq 2\|P(v)\| \tag{15}
\end{equation*}
$$

On the other hand, we have by the definition of

$$
\begin{aligned}
& P(v):=\|v\|\left[\left(I-b^{-1} A\right)^{-1}+\varepsilon \frac{b}{b-1} I\right] \\
\|P(v)\| & \leq\|v\|\left[\left\|\left(I-b^{-1} A\right)^{-1}\right\|+\varepsilon \frac{b}{b-1}\right] \\
& =\|v\|\left[\left\|I+\left(b^{-1} A\right)+\left(b^{-1} A\right)^{2}+\ldots\right\|+\varepsilon \frac{b}{b-1}\right] \\
& \leq\|v\|\left[1+\frac{\|A\|}{b}+\frac{\|A\|^{2}}{b^{2}}+\ldots+\varepsilon \frac{b}{b-1}\right] \\
& =\|v\|\left[\frac{1}{1-\frac{\|A\|}{b}}+\varepsilon \frac{b}{b-1}\right] \\
& =\|v\| \cdot \frac{b[(1+\varepsilon) b-(1+\varepsilon\|A\|)]}{(b-1)(b-\|A\|)} \quad \forall v \in V .
\end{aligned}
$$

From this and using also (15), we get

$$
\|H(v)\| \stackrel{(15)}{\leq} 2\|P(v)\| \leq 2\|v\| \cdot \frac{b[(1+\varepsilon) b-(1+\varepsilon\|A\|)}{(b-1)(b-\|A\|)}
$$

Thus (12) is proved and the proof is complete.
Obviously, a "scalar version" of Theorem 4 can be deduced, taking $Y=\mathbf{R}$, $I=1, A=a \in] 0, b\left[, B_{j}=y_{j} \in\left[0, a^{j}+\varepsilon\right]\right.$.

The last result is an application of Theorem 1 , this time to a space of $C_{\mathbf{R}}^{\infty}$ functions, which are not necessarily analytic. Denote $V:=C_{\mathbf{R}}^{\infty}([0, b])$, where $b \geq 1$, and let $\varepsilon>0$. Put $v_{j}(t)=t^{j}, t \in[0, b], j \in \mathbf{N}$. We endow V with the convex cone

$$
V_{+}:=\left\{v \in V ; v^{(k)}(t) \geq 0 \quad \forall t \in[0, b], \forall k \in \mathbf{N}\right\} .
$$

Let Y be as above and $\left\{B_{j}\right\}_{j \in \mathbf{N}} \subset Y$.

Let $A \in Y$ be such that $\sigma(A) \subset[0, b]$. Under these assumptions, we have.
Theorem 5. The following assertions are equivalent:
(a) there exists a linear operator $H \in L(V, Y)$ such that $H\left(v_{j}\right)=B_{j}, j \in \mathbf{N}$,

$$
\varphi(A)-\varepsilon \varphi(1) I \leq H(\varphi) \leq \varphi(A)+\varepsilon \varphi(1) I \quad \forall \varphi \in V_{+} ;
$$

(b) $A^{j}-\varepsilon I \leq B_{j} \leq A^{j}+\varepsilon I \quad \forall j \in \mathbf{N}$.

Proof. The implication $(\mathrm{a}) \Rightarrow(\mathrm{b})$ is almost obvious, because of the implication: $v_{j} \in V_{+}$and $B_{j} \stackrel{(a)}{=} H\left(v_{j}\right)$

$$
\begin{aligned}
\Rightarrow B_{j}=H\left(v_{j}\right) \stackrel{(a)}{\in} & {\left[v_{j}(A)-\varepsilon v_{j}(1) I, v_{j}(A)+\varepsilon v_{j}(1) I\right]=} \\
& =\left[A^{j}-\varepsilon I, A^{j}+\varepsilon I\right] .
\end{aligned}
$$

To prove $(\mathrm{b}) \Rightarrow(\mathrm{a})$, we apply Theorem $1,(\mathrm{~b}) \Rightarrow(\mathrm{a})$. We have to prove the implication at (b) of Theorem 1. Let $J_{1} \subset \mathbf{N}$ be a finite subset, $\left\{\alpha_{j} ; j \in J_{1}\right\} \subset$ $\mathbf{R}, \varphi_{1}, \varphi_{2} \in V_{+}$such that

$$
\sum_{j \in J_{1}} \alpha_{j} v_{j}(t)\left(=\sum_{j \in J_{1}} \alpha_{j} t^{j}\right)=\varphi_{2}(t)-\varphi_{1}(t) \quad \forall t \in[0, b] .
$$

This implies $\alpha_{j}=\frac{\varphi_{2}^{(j)}(0)}{j!}-\frac{\varphi_{1}^{(j)}(0)}{j!}, j \in J_{1}$. Since $\varphi_{1}, \varphi_{2} \in V_{+}$, we have in particular

$$
\varphi_{k}^{(j)}(0) \geq 0 \quad \forall j \in \mathbf{N}, \quad k \in\{1,2\} .
$$

It follows that

$$
-\frac{\varphi_{1}^{(j)}(0)}{j!} \leq \alpha_{j} \leq \frac{\varphi_{2}^{(j)}(0)}{j!}
$$

which leads to

$$
\begin{equation*}
\left|\alpha_{j}\right| \leq \frac{\varphi_{2}^{(j)}(0)}{j!}+\frac{\varphi_{1}^{(j)}(0)}{j!}, \quad j \in J_{1} \tag{16}
\end{equation*}
$$

If we denote $J_{1}^{+}:=\left\{j \in J_{1} ; \alpha_{j} \geq 0\right\}, J_{1}^{-}:=\left\{j \in J_{1} ; \alpha_{j}<0\right\}$, the preceding relations lead to

$$
\begin{aligned}
& \sum_{j \in J_{1}} \alpha_{j} B_{j}=\sum_{j \in J_{1}^{+}} \alpha_{j} B_{j}+\sum_{j \in J_{1}^{-}} \alpha_{j} B_{j} \\
& \stackrel{(b)}{\leq} \sum_{j \in J_{1}^{+}} \alpha_{j}\left(A^{j}+\varepsilon I\right)+\sum_{j \in J_{1}^{-}} \alpha_{j}\left(A^{j}-\varepsilon I\right) \\
& =\sum_{j \in J_{1}} \alpha_{j} A^{j}+\varepsilon\left(\sum_{j \in J_{1}}\left|\alpha_{j}\right|\right) I \\
& =\varphi_{2}(A)-\varphi_{1}(A)+\varepsilon\left(\sum_{j \in J_{1}}\left|\alpha_{j}\right|\right) I \\
& (16) \\
& \leq \varphi_{2}(A)-\varphi_{1}(A)+\varepsilon\left(\sum_{j \in J_{1}} \frac{\varphi_{2}^{(j)}(0)}{j!}\right) I+\varepsilon\left(\sum_{j \in J_{1}} \frac{\varphi_{1}^{(j)}(0)}{j!}\right) I \\
& \leq \varphi_{2}(A)-\varphi_{1}(A)+\varepsilon\left(\varphi_{2}(1)\right) I+\varepsilon\left(\varphi_{1}(1)\right) I=F\left(\varphi_{2}\right)-G\left(\varphi_{1}\right)
\end{aligned}
$$

where

$$
F(\varphi):=\varphi(A)+\varepsilon \varphi(1) I, \quad G(\varphi)=\varphi(A)-\varepsilon \varphi(1) I
$$

Note that we have used Taylor's formula and the definition of the order relation on V when we write

$$
\sum_{j \in J_{1}} \frac{\varphi_{k}^{(j)}(0)}{j!} \leq \varphi_{k}(1), \quad k \in\{1,2\}
$$

In fact, let $n \in \mathbf{N}$ be such that $J_{1} \subset\{0,1, \ldots, n\}$. Then we have

$$
\varphi_{k}(1)=\sum_{j=0}^{n} \frac{\varphi_{k}^{(j)}(0)}{j!}+\frac{\varphi_{k}^{(n+1)}(t)}{(n+1)!} \geq \sum_{j=0}^{n} \frac{\varphi_{k}^{(j)}(0)}{j!} \geq \sum_{j \in J_{1}} \frac{\varphi_{k}^{(j)}(0)}{j!}
$$

$k \in\{1,2\}$, becauseof $\varphi_{k}^{(n+1)}(t) \geq 0, \varphi_{k}^{(j)}(0) \geq 0, \forall j \in \mathbf{N}, k \in\{1,2\}, \forall t \in[0, b]$.
Now, from (17) and using Theorem $1(\mathrm{~b}) \Rightarrow(\mathrm{a})$, the conclusion follows.

REFERENCES

[1] Akhiezer, N.I., The Classical Moment Problem and Some Related Questions in Analysis, Oliver and Boyd, Edinburgh and London, 1965.
[2] Ambrozie, C. and Olteanu, O., A sandwich theorem, the moment problem, finitesimplicial sets and some inequalities, Rev. Roumaine Math. Pures Appl., 49 (2004), 189-210.
[3] Cristescu, R., Functional Analysis, Second edition, Didactical and Pedagogical Publishing House, Bucharest, 1970 (in Romanian).
[4] Cristescu, R., Ordered Vector Spaces and Linear Operators, Abacus Press, Tunbridge Wells, Kent, 1976.
[5] Cristescu, R., Grigore, Gh., Niculescu, C., Păltineanu, G., Popa, N. and Vuza, D.T., Ordered Structures in Functional Analysis, Vol. 3, Romanian Academy Publishing House, Bucharest, 1992 (in Romanian).
[6] Krein, M.G. and Nudelman, A.A., Markov Moment Problem and Extremal Problems, Transl. Math. Mono. Amer. Math. Soc., Providence R.I., 1977.
[7] Lemnete, L., An operator-valued moment problem, Proc. Amer. Math. Soc., 112 (1991), 1023-1028.
[8] Lemnete, L., Application of the operator phase-shift in the L-problem of moments, Proc. Amer. Math. Soc., 123 (1995), 747-754.
[9] Lemnete-Ninulescu, L. and Olteanu, O., Extension of linear operators, distanced convex sets and the moment problem, Mathematica, 46 (69), (2004), 81-88.
[10] Niculescu, M. and Olteanu, O., Applications of two sandwich theorems for linear operators to the moment problem in spaces of analytic functions, Rev. Roumaine Math. Pures Appl., 44 (1999), 807-817.
[11] Niculescu, C. and Popa, N., Elements of Banach Spaces Theory, Romanian Academy Publishing House, Bucharest, 1981 (in Romanian).
[12] Olteanu, O., Application de théorèmes de prolongement d'opérateurs linéaires au problème des moments et à une généralisation d'un théorème de Mazur-Orlicz, C.R. Acad. Sci. Paris, 313 (1991), 739-742.
[13] Olteanu, O., Applications of a general sandwich theorem for operators to the moment problem, Rev. Roumaine Math. Pures Appl., 41 (1996), 513-521.
[14] Olteanu, O., Two sandwich theorems for linear operators and the moment problem, Balkan Journal of Geometry and Its Applications, 1 (1996), 75-85.
[15] Olteanu, O., Applications of the solution of the abstract moment problem to the classical moment problem, Stud. Cerc. Mat., 49 (1997), 93-102.
[16] Olteanu, O., Extension of linear operators and moment problems in spaces of analytic functions, Rev. Roumaine Math. Pures Appl., 47 (2002), 737-742.
[17] Olteanu, O., Moment problems in sequence spaces, U.P.B. Sci. Bull., Series A, 64 (2002), 3-12.
[18] Olteanu, O., New aspects of the classical moment problem, Rev. Roumaine Math. Pures Appl., 49 (2004), 63-77.
[19] Rudin, W., Real and Complex Analysis, McGraw-Hill, New York, 1966.
[20] Schaefer, H.H., Topological Vector Spaces, MacMillan Company, New York, London, 1966.
[21] Vasilescu, Fl.-H., Initiation in the Theory of Linear Operators. Technical Publishing House, Bucharest, 1987 (in Romanian).

Received April 12, 2005

Politehnica University of Bucharest
Mathematics Departments 2 and 1 Splaiul Independentei 313 060042 Bucharest, Romania
E-mail: luminita@sony.math.pub.ro
E-mail: alinaolteanu001@yahoo.ie
E-mail: olteanuoctav@yahoo.ie

