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ON A NEW CLASS OF RAPIDLY VARYING FUNCTIONS

SLAVKO SIMIC

Abstract. We introduce a new class K of the perfect Karamata’s kernels which
includes already known classes of rapidly varying functions in Karamata’s sense.
Characterisation theorems for this class are given. It is also shown that the
classical weighted means of arbitrary order preserves regular variation of the
target function if and only if weights are from the class K.
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1. INTRODUCTION

Karamata’s theory of Regular Variation have applications in many branches
of Real and Complex Analysis, Probability theory etc.

We begin with some basic definitions.
Definition 1. It is said that a positive, measurable function `(·) is slowly

varying (at infinity) if

`(λx) ∼ `(x) (x →∞),

for each λ > 0.
Some examples of slowly varying functions are

1, loga x, logb(log x), exp(logc x), exp
(

log x

log log x

)
; a, b ∈ R, 0 < c < 1.

The sum, product and quotient of two slowly varying functions are also
slowly varying.

Functions of the form
f(x) := xρ`(x)

are regularly varying with index ρ, ρ ∈ R. An excellent survey on this topic
is given in [1] and [2].

1.1. Apart from regular variation we shall deal here with classes of rapidly
varying functions in the sense of Karamata, i.e. an extension of regular varia-
tion to the case ρ = ∞. For example, from the property of regularly varying
function f with index ρ,

∀λ > 0, f(λx)/f(x) → λρ (x →∞),

arise a natural extension to the class R∞ of rapidly varying functions with
index ρ = ∞.
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Definition 2. (de Haan (1970) [1, p. 85]) A positive, measurable function
g belongs to the class R∞ if, as x →∞,

g(λx)
g(x)

→





0 0 < λ < 1,

1 λ = 1,

∞ λ > 1
.

Remark 1. Note that to establish g ∈ R∞, only g(λx)/g(x) →∞ for λ > 1
has to be proved.

According to Heiberg’s result [5], g ∈ R∞ is bounded away from 0 and∞ on
every finite interval sufficiently far to the right. In the sequel we shall suppose,
without loss of generality, that g (and `, as well) is locally bounded on [1,∞).

1.2. Another extension to the class Θ of rapidly varying functions follows
from a variant of Karamata’s Theorem [1, pp. 26–30].

Let f be positive and locally integrable on [1,∞) and ρ > 0. Then

f̃(x) := xf(x)/
∫ x

1
f(t)dt → ρ (x →∞),

if and only if f varies regularly with index ρ− 1.
Therefore we get

Definition 3. A positive, locally integrable on [1,∞) function h belongs
to the class Θ if

h̃(x) →∞ (x →∞).

Some important properties of the class Θ are given in [3].

1.3. Those classes of rapidly varying functions are not comparable. Namely,
there exist measurable functions f1, f2 such that f1 ∈ R∞, f1 /∈ Θ and f2 ∈
Θ, f2 /∈ R∞.

Indeed, we can take f1(x) := ex except at the points x = en, n ∈ N , where
we put f1(en) := een−2n. Using Definition 2, it is easy to verify that f1 ∈ R∞.
But

f̃1(en) = een−n/

∫ en

1
etdt → 0 (n →∞).

Hence lim infx→∞ f̃1(x) = 0 i.e. f1 /∈ Θ.
For the second example, let {pn}n≥1 be the sequence of primes and define

f2(x) := ex except at the points x = pn where f2(pn) := e2pn .
Since ∀x ≥ 1, f2(x) ≥ ex, we get

f̃2(x) ≥ xex/

∫ x

1
etdt →∞ (x →∞);

hence f2 ∈ Θ.
But lim infx→∞ f2(2x)/f2(x) = 1, i.e. f2 /∈ R∞.
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1.4. Karamata’s Theorem states that, for ρ > 0,∫ x

1
tρ−1`(t)dt ∼ `(x)

∫ x

1
tρ−1dt (x →∞). (A)

In accordance with (A), we define the class K of rapidly varying functions
as

Definition 4. A positive, locally integrable on [1,∞), kernel C(·) belongs
to the class K if the asymptotic relation∫ x

1
f(t)C(t)dt ∼ f(x)

∫ x

1
C(t)dt (x →∞),

takes place for every regularly varying function f(·) of arbitrary index.
We named K as the class of perfect Karamata’s kernels in honor of the

hundreth anniversary of Karamata’s birthday. Besides, although the classes
R∞ and Θ are uncomparable, the class K includes both of them (Theorem 3,
below).

1.5. Another remarkable property (Theorem 1) is the fact that the classical
weighted means preserves regular variation of the target function if and only
if the weight function belongs to the class K.

Recall that the classical weighted means M (r)(p, f, x) of order r, r ∈ R with
weight function p(·), are defined by

Definition 5. [4, p. 74]

M (r)(p, f, x) :=
(∫ x

1 p(t)(f(t))rdt∫ x
1 p(t)dt

)1/r

, r ∈ R/{0};

M (0)(p, f, x) := exp

∫ x
1 p(t) log f(t)dt∫ x

1 p(t)dt
.

1.6. Finding a representation form for the classes of rapidly varying func-
tions is an open and difficult problem since their structure is very ambiguous.
For instance, we proved in [3] that the class Θ is not closed under multiplica-
tion. In this sense is the following observation.

Remark 2. From Definition 4, it follows that if a function f is in the class
K, it is still in K if changed in a denumerable number of points.

2. RESULTS

Let us start with the following

Theorem 1. For a positive, measurable weight function p(·), the asymptotic
equivalence

M (r)(p, f, x) ∼ f(x) (x →∞),
holds for each r ∈ R and arbitrary regularly varying function f(·) if and only
if p ∈ K.
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The next is a Characterization Theorem for the class K.

Theorem 2. The following assertions are equivalent

(i) p ∈ K;
(ii)

∫ x
1 p(t)dt ∈ Θ;

(iii)
∫ x
1 p(t)dt ∈ R∞;

(iv)
R x
1 p(t) log f(t)dR x

1 p(t)dt
− log f(x) → 0 (x →∞),

where f(·) is a regularly varying function of arbitrary index.

Another property mentioned above is

Theorem 3. The classes R∞ and Θ are proper subclasses of the class K.

3. PROOFS

3.1. Proof of Theorem 1. That the condition p ∈ K is necessary, one
can see putting r = 1. Then, by Definition 5.,

M (1)(p, f, x) :=
∫ x

1
p(t)f(t)dt/

∫ x

1
p(t)dt ∼ f(x) (x →∞).

Hence, by Definition 4, it follows that p ∈ K.
Suppose now p ∈ K and note that regular variation of f(·) implies regular

variation of (f(·))r for each fixed r ∈ R/{0}.
Therefore, by Definition 4 again, we get

∫ x

1
p(t)(f(t))rdt ∼ (f(x))r

∫ x

1
p(t)dt (x →∞),

and
M (r)(p, f, x) ∼ (f r(x))1/r ∼ f(x) ∀r ∈ R/{0}. (1)

For the case r = 0 we need the following lemma.

Lemma 1. ([4], pp. 76) The weighted mean M (r)(p, f, x) of order r ∈ R is
a strictly increasing function of r.

Applying this lemma and (1), we obtain

f(x) ∼ M (−1)(p, f, x) < M (0)(p, f, x) < M (1)(p, f, x) ∼ f(x) (x →∞).

Hence
M (0)(p, f, x) ∼ f(x) (x →∞), (2)

and the proof is done.

3.2. Proof of Theorem 2. The fact that
∫ x
1 p(t)dt ∈ Θ if and only if

p ∈ K is proved in [3]. We shall prove here that (ii) ⇐⇒ (iii).
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Assume firstly
∫ x
1 p(t)dt ∈ Θ. Since, for λ > 1,
∫ λx

1
dt

∫ t

1
p(u)du >

∫ λx

x
dt

∫ t

1
p(u)du

>

∫ x

1
p(u)du

∫ λx

x
dt

= x(λ− 1)
∫ x

1
p(t)dt,

we obtain
∫ λx
1 p(t)dt∫ x
1 p(t)dt

>
λ− 1

λ
· λx

∫ λx
1 p(t)dt∫ λx

1 dt
∫ t
1 p(u)du

→∞ (x →∞).

Hence, by Remark 1 and Definition 2,
∫ x
1 p(t)dt ∈ R∞.

Suppose now that
∫ x
1 p(t)dt ∈ R∞. We get

∫ x
1 dt

∫ t
1 p(u)du

x
∫ x
1 p(t)dt

=
∫ x

1

∫ x/t
1 p(u)du∫ x
1 p(u)du

dt

t2
→ 0 (x →∞),

by dominated convergence, since the integrand is bounded by t−2 and, by
Definition 2, tends pointwise to zero.

Therefore, by Definition 3, it follows
∫ x
1 p(t)dt ∈ Θ.

Now we shall prove (iv) ⇐⇒ (i), i.e. that the asymptotic relation
∫ x
1 p(t) log f(t)dt∫ x

1 p(t)dt
− log f(x) → 0 (x →∞), (3)

holds for each regularly varying function f(·) of arbitrary index if and only if
p ∈ K.

Indeed, taking logarithm on both sides of (2), we see that the condition
p ∈ K is sufficient. To prove that it is also necessary, put f(t) = t. By partial
integration we get

∫ x

1
p(t) log t dt = log x

∫ x

1
p(t)dt−

∫ x

1

dt

t

∫ t

1
p(u)du.

Hence, by (3)
∫ x

1

dt

t

∫ t

1
p(u)du/

∫ x

1
p(t)dt → 0 (x →∞),

i.e., by Definition 3, it follows
∫ x
1 p(t)dt/x ∈ Θ.

But ([3], Proposition 1), if for some a0 ∈ R, xa0g(x) ∈ Θ, then also xag(x) ∈
Θ for each a ∈ R.

Therefore
∫ x
1 p(t)dt ∈ Θ, i.e. by (ii) it follows p ∈ K.
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3.3. Proof of Theorem 3. We prove first that Θ ⊂ K. Let p ∈ Θ.
Since

D(
∫ x
1 dt

∫ t
1 p(u)du)

D(x
∫ x
1 p(t)dt)

=
1

1 + xp(x)/
∫ x
1 p(t)dt

→ 0 (x →∞),

by [3], Lemma 1 and L’ Hospital’s rule, it follows
∫ x
1 dt

∫ t
1 p(u)du

x
∫ x
1 p(t)dt

→ 0 (x →∞).

Hence, by Definition 3
∫ x
1 p(u)du ∈ Θ, i.e. by Theorem 2, part (ii), p ∈ K

and we conclude that Θ ⊆ K.
Now, take an arbitrary f0 ∈ K. Define f1(n) :=

∫ n
1 f0(t)dt/n for n =

1, 2, · · · and f1 = f0 elsewhere. Then, by Remark 2, f1 ∈ K but, since
f̃1(n) = 1, f1 /∈ Θ. Hence, the class Θ is a proper subclass of K.

For p ∈ R∞, it is an easy exercise to show that also
∫ x
1 p(t)dt ∈ R∞. By

Theorem 2, part (iii), it follows that p ∈ K; hence R∞ ⊆ K.
Suppose p0 ∈ K. Define p1(2n) = 2n, n = 1, 2, · · · and p1 = p0 elsewhere.

Then, by Remark 2., p1 ∈ K but, since lim infx→∞
p1(2x)
p1(x) = 2, p1 /∈ R∞, i.e.

R∞ ⊂ K.
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