TOTALLY REFLEXIVE, TOTALLY SYMMETRIC PATTERN ALGEBRAS

ENDRE VÁRMONOSTORY

Abstract. A k-ary relation ρ on a set A induces a partition of each power A^n into "patterns" in a natural way. An operation on A is called a ρ -pattern operation if its restriction to each pattern is a projection. We examine functional completeness of algebras with ρ -pattern fundamental operations in the case when ρ is the totally reflexive, totally symmetric relation of A.

MSC 2000. 08A40.

Key words. Majority function, semiprojection, central relation, minimal central relation, functionally completeness.

1. PRELIMINARIES

A finite algebra $\mathbf{A} = (A; F)$ is called *functionally complete* if every (finitary) operation on A is a polynomial operation of \mathbf{A} . A *n*-ary operation f on A is *conservative* if $f(x_1, \ldots, x_n) \in \{x_1, \ldots, x_n\}$ for all $x_1, \ldots, x_n \in A$. An algebra is conservative if its all fundamental operations are conservative.

A possible approach to conservative operations is to consider them as relational pattern functions or ρ -pattern functions. Given a k-ary relation $\rho \subseteq A^k$, two *n*-tuples $(x_1, \ldots, x_n), (y_1, \ldots, y_n) \in A^n$ are of the same pattern with respect to ρ if for all $i_1, \ldots, i_k \in \{1, \ldots, n\}, (x_{i_1}, \ldots, x_{i_k}) \in \rho$ and $(y_{i_1},\ldots,y_{i_k}) \in \rho$ mutually imply each other. An operation $f: A^n \to A$ is a ρ -pattern function if $f(x_1, \ldots, x_n)$ always equals some $x_i, i \in \{1, \ldots, n\}$ where *i* depends only on the ρ -pattern of (x_1, \ldots, x_n) . In fact, any conservative operation is a ρ -pattern function for some ρ — see [11]. If ρ is the equality relation on A, then the pattern functions whose notion was introduced by Quackenbush [5] are ρ -pattern functions. The maximum and minimum operations on chains, and the ternary discriminator, the dual discriminator studied in [2] and [4] are examples for ρ -pattern functions. An algebra is called a ρ -pattern algebra if its operations (or equivalently its term operations) are ρ -pattern functions for the same relation ρ on A. Specifically, if ρ is a totally reflexive, totally symmetric relation then the ρ -pattern algebras are called totally reflexive, totally symmetric pattern algebras. B. Csákány [1] proved that every finite ρ -pattern algebra (A; f) with $|A| \geq 3$ is functionally complete if f is an arbitrary nontrivial ρ -pattern function where ρ is the equality relation on A.

The aim of this paper is to continue research on the functional completeness of finite totally reflexive, totally symmetric pattern algebras. We have already proved a series of facts concerning functional completeness, for the cases when ρ is an equivalence [14], a central relation [10], a graph of a permutation [11],

[13], a bounded partial order [12], and a regular relation [9] on A. These relations are occurring in Rosenberg's primality criterion [7]. We will use the following definitions and results.

An *n*-ary relation ρ on A is called *central* if $\rho \neq A^n$ and there exists a nonvoid proper subset C of A such that

- (a) $(a_1, \ldots, a_n) \in \rho$ whenever at least one $a_j \in C$ $(1 \le j \le n)$;
- (b) ρ is totally reflexive, i.e. $(a_1, \ldots, a_n) \in \rho$ if $a_i = a_j$ for some $i \neq j$, $(1 \leq i, j \leq n)$,
- (c) ρ is totally symmetric, i.e. $(a_1, \ldots, a_n) \in \rho$ implies $(a_{1\pi}, \ldots, a_{n\pi}) \in \rho$ for every permutation π of the indices $1, \ldots, n$.

Note that every unary relation C distinct form \emptyset and A is central. A *n*-ary central relation ρ on A is called *minimal central relation* if $(a_1, \ldots, a_n) \notin \rho$ with all pairwise different noncentral elements $a_1, \ldots, a_n \in A$. The compatible binary reflexive symmetric relations of \mathbf{A} are called tolerance relations of \mathbf{A} . If \mathbf{A} has no nontrivial tolerance then \mathbf{A} is a *tolerance-free* algebra. A ternary operation f on A is a *majority function* if for all $x, y \in A$ f(x, x, y) = f(x, y, x) = f(y, x, x) = x holds. By an *n*-ary *i*-th semiprojection on $A(n \geq 3, 1 \leq i \leq n)$ we mean an operation f with the following property $f(x_1, \ldots, x_n) = x_i$ whenever at least two elements among x_1, \ldots, x_n are equal.

The following proposition was got in [13] from Rosenberg's fundamental theorem [6].

PROPOSITION 1. The clone of term operations of every nontrivial finite ρ pattern algebra **A** with at least three elements contains a nontrivial binary ρ -pattern function or a ternary majority ρ -pattern function, or a nontrivial ρ -pattern function which is a semiprojection.

Now we formulate the following theorem (see [13, Proposition 4]) which also will be used.

THEOREM 2. Let \mathbf{A} be an at least three element finite simple conservative algebra. \mathbf{A} is functionally complete iff

(1) **A** has no compatible binary central relation preserved by every automorphism,

(2) **A** has no compatible bounded partial order ρ , such that for every automorphism π of **A** the relation

$$\rho^{\pi} = \{ (x\pi, y\pi) : (x, y) \in \rho \}$$

equals ρ or ρ^{-1} .

We need the following observation.

REMARK 3. Let ρ be compatible binary central relation of **A** preserved by an automorphism π of **A**. If π has a central element of ρ in one of its cycles, then this cycle only contains central elements of ρ .

2. RESULTS

If ρ is a unary relation on A, then the ρ pattern algebra **A** is not functionally complete see [14].

PROPOSITION 4. Let ρ be an at least 3-ary totally reflexive relation on an at least three element finite set A. The ρ -pattern algebra **A** is functionally complete iff **A** is tolerance-free.

Proof. The functionally complete algebras are tolerance-free. If **A** is a tolerance-free ρ -pattern algebra where ρ is an at least 3-ary totally reflexive relation then we show that it is functionally complete. The binary ρ -pattern functions are projections on A. If $a, b \in A$, then the patterns (a, a, b), (a, b, a), (b, a, a) are the same with respect to ρ . Thus none of the ρ -pattern functions is a majority function on A. The nontrivial ρ -pattern functions which are semiprojections do not preserve the bounded partial orders on **A** (see [3]). Using Proposition 1 we get that the algebra **A** is functionally complete. \Box

THEOREM 5. Let ρ be an at least binary totally reflexive, totally symmetric relation on an at least three element finite set A. The finite ρ -pattern algebra **A** is functionally complete iff **A** is tolerance-free.

Proof. If ρ is the equality relation on A, then our theorem is true (see [1]). If ρ is an at least 3-ary relation on A, then by the Proposition 4 our theorem is true. From now on let ρ be a binary no equality relation on A. The functionally complete ρ -pattern algebras are tolerance-free algebras. Therefore it is enough to prove that every finite tolerance-free ρ -pattern algebra \mathbf{A} is functionally complete. There are two binary nontrivial ρ -pattern functions on A. One of them is

$$f(x,y) = \begin{cases} x, & \text{if } (x,y) \in \rho, \\ y & \text{otherwise.} \end{cases}$$

The other function can be obtained from f by changing x and y. We will show that f does not preserve the bounded partial orders on A. From that we get that the other function does not preserve them either. Let \leq be a bounded partial order on A with the least element 0, and the greatest element 1.

a) Let ρ be a central relation on A. If ρ has at least two central elements then ρ is not simple see [10], and the ρ - pattern algebra \mathbf{A} is not tolarance-free algebra.

b) Let ρ be a central relation on A with a single central element c and $a, b \in A, (a, b) \notin \leq, (a, b) \notin \rho$. The following matrices will be used

a	a	b b	0 c	0 c	0 0	c k
0	b	a 1	$1 \ 1$	k k	k c	0 0
a	b	a b	1 c	k c	$\overline{\mathbf{k} 0}$	$\overline{\mathbf{c} 0}$

If c = 0, then the first, if c = 1 then the second matrix shows that f does not preserve ρ . If 0 and 1 are not central elements of ρ , then there is an element

 $k \in A$ with $(0, k) \notin \rho$. If k = 1, then the third matrix will be used. If $k \neq 0, 1$, then we have the following cases:

(1) k and c are incomparable,

(2) $k \leq c$,

(3) c < k.

In case (1) the fourth matrix, in case (2) the fifth matrix, and in case (3) the sixth matrix show that f does not preserve \leq .

c) If ρ is not a central relation on A, then the following matrices will be used

1	1	0 a	d 1	e 1
0	a	1 1	e e	d d
1	a	$\overline{1 \ a}$	d e	e d

If $(0,1) \in \rho$, then there exists element a with $(a,1) \notin \rho$. Now the first matrice shows that f does not preserve ρ . If $(0,1) \notin \rho$ and there exists element a with $a \neq 1$ $(a,1) \in \rho$, then the second matrix does the work. If $(0,1) \notin \rho$ and there does not exist element a with $a \neq 1$, $(a,1) \in \rho$, then there are elements d, e with $d \neq e$, $(d, e) \in \rho$. In this case the third matrix with $(d, e) \notin \leq$ and the fourth matrix with $(e, d) \notin \leq$ show that f does not preserve \leq . Therefore the nontrivial binary ρ -pattern functions do not preserve the bounded partial orders if ρ is a binary no equality relation on A.

If ρ is a binary no equality relation on A with $a \neq b$, $(a,b) \in \rho$, then the patterns (a, a, b), (a, b, a) and (a, b, b) are the same with repect to ρ . In this case none of the ρ -pattern functions is a majority function. We have already mentioned that the nontrivial semiprojections do not preserve the bounded partial orders on A. The tolerance-free algebras are simple and have no compatible binary central relations. Therefore using Theorem 2 we get from Proposition 1 that \mathbf{A} is functionally complete. \Box

Using Theorem 2 and Theorem 5 we can formulate the following corollary.

COROLLARY 6. Let ρ be at least binary totally reflexive, totally symmetric relation on an at least three element finite set A. The finite simple ρ -pattern algebra **A** is functionally complete iff **A** has no compatible binary central relation preserved by every automorphism.

CLAIM 7. Let ρ be an at least binary central relation on a finite set A. Then the ρ -pattern algebra (A, f) is not functionally complete if f is a binary ρ -pattern function.

Indeed, if ρ is a binary central relation on A, then let C be the center of ρ . The binary ρ -pattern functions preserve the nontrivial equivalence with blocks C, $A \setminus C$. Therefore the algebra (A; f) is not functionally complete.

If ρ is an at least 3-ary central relation on A, then the binary ρ -pattern functions are projections.

CLAIM 8. Let ρ be an at least binary central relation on a finite set A. Then there exists a nontrivial ρ -pattern function f which is a semiprojection and the algebra (A; f) is not functionally complete.

Indeed, if ρ is a binary central relation on A, then the function

$$f(x_1, x_2, x_3) = \begin{cases} x_3, & \text{if } (x_1, x_2), (x_2, x_3) \in \rho \text{ and } (x_1, x_3) \notin \rho \\ x_1 & \text{otherwise} \end{cases}$$

is a nontrivial ρ -pattern function, which is a semiprojection.

If ρ is an at least 3-ary central relation on A, then the function

$$g_n(x_1,\ldots,x_n) = \begin{cases} x_n, & \text{if } (x_1,\ldots,x_n) \in \rho, \\ x_1 & \text{otherwise} \end{cases}$$

is a nontrivial ρ -pattern function which is also a semiprojection. It is easy to see that f and g preserve the nontrivial equivalence with block C, $A \setminus C$ where C is the center of ρ . The proof is completed.

PROPOSITION 9. Let ρ be an at least binary minimal central relation with the center $\{c\}$ on an finite set A. The finite simple ρ -pattern algebra A is functionally complete iff A has no compatible binary minimal central relation with the center $\{c\}$.

Proof. The algebra \mathbf{A} is a nontrivial algebra. From the Theorem 5 we get that **A** has no compatible bounded partial order. The central element c is the fixed point of the automorphisms of ρ . These automorphisms are also the automorphisms of **A**. They can preserve only that binary minimal central relation whose center is $\{c\}$. Using the Theorem 2 and Remark 3 we get the proof.

Define the following subsets of A^n : $A_1 := \{ (c, a_2, \dots, a_n) \in A^n : c, a_2, \dots, a_n \text{ are pairwise different elements} \},\$ $A_n := \{ (a_1, a_2, \dots, c) \in A^n : a_1, a_2, \dots, c \text{ are pairwise different elements} \},\$ $B := \{ (a_1, \dots, a_n) \in A^n : \exists i, j, (1 \le i \ne j \le n) \text{ with } a_i = a_j \},\$ $D := \{(a_1, \ldots, a_n) \in A^n : a_1, a_2, \ldots, a_n \text{ are pairwise different noncentral}\}$ elements}.

THEOREM 10. Let ρ be an at least binary minimal central relation with the center $\{c\}$ on a finite set A. If f is a n-ary nontrivial ρ -pattern function which is an *i*-th semiprojection on A then the algebra (A; f) is functionally complete unless

(a)
$$f(x_1, \ldots, x_n) = c$$
 iff $x_i = c$; or

$$f(x_1, \ldots, x_n) = \begin{cases} x_i, & \text{if } (x_1, \ldots, x_n) \in B \text{ or } (x_1, \ldots, x_n) \in D, \\ c & \text{otherwise}; \end{cases}$$

or

 \square

E. Vármonostory

(b)
$$f(x_1, ..., x_n) = f_M(x_1, ..., x_n)$$
 where
(c) $f_M(x_1, ..., x_n) = \begin{cases} x_i, & \text{if } (x_1, ..., x_n) \in B \text{ or } (x_1, ..., x_n) \in D \text{ or } (x_1, ..., x_n) \in A_j, \\ & j \in M \subseteq \{1, ..., i - 1, i + 1, ..., n\} \\ c & \text{otherwise.} \end{cases}$

Proof. We need the following matrices:

										a_1 :	с :		
a_1	a_1	a_1	с	a_1	a_1	a_1	с	с	a_1	a_i	a_i	a_1	с
;	:	:	:	:	:	:	:	:	:	:	:	:	:
a_i	a_n	a_i	a_i	c	c	c	c	a_i	a_i	c	c	c	a_i
÷	:	÷	÷	÷	:	÷	:	÷	:	÷	÷	÷	÷
c	с	с	с	a_k	a_k	a_k	a_k	с	a_k	a_k	с	a_k	с
÷	:	÷	÷	÷	:	÷	:	÷	:	÷	÷	÷	÷
a_n	a_n	a_n	a_n	a_n	a_1	a_n	a_n	a_n	a_n	a_n	c	a_n	\mathbf{c}
c	a_n	c	a_i	$\overline{a_k}$	с	$\overline{a_k}$	с	$\overline{a_i}$	a_k	$\overline{a_k}$	$\overline{a_i}$	$\overline{a_k}$	a_i .

If (a) comes true then it is easy to prove that f preserves the equivalence ε on A with the two blocks $\{c\}$, $A \setminus \{c\}$. In this case the algebra (A; f) is not functionally complete.

If (a) is not true, we have two cases. In the first case there exists pattern $(a_1, \ldots, a_i, \ldots, c, \ldots, a_n) \in A_j$ with $j \neq i$, $f(a_1, \ldots, a_i, \ldots, c, \ldots, a_n) = c$. Let ε be an arbitrary nontrivial equivalence on A. We show that f does not preserve ε . If $\{c\}$ is a block of ε , then there exist $a_i, a_n \in A$ with $a_i \neq a_n$, $(a_i, a_n) \in \varepsilon$. In this case the first matrix shows that f does not preserve ε . Now let $a_1, a_i, c \in A$ be with $c \neq a_1, (c, a_1) \in \varepsilon, (c, a_i) \notin \varepsilon$. Now the second matrix will be used. In the second case we can suppose that there is not pattern $(a_1, \ldots, c, \ldots, a_n) \in A_j$ with $1 \leq j \leq n, f(a_1, \ldots, c, \ldots, a_n) \in A_i$. Let ε be an arbitrary nontrivial equivalence on A. We show that f does not preserve ε . If ε has a block with a single element c and $a_1, a_n \in A$ with $a_1 \neq a_n, (a_1, a_n) \in \varepsilon$, then the third matrix does the work. If $a_1, a_k, c \in A$ with $a_1 \neq c, (c, a_1) \in \varepsilon$, $(c, a_k) \notin \varepsilon$, then in this case the fourth matrix shows that f does not preserve ε . If ε has not preserve ε . If $a_1, a_k, c \in A$ with $a_1 \neq c, (c, a_1) \in \varepsilon$, then in this case the fourth matrix shows that f does not preserve ε . If ε has not preserve ε then in this case the fourth matrix shows that f does not preserve ε .

If (b) or (c) comes true, then it is easy to see that f preserves the binary minimal central relation τ on A with the center $\{c\}$. c.

If (b) and (c) do not come true, then we show that f does not preserve τ . In the first case we can suppose that

$$f(a_1,\ldots,a_k,\ldots,a_n) = a_k, \quad k \neq i,$$

with $(a_1, \ldots, a_k, \ldots, a_n) \in D$. Then we get from the fifth matrix that f does not preserve τ . In the second case we suppose that there exists $j \neq k$, $(1 \leq j, k \leq n)$ for which $(a_1, \ldots, c, \ldots, a_k, \ldots, a_n) \in A_j$ with

$$f(a_1,\ldots,c,\ldots,a_k,\ldots,a_n) = a_k, \quad k \neq i.$$

If $j \neq i$ and $(a_1, \ldots, a_i, \ldots, c, \ldots, a_k, \ldots, a_n) \in A_j$ then the sixth matrix shows that f does not preserve τ . If j = i, then in case $(a_1, \ldots, c, \ldots, a_k, \ldots, a_n) \in A_j$ we use the seventh matrix. The proof is completed.

THEOREM 11. Let ρ be an at least binary minimal central relation with the center $\{c\}$ on a finite set A. The ρ -pattern algebra **A** is functionally complete iff

- (1) **A** has no compatible equivalence with blocks $\{c\}, A \setminus \{c\},$
- (2) **A** has no compatible binary minimal central relation with the center $\{c\}$.

Proof. We can see in the proof of Claim 7 and Theorem 10 that one of the term operations of **A** which can generate minimal clone preserves the equivalence with blocks $\{c\}$, $A \setminus \{c\}$ or does not preserve the nontrivial equivalences on A. Therefore one of the term operations of **A** preserves the equivalence with blocks $\{c\}$, $A \setminus \{c\}$ or does not preserve the nontrivial equivalences on A. Using the Proposition 9 we get our theorem.

REFERENCES

- CSÁKÁNY B., Homogeneous algebras are functionally complete, Algebra Universalis, 11 (1980), 149–158.
- FRIED E. and PIXLEY A.F., The dual discriminator function in universal algebra, Acta Sci. Math., 41 (1979), 83–100.
- [3] PÁLFY P.P., SZABÓ L. and SZENDREI Å., Automorphism groups and functional completeness, Algebra Universalis, 15 (1982), 385–400.
- [4] PIXLEY A.F., The ternary discrinator function in universal algebra, Math. Ann., 191 (1971), 167–180.
- [5] QUACKENBUSH R.W., Some classes of idempotent functions and their compositions, Coll. Math. Soc. J. Bolyai, Vol. 29, North-Holland, Amsterdam (1974), 71–81.
- [6] ROSENBERG G., Minimal clones I: The five types, Coll. Math. Soc. I. Bolyai, 43, North-Holland, Amsterdam (1981), 635–652.
- [7] ROSENBERG, G., Über die functionale Vollständigkeit in den mehrevertigen Logiken (Structur der Functionen von mehreren Veränderlichen auf eudlichen Mengen), Rozpravy Československé Akad. Věd. Rada Math Přirod. Věd., 80 (1970), 3–93.
- [8] SZABÓ, L. On simple surjective algebras, Acta Sci. Math., 59 (1994), 17–23.
- [9] SZABÓ, L. and VÁRMONOSTORY, E., On characteristically simple conservative algebras, Publicationes Mathematicae, 57 (2000), 425–433.
- [10] VÁRMONOSTORY E., Central pattern functions, Acta Sci. Math., 56 (1992), 223–227.
- [11] VÁRMONOSTORY E., Generalized pattern functions, Algebra Universalis 29 (1992), 346–353.
- [12] VÁRMONOSTORY E., Order-Discriminating Operations, Order, 9 (1992), 239–244.
- [13] VÁRMONOSTORY E., Permutation-pattern algebras, Algebra Universalis, 45 (2001), 435–448.

[14] VÁRMONOSTORY E., Relational pattern functions, Finite Algebra and Multiple-valued Logic (Proc. Conf. Szeged, 1979), Coll. Math. Soc. Bolyai, 28, North-Holland, Amsterdam (1981), 753–758.

Received September 18, 2004

University of Szeged Faculty of Juhász Gyula Teacher's Training College Boldogasszony sgt. 6.sz. 6725 Szeged, Hungary E-mail: varmono@jgytf.u-szeged.hu