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A COMPROMISE MODEL FOR SOLVING FUZZY LINEAR

PROGRAMMING PROBLEMS

RASOUL DADASHZADEH and S. B. NIMSE

Abstract. In this paper, we concentrate on two kinds of fuzzy linear program-
ming problems: linear programming problems with only fuzzy technological coef-
ficients and linear programming problems in which both the right-hand side and
technological coefficients are fuzzy number. We consider here only the case of
fuzzy numbers with linear membership functions. The symmetric method of Bell-
man and Zadeh [1] is used for a defuzzification of these problems (min operator).
Two-phase approach had been proposed to generate an efficient solution for the
linear programming problem. In this study, we shall show a revised two-phase ap-
proach to the case of the fuzzy linear programming problems [FLP]. This revised
model can improve the optimal decision obtained from min operator. Moreover,
a compromise model embedded two-phase approach and average operator will
be proposed to yield a fuzzy-efficient solution between non-compensatory and
full compensatory.
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1. INTRODUCTION

In fuzzy decision making problems, the concept of maximizing decision was
proposed by Bellman and Zadeh [1]. This concept was adopted to problems
of mathematical programming by Tanaka et al. [15]. Zimmermann [18] pre-
sented a fuzzy approach to multiobjective linear programming problems. He
also studied the duality relation in fuzzy linear programming. Fuzzy linear
programming problem with fuzzy coefficients was formulated by Negoita [11]
and called robust programming. Dubois and Prade [2] investigated linear fuzzy
constraints. Tanaka and Asai [14] also proposed a formulation of fuzzy linear
programming with fuzzy constraints and gave a method for its solution which
bases on inequality relations between fuzzy numbers. To deal with imprecision
parameters in mathematical programming problems, fuzzy set theory has been
applied to real-word decision making problems. Fuzzy linear programming
models and fuzzy multiple objective programming problems are designated
for such a purpose [7, 8]. In fuzzy set theory, a corresponding membership
function is usually employed to quantify the fuzzy objectives and constraints.
Using the linear membership function, Zimmermann proposed the min op-
erator model to the MOLP [19, 20]. Although the min operator method has
been proven to have several nice properties [10], the solution generated by min
operator does not guarantee compensatory and efficient [3, 9]. Lee and Li [9]
proposed two-phase approach to overcome this difficulty. Chen and Chou [10]
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proposed a fuzzy approach to integrate the min operator, average operator
and two-phase methods. Their approach considers simultaneously maximiz-
ing the least satisfaction level and total satisfaction. Because the two-phase
approach can really yield efficient solution, it is also applied to the multiple
objective linear fractional programming problems [4]. While dealing with the
fuzzy linear programming problem [FLP], Guu and Wu [5] proposed a similar
two-phase model to improve the dominated solution yielded by min operator.
This two-phase approach shows that not only should the outcome of a FLP
model achieve the highest membership degree in objective, but also pursue a
better utilization of each constraint resource.

In this paper, we shall propose a simplified two-phase model to the case
of FLP. As the result of experiment made by Zimmermann [21], and most
of the decisions taken in the real world are neither non-compensatory (min
operator) nor full compensatory (average operator). On the other hand, the
decision-maker may prefer to make judgments or evaluations resulting in the
fuzzy programming problem between the min and average operator.

2. LINEAR PROGRAMMING PROBLEMS WITH FUZZY TECHNOLOGICAL

COEFFICIENTS

We consider a linear programming problem with fuzzy technological coeffi-
cients

max
n
∑

j=1
cjxj

subject to
n
∑

j=1
ãijxj ≤ bi, 1 ≤ i ≤ m,

xj ≥ 0, 1 ≤ j ≤ n,

(2.1)

where at least one xj > 0, suppose that the crisp inequality relation between
fuzzy number is defined by [12].

We can accept some assumptions.
Assumption 1. ãij is a fuzzy number with the following linear membership
function

µaij
(x) =











1 if x < aij
(aij+dij−x)

dij
if aij ≤ x < aij + dij

0 if x ≥ aij + dij ,

where x ∈ R and dij > 0 for all i = 1, . . . , m, j = 1, . . . , n. For defuzzification
of this problem, we first fuzzify the objective function. This is done by cal-
culating the lower and upper bounds of the optimal values first. The bounds
of the optimal values, zℓ and zu are obtained by solving the standard linear



3 Fuzzy linear programming problems 139

programming problems.

z1 = max
n
∑

j=1
cjxj

subject to
n
∑

j=1
aijxj ≤ bi, i = 1, . . . , m,

xj ≥ 0, j = 1, . . . , n,

(2.2)

and

z2 = max
n
∑

j=1
cjxj

subject to
n
∑

j=1
(aij + dij)xj ≤ bi, i = 1, . . . , m,

xj ≥ 0, j = 1, . . . , n.

(2.3)

The objective function takes values between z1 and z2 while technological
coefficients vary between aij and aij + dij . The problem (2.2) and (2.3) are
in relation. The feasible solutions set of the problem (2.3) is a subset of
the feasible solutions set of the problem (2.2). Consequently z1 ≥ z2. Let
zℓ = min(z1, z2) and zu = max(z1, z2). Then zℓ = z2 and zu = z1 are called
the lower and upper bounds of the optimal values, respectively.
Assumption 2. The linear crisp problems (2.2) and (2.3) have finite optimal
values, otherwise we cannot calculate the lower and upper bounds of the op-
timal values. In this case let z1 6= z2 then, the fuzzy set of optimal values, G,
which is a subset of R

n, is defined as (see Klir and Yuan [6]);

µG(x) =







































0 if
n
∑

j=1
cjxj < zℓ,

n
∑

j=1

cjxj−zℓ

zu−zℓ
if zℓ ≤

n
∑

j=1
cjxj < zu,

1 if
n
∑

j=1
cjxj ≥ zu.

(2.4)

The fuzzy set of the i-th constraint, ci, which is a subset of R
m, is defined by

µci
(x) =











































0 if bi <
n
∑

j=1
aijxj ,

(bi−
n
∑

j=1

aijxj)

n
∑

j=1

dijxj

if
n
∑

j=1
aijxj ≤ bi <

n
∑

j=1
(aij + dij)xj ,

1 if bi ≥
n
∑

j=1
(aij + dij)xj .

(2.5)

By using the definition of the fuzzy decision proposed by Bellman and Zadeh
[1] (see also Lai and Hweng [8]), we have

µD(x) = min{µG(x), µc1(x), µc2(x), . . . , µcm(x)}. (2.6)
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In this case the optimal fuzzy decision is a solution of the problem

max(µD(x)) = max
x≥0

min{µG(x), µc1(x), µc2(x), . . . , µcm(x)}. (2.7)

Consequently, the problem (2.1) becomes to the following optimization prob-
lem

max λ,

µG(x) ≥ λ,

µci
(x) ≥ λ, i = 1, . . . , m,

x ≥ 0.

(2.8)

By using (2.4) and (2.5), the problem (2.8) can be written as

max λ,

λ(z1 − z2) −
n
∑

j=1
cjxj + z2 ≤ 0,

n
∑

j=1
(aij + λdij)xj − bi ≤ 0, 1 ≤ i ≤ m,

xj ≥ 0, j = 1, . . . , n.

(2.9)

The optimal value of this problem can be yield if the set of feasible solutions
is not empty.

Solving the model (2.8) or (2.9), one optimal value λ∗ can be yielded. In
fact, this λ∗ dentoes that the satisfaction level for all membership functions can
simultaneously obtain. Further, let us assume that the membership function
of objective and all constraint are equally important.

3. LINEAR PROGRAMMING PROBLEMS WITH FUZZY TECHNOLOGICAL

COEFFICIENTS AND FUZZY RIGHT-HAND-SIDE NUMBERS

In this section we consider a linear programming problem with fuzzy tech-
nological coefficients and fuzzy right-hand-side numbers

max
n
∑

j=1
cjxj

subject to
n
∑

j=1
ãijxj ≤ b̃i, 1 ≤ i ≤ m,

xj ≥ 0, 1 ≤ j ≤ n,

(3.1)

where at least one xj > 0.

Assumption 3. ãij and b̃i are fuzzy numbers with the following linear mem-
bership functions:

µaij
(x) =











1 if x < aij ,
(aij+dij−x)

dij
if aij ≤ x < aij + dij ,

0 if x ≥ aij + dij ,
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and

µbi
(x) =







1 if x < bi,
(bi+pi−x)

pi
if bi ≤ x < bi + pi,

0 if x ≥ bi + pi,

where x ∈ R. For defuzzification of the problem (3.1), we first calculate the
lower and upper bounds of the optimal values. The optimal values zℓ and zu

can be defined by solving the following standard linear programming problems,
for which we assume that all they have the finite optimal values.

z1 = max
n
∑

j=1
cjxj ,

n
∑

j=1
(aij + dij)xj ≤ bi, 1 ≤ i ≤ m,

xj ≥ 0, 1 ≤ j ≤ n;

(3.2)

z2 = max
n
∑

j=1
cjxj ,

n
∑

j=1
aijxj ≤ bi + pi, 1 ≤ i ≤ m,

xj ≥ 0, 1 ≤ j ≤ n;

(3.3)

z3 = max
n
∑

j=1
cjxj ,

n
∑

j=1
(aij + dij)xj ≤ bi + pi, 1 ≤ i ≤ m,

xj ≥ 0, 1 ≤ j ≤ n

(3.4)

and

z4 = max
n
∑

j=1
cjxj ,

n
∑

j=1
aijxj ≤ bi, 1 ≤ i ≤ m,

xj ≥ 0, 1 ≤ j ≤ n.

(3.5)

The problems (3.2), (3.3), (3.4) and (3.5) are in relation. If we denote S1, S2, S3

and S4 the feasible solutions set of the problems (3.2), (3.3), (3.4) and (3.5),
respectively, then S1 ⊆ S3 ⊆ S2 and S1 ⊆ S4 ⊆ S2. Consequently z1 ≤ z3 ≤ z2

and z1 ≤ z4 ≤ z2.
Let zℓ = min(z1, z2, z3, z4) and zu = max(z1, z2, z3, z4). The objective func-

tion takes values between zℓ = z1 and zu = z2 while technological coefficients
take values between aij and aij + dij and the right-hand side numbers takes
values between bi and bi + pi.
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Let z1 6= z2 then, the fuzzy set of optimal values, G, which is a subset of
R

n, is defined by (see Klir and Yuan [6]);

µG(x) =







































0 if
n
∑

j=1
cjxj < zℓ,

(
n
∑

j=1

cjxj−zℓ)

(zu−zℓ)
if zℓ ≤

n
∑

j=1
cjxj < zu,

1 if
n
∑

j=1
cjxj ≥ zu.

(3.6)

The fuzzy set of the i-th constraint, ci, which is a subset of R
m is defined by

µci
(x) =











































0 if bi <
n
∑

j=1
aijxj ,

bi−
n
∑

j=1

aijxj

n
∑

j=1

dijxj+pi

if
n
∑

j=1
aijxj ≤ bi <

n
∑

j=1
(aij + dij)xj + pi,

1 if bi ≥
n
∑

j=1
(aij + dij)xj + pi.

(3.7)

Then, by using the method of defuzzification as for the problem (2.8), the
problem (3.1) is reduced to the following crisp problem:

max λ,

λ(z2 − z1) −
n
∑

j=1
cjxj + z1 ≤ 0,

n
∑

j=1
(aij + λdij)xj + λpi − bi ≤ 0, 1 ≤ i ≤ m,

x ≥ 0.

(3.8)

The optimal value of problem (3.8) can be yield if the set of feasible solutions
is not empty.

Solving the model (3.8), one optimal value λ∗ can be yielded. In fact,
this λ∗ denotes that the satisfaction level for all membership functions can
simultaneously obtain. Further, let us assume that the membership functions
of objective and all constraint are equally important.

4. AVERAGE OPERATOR MODEL AND TWO-PHASE APPROACH MODEL

The problem (2.1) and (3.1) can be solved to the following average operator
model.

max λ# = 1
m+1

m+1
∑

k=1

λk,

subject to 1 ≥ µG(x) ≥ λ1 ≥ 0,

1 ≥ µci
(x) ≥ λi ≥ 0, ∀ i = 2, . . . , m + 1,

x ≥ 0.

(4.1)
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It is easy to understand that the optimal value λ# represent the total amount
of all membership functions.

Definition 4.1. x∗ is a fuzzy-efficient solution to the fuzzy linear program-
ming (FLP) if there does not exist any x ∈ S such that µk(x

∗) ≤ µk(x) for all
k and µρ(x

∗) < µρ(x) for at least one ρ.
Guu and Wu [16] have shown that the optimal solution yielded by the

two-phase approach is afuzzy-efficient solution [16, 17]. The two-phase ap-
proach employs the min operator (model (2.8)) as phase I; and it associates
the average operator (model (4.1)) as phase II. The second phase is defined as
following:

max λ = 1
m+1

m+1
∑

k=1

λk

subject to 1 ≥ µG(x) ≥ λ1 ≥ λ∗ ≥ 0,

1 ≥ µci
(x) ≥ λi ≥ λ∗ ≥ 0, ∀ i = 2, . . . , m + 1,

x ≥ 0.

(4.2)

where λ∗ denotes the solution yielded by the min operator. For model (4.2),
we know that the two-phase approach is a combination of the min operator
and the average operator model. The optimal value λ is absolutely not less
than the value λ∗.

5. THE COMPROMISE MODEL

Let us note the framework of average operator model (4.1) that the decision
variables in objective function are separable and with positive coefficients.
Therefore, at any optimal solutions certain inequality must hold as equalities.
The following lemma can support this assertion.

Lemma 1. The inequality constraints λ1 ≤ µG(x) and λi ≤ µci
(x), ∀ i must

hold as equalities at any optimal solution in model (4.1).

Proof. : See (Y. K. Wu and S. M. Guu [22]). �

This lemma implies that the average operator model (4.1) can be modified
into following problem:

max λ# = 1
m+1

[

µG(x) +
m+1
∑

i=2
µci

(x)

]

subject to x ≥ 0.

(5.1)

Let us look at the precious models closely, then we can understand that solu-
tions obtained by min and average operators represent two extreme situations.
The optimal value λ∗ generated by min operator model denotes to maximize
the least satisfaction level among all membership functions simultaneously.
However, it is a non-compensatory model and can’t guarantee to get fuzzy-
efficient solutions. The optimal value λ# comes from average operator stands
for maximizing the total amount of membership functions, but it is classified
into the fully compensatory model. In order to offer any desirable compromise
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solutions between non-compensatory and fully compensatory to the decision-
maker, we associate preceding two-phase approach with the results obtained
by min operator and propose following compromise model to solve the FLP.

max λ = 1
m+1

m+1
∑

k=1

λk

subject to 1 ≥ µG(x) ≥ λ1 ≥ λ′ ≥ 0,

1 ≥ µci
(x) ≥ λi ≥ λ′ ≥ 0, i = 2, . . . , m + 1.

(5.2)

where the parameter λ′ ∈ [0, λ∗] is given by the decision-maker. Furthermore,
the compromise model (5.2) has been proven and can guarante to obtain the
fuzzy-efficient solution by Guu and Wu [5]. Note that if the decision-maker
assigns λ∗ to λ′, model (5.2) reduces to be the two-phase approach model (4.2).
On the other hand, let λ′ be equal to 0, then it becomes to the average operator
as model (4.1). Therefore, the two-phase approach and average method are
special cases to our compromise model. However, according to the Lemma 5.1
the model (5.2) can be equivalent to the following reduced-form problem:

max λ̃ = 1
m+1

[

µG(x) +
m+1
∑

i=2
µci

(x)

]

subject to 1 ≥ µG(x) ≥ λ′,

1 ≥ µci
(x) ≥ λ′, ∀ i = 2, . . . , m + 1,

x ≥ 0.

(5.3)

Note that the model (5.3) has less number of decision variables and constraints
then that the model (5.2), yet yields the same fuzzy-efficient solutions. In fact,
the parameter λ′ may be considered as a compromise index for all membership
functions. As long as the decision-maker determines the compromise degree
among 0 and λ∗ to index λ′, the model (5.3) can be solved and obtained a
fuzzy-efficient solution between non-compensatory and fully compensatory.

6. NUMERICAL EXAMPLE

In this section, an example will be used to show that every membership
function yielded by the two-phase approach guarantees at least as large a then
the min operator can offer. Consider the following FLP.

max z = x1 + x2

subject to 1̃x1 + 2̃x2 ≤ 3̃,

2̃x1 + 3̃x2 ≤ 4̃,

x1, x2 ≥ 0.

(6.1)

which take fuzzy parameters as; 1̃ = L(1, 1), 2̃ = L(2, 1), 3̃ = L(3, 2), b1 = 3̃ =
L(3, 2) and b2 = 4̃ = L(4, 3) as used by Shaocheng [13]. That is

(aij) =

[

1 2
2 3

]

, (dij) =

[

1 1
2 2

]

⇒ (aij + dij) =

[

2 3
4 5

]

,
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(bi) =

[

3
4

]

, (pi) =

[

2
3

]

⇒ (bi + pi) =

[

5
7

]

.

To solve this problem, first, we must solve the following two subproblems.

max z1 = x1 + x2

subject to 2x1 + 3x2 ≤ 3,

4x1 + 5x2 ≤ 4,

x1, x2 ≥ 0,

and
max z2 = x1 + x2

subject to x1 + 2x2 ≤ 5,

2x1 + 3x2 ≤ 7,

x1, x2 ≥ 0.

Optimal solutions of these subproblems are

x1 = 1 x1 = 3.5
x2 = 0 and x2 = 0
z1 = 1 z2 = 3.5

zℓ = min(z1, z2) = min(1, 3.5) = 1 = z1

zu = max(z1, z2) = max(1, 3.5) = 3.5 = z2

Then the membership function of the objective function can be defined as
follows:

µG(x) =







0 if x1 + x2 < 1,
x1+x2−1

3.5−1 if 1 ≤ x1 + x2 < 3.5,

1 if x1 + x2 ≥ 3.5.

For each of fuzzy constraints, the non-increasing linear membership functions
are designed to as follows:

µc1(x) =







0 if 3 < x1 + 2x2,
3−x1−2x2

x1+x2+2 if x1 + 2x2 ≤ 3 < 2x1 + 3x2 + 2,

1 if 3 ≥ 2x1 + 3x2 + 2;

µc2(x) =







0 if 4 < x1 + 2x2,
4−2x1−3x2

2x1+2x2+3 if x1 + 2x2 ≤ 4 < 4x1 + 5x2 + 3,

1 if 4 ≥ 4x1 + 5x2 + 3.

When the membership function of the objective function and fuzzy constraint
are determined, the phase I of two-phase approach as the same with min
operator will be ready to solve the following problem.

max λ

subject to x1+x2−1
2.5 ≥ λ,

3−x1−2x2

x1+x2+2 ≥ λ,
4−2x1−3x2

2x1+2x2+3 ≥ λ,

x1, x2 ≥ 0,
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that is
max λ

subject to x1 + x2 ≥ 1 + 2.5λ,

(1 + λ)x1 + (2 + λ)x2 ≤ 3 − 2λ,

(2 + 2λ)x1 + (2λ + 3)x2 ≤ 4 − 3λ,

x1, x2 ≥ 0.

(6.2)

Solving above problem, the optimal solution is x∗ = (1.45804, 78× 10−8 ≃ 0).
According to x∗, we can obtain the following optimal value and membership
function for objective and constraints:

λ∗ = 0.1832159, z(x∗) = 1.45804,

µG(x∗) = 0.183216, µc1(x
∗) = 0.44590, µc2(x

∗) = 0.183216. (6.3)

Besides, using the average operator as model (4.1) or (5.1) to solve the
numerical example can yield the optimal solution x# = (1, 0) and the following
optimal value: λ# = 0.355533, µG(x#) = 0, µc1(x

#) = 0.6666, µc2(x
#) = 0.4.

Applying the results x∗ generated from phase I, the second phase of two-phase
approach as model (4.2) is to solve the following problem.

max λ = 1
3

3
∑

k=1

λk

subject to λk ≥ 0.1832159, k = 1, 2, 3; x1 + x2 ≤ 3.5,

x1 + x2 ≥ 1 + 2.5λ1,

2x1 + 3x2 ≥ 1
(λ2 + 1)x1 + (λ2 + 2)x2 ≤ 3 − 2λ2,

4x1 + 5x2 ≥ 1,

(2λ3 + 2)x1 + (2λ3 + 3)x2 ≤ 4 − 3λ3,

x1, x2 ≥ 0.

The optimal solution is x∗∗ = (0.5500, 0.9081). Value of objective function
and membership functions are as follow:

λ = 0.352933, z(x∗∗) = 1.45804, µG(x∗∗) = 0.58326,

µc1(x
∗∗) = 0.4458598, µc2(x

∗∗) = 0.029679. (6.4)

Let us compare the two-phase approach results (6.4) with the solution (6.3) ob-
tained by min operator. It is obvious that the membership function µG(x∗∗) =
0.58326 is larger than µG(x∗) = 0.183216, which means that the two-phase ap-
proach really obtains fuzzy-efficient solution and improves the min operator’s
solution. Applying the results λ∗ = 0.1832159 obtained in phase I, we are
ready to employ the compromise model (5.3) to solve this example.

max λ̃ = 1
3(µG(x) + µc1(x) + µc2(x))

subject to x1 + x2 ≤ 3.5,

x1 + x2 ≥ 1 + 2.5λ′; 2x1 + 3x2 ≥ 1,

(λ′ + 1)x1 + (λ′ + 2)x2 ≤ 3 − 2λ′; 4x1 + 5x2 ≥ 1,

(2λ′ + 2)x1 + (2λ′ + 3)x2 ≤ 4 − 3λ′; x1, x2 ≥ 0,
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where the parameter λ′ is between 0 and 0.1832159. To illustrate the results of
compromise model, we give different value to λ′ and solve it by general linear
programming method. We obtain the various solutions in Table 1.

The Table 1 shows that the solutions obtained by two-phase approach and
average operator represent two extreme situations of the compromise model.
For instance, if λ′ is equal to 0, then the result is the same as the solutions of
average operator model. When the decision-maker gives λ′ = 0.1832159, the
compromise model provides the same results with the two-phase approach.
Giving λ′ among 0 and 0.1832159, these fuzzy-efficient solutions between the
non-compensatory and fully compensatory can be obtained by the compromise
model. This model also provides other alternatives as long as the decision-
maker depends upon his/her preference to determine the compromise index
λ′.

7. CONCLUSIONS

In this paper, we make a study of the linear programming problems with
imprecision parameter and propose a simplified two-phase model to improve
the solution yielded by min operator. Moreover, to generate fuzzy-efficient
solutions between non-compensatory and full compensatory we provide one
compromise model and discover that the two-phase approach and average
operator method are special cases to our method. This compromise model also
employs an adjustable parameter index that the decision-maker can depend
upon his/her preference to determine this index as well as obtain different
alternatives.

Table 1 : Some results by compromise model

λ′ objective value λ̃ µG(x) µc1(x) µc2(x)
0.00 0.355533 0.00 0.6666 0.400
0.05 0.103846 0.100 0.161538 0.0500
0.1 0.1487176 0.100 0.246153 0.1000
0.15 0.240942 0.5500 0.1500 0.022826

0.1832159 0.270777 0.183216 0.44590 0.183216
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