
MATHEMATICA, Tome 47 (70), No 2, 2005, pp. 209–216

SUFFICIENT CONDITIONS FOR STARLIKENESS
AND CONVEXITY

OF ANALYTIC FUNCTIONS WITH NEGATIVE COEFFICIENTS

G.S. SĂLĂGEAN

Abstract. Several interesting implications concerning analytic functions with
negative coefficients are determined. In particular cases sufficient conditions for
starlikeness, strongly starlikeness and convexity are obtained.
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1. INTRODUCTION

Let A be the class of functions f , which are analytic in the unit disc U =
{z ∈ C : |z| < 1} with normalization of the form f(0) = f ′(0) − 1 = 0. R.
Singh and S. Singh in [4] showed that for f ∈ A the following implication
holds in U :

(1) Re[f ′(z) + zf ′′(z)] > 0 ⇒ Re
zf ′(z)
f(z)

> 0.

P. T. Mocanu ([2], [3]) improved this result by

(2) Re
[
f ′(z) +

1
2
zf ′′(z)

]
> 0 ⇒ Re

zf ′(z)
f(z)

> 0,

(3) Re[f ′(z) + zf ′′(z)] > 0 ⇒
∣∣∣∣arg

zf ′(z)
f(z)

∣∣∣∣ <
π

3

and

(4) Re
[
f ′(z) +

1
2
zf ′′(z)

]
> 0 ⇒

∣∣∣∣arg
zf ′(z)
f(z)

∣∣∣∣ <
4π

9
.

Other related results can be found in [1]. Let N denote the class of analytic
functions with negative coefficients, that is

N = {f ∈ H(U) | f(z) = z −
∞∑

j=2

ajz
j aj ≥ 0, j ≥ 2}.

In this paper we improve the above implications but in the particular case of
analytic functions with negative coefficients.
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2. PRELIMINARIES

We define the operator Dn : N ⇒ N , n ∈ N = {0, 1, 2, · · · } by
a) D0f(z) = f(z);
b) D1f(z) = Df(z) = zf ′(z);
c) Dnf(z) = D(Dn−1f(z)), z ∈ U (see [7]).

Let Sn(α), n ∈ N, α ∈ [0, 1), be the class

Sn(α) =
{

f ∈ A : Re
Dn+1f(z)
Dnf(z)

> α, z ∈ U

}

and let Sn[β], n ∈ N, β ∈ (0, 1], be the class

Sn[β] =
{

f ∈ A :
∣∣∣∣arg

Dn+1f(z)
Dnf(z)

∣∣∣∣ < β
π

2
, z ∈ U

}
.

We note that S0(0) is the class of starlike functions, S1(0) is the class of
convex functions and S0[β] is the class of strongly starlike functions of order
β; obviously S0[1] = S0(0). We denote by Tn(α) the class Sn(α) ∩N .

For the functions in the classes Tn(α) (n ∈ N) we have the next characteri-
zation theorem.

Theorem A. Let α ∈ [0, 1), let n ∈ N and let f be in N , f(z) = z −∑∞
j=2 ajz

j , (aj ≥ 0). Then the next assertions are equivalent

(5) f ∈ Tn(α);

(6)
∞∑

j=2

jn(j − α)aj ≤ 1− α;

(7)
∣∣∣∣
Dn+1f(z)
Dnf(z)

− 1
∣∣∣∣ < 1− α, z ∈ U.

The result is sharp and the extremal functions are

fj(z) = z − 1− α

jn(j − α)
zj , j ∈ {2, 3, · · · }.

A more general form of this theorem is proved in [8] and [9].
We note that S0(α) and S1(α) are the class of starlike functions of order α

and the class of convex functions of order α, respectively. The classes T0(α)
and T1(α) were introduced and studied by H. Silverman [5] (see also [6]).

Remark A. Because (5) and (7) are equivalent we have that if f ∈ Tn(α),
then Dn+1f(z)/Dnf(z) belongs to the disc centered at 1 and having the radius
1− α and from this we deduce that, for f ∈ N ,

Re
Dn+1f(z)
Dnf(z)

> α ⇒
∣∣∣∣arg

Dn+1f(z)
Dnf(z)

∣∣∣∣ < arcsin(1− β).
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Remark B. It is well known that S1(0) ⊂ S0(1/2) (every convex function
is starlike of order 1/2); for the functions with negative coefficients and when
α < 1 it is proved that

(8) Re
[
zf ′′(z)
f ′(z

+ 1
]

> α ⇒ Re
zf ′(z)
f(z)

>
2

3− α

and when α ∈ [0, 1) we have (see [9])

(9) T1(α) ⊂ T0(2/(3− α)).

3. MAIN RESULTS

Theorem 1. Let n ∈ N, β ∈ [−1, 1), and let f ∈ N .
a) If β ∈ [0, 1), then

Re
Dn+2f(z)

z
> β ⇒ Re

Dn+2f(z)
Dn+1f(z)

> β ⇔ f ∈ Tn+1(β) ⇒ f ∈ Tn

(
2

3− β

)
.

b) If β ∈ [−1, 0), then

Re
Dn+2f(z)

z
> β ⇒ Re

Dn+1f(z)
Dnf(z)

>
2(1 + β)
3 + β

⇔ f ∈ Tn

(
2(1 + β)
3 + β

)
.

c) Furthermore, if β ∈ (−1, 0), then

Re
Dn+2f(z)

z
> β ⇒ Re

Dn+2f(z)
Dn+1f(z)

>
2β

β + 1
.

Proof. We have

Re
Dn+2f(z)

z
= 1−

∞∑

j=2

jn+2ajz
j−1

and, from Re [Dn+2f(z)/z] > β, by letting z → 1−, z real, we obtain
∞∑

j=2

jn+2aj ≤ 1− β.

From Theorem A we know that f ∈ Tn+1(α) if and only if

(10)
∞∑

j=2

jn+1(j − α)aj ≤ 1− α.

But (10) holds if jn+1(j − α)/(1− α) ≤ jn+2/(1− β), j ∈ {2, 3, · · · }, or

(11) j(α− β) ≤ α(1− β), j ∈ {2, 3, · · · }
and this last inequality is true for α = β; together Remark B this proves a).

Now we consider β ∈ [−1, 0) and we use that

(12)
jn(j − α)

1− α
≤ jn+2

1− β
, j ∈ {2, 3, · · · }
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implies f ∈ Tn(α). But (12) is equivalent to

(1− α)j2 − (1− β)j + α(1− β) ≥ 0, j ∈ {2, 3, · · · }.
These last inequalities hold if

(13)
1− β +

√
(1− β)2 − 4α(1− α)(1− β)

2(1− α)
≤ 2

and (13) is true for α ≤ 2(1 + β)/(3 + β) and this gives that f ∈ Tn(2(1 +
β)/(3 + β)).

In the case β ∈ [−1, 0] the inequalities (11) are satisfied only if α−β ≤ 0; but
it is sufficient that 2(α−β) ≤ α(1−β) and this is equivalent to α ≤ 2β/(1−β).
This completes the proof of c).

Corollary 1.1. If f ∈ N , then

Re[f ′(z) + zf ′′(z)] > 0 ⇒ Re
[
zf ′′(z)
f ′(z)

+ 1
]

> 0 ⇒ Re
zf ′(z)
f(z)

>
2
3
, z ∈ U.

Proof. We put n = 0 in Theorem 1, a) and then we use (9).
Corollary 1.1 improves (1) for f ∈ N .

Corollary 1.2. If f ∈ N and β ∈ [−1, 0), then

Re[f ′(z) + zf ′′(z)] > β ⇒ Re
zf ′(z)
f(z)

>
2(1 + β)
3 + β

, z ∈ U.

Proof. We put n = 0 in Theorem 1, b) and then we use (9).
We note that Re[f ′(z) + zf ′′(z)] > −1 ⇒ f ∈ T0(0) (that is f is starlike).

Corollary 1.2 is also an improvement of (1) for f ∈ N .

Corollary 1.3. Let n ∈ N and let f ∈ N ;
a) If β ∈ [0, 1), then, for z ∈ U ,

Re
Dn+2f(z)

z
> β ⇒

∣∣∣∣arg
Dn+2f(z)
Dn+1f(z)

∣∣∣∣ < arcsin(1− β)

and

Re
Dn+2f(z)

z
> β ⇒

∣∣∣∣arg
Dn+1f(z)
Dnf(z)

∣∣∣∣ < arcsin
1− β

3− β
;

b) If β ∈ [−1, 0), then, for z ∈ U ,

Re
Dn+2f(z)

z
> β ⇒

∣∣∣∣arg
Dn+1f(z)
Dnf(z)

∣∣∣∣ < arcsin
1− β

3 + β
.

Proof. Corollary 1.3 is a consequence of Theorem 1 and Remark A.

Theorem 2. If f ∈ N satisfies

(14) Re[f ′(z) + γzf ′′(z)] > β, z ∈ U,
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then

(15) Re
[
zf ′′(z)
f ′(z)

+ 1
]

> α, z ∈ U,

where

a) α = α1 =
2β + γ − 1

γ + β
when β ∈ [−1, 0] and γ ≥ 1;

b) α = α2 =
β + γ − 1

γ
when β ∈ [0, 1) and γ > 0.

Proof. We have

(16) f ′(z) + γzf ′′(z) = 1−
∞∑

j=2

j[1 + γ(j − 1)]ajz
j−1;

from (14), letting z → 1− by real numbers, we obtain

(17)
∞∑

j=2

j[1 + γ(j − 1)]aj ≤ 1− β.

We note that (15) is implied by
∣∣∣ zf ′′(z)

f ′(z)

∣∣∣ < 1− α.

But we have

|zf ′′(z)| − (1− α)|f ′(z)| =
∣∣∣∣∣∣

∞∑

j=2

j(j − 1)ajz
j−1

∣∣∣∣∣∣
− (1− α)

∣∣∣∣∣∣
1−

∞∑

j=2

jajz
j−1

∣∣∣∣∣∣

≤
∞∑

j=2

j(j − 1)aj − (1− α)


1−

∞∑

j=2

jaj


 =

∞∑

j=2

j(j − α)aj − (1− α)

and we deduce that

(18)
∞∑

j=2

j[(j − α)]aj ≤ 1− α

implies (15).
The relation (18) holds if

j(j − α)
1− α

≤ j[1 + γ(j − 1)]
1− β

, j ≥ 2.

These last inequalities are equivalent to

(19) j(1− β − γ + αγ) ≤ 1− γ + αγ − αβ, j ≥ 2

and they can be satisfied only if 1− β − γ + αγ ≤ 0.
If β = 0 and α = α1 (in this case α1 = α2, too) (19) holds. If β ∈ [−1, 0),

γ ≥ 1 and α = α1, then 1− β − γ + αγ = β(1−β)
β+γ ≤ 0, and 1− γ + αγ − αβ =
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2β(1−β)
β+γ ≤ 0. The inequalities (19) can be written

(20) j ≥ αβ − αγ + γ − 1
β + γ − αγ − 1

, j ≥ 2

and (20) holds because α1β−α1γ+γ−1
β+γ−α1γ−1 = 2β(1−β)

β(1−β) = 2.

If β ∈ [0, 1], γ > 0 and α = α2, then 1− β− γ + αγ = 0, 1− γ + αγ −αβ =
β(1− β)/γ ≥ 0 and (19) also holds.

From Theorem 2 we obtain the following sufficient conditions for convexity.

Corollary 2.1. Let f ∈ N ; then Re[f ′(z) + γzf ′′(z)] > β, z ∈ U ⇒ f ∈
T1(α), where

a) if β ∈ [−1, 0] and γ ≥ 1− 2β, then α = α1 = (2β + γ − 1)/(γ + β);
b) if β ∈ [0, 1) and γ ≥ 1− β, then α = α2 = (β + γ − 1)/γ.

From Theorem 2 we also obtain the following sufficient conditions for star-
likeness.

Corollary 2.2. Let f ∈ N ; then Re[f ′(z) + γzf ′′(z)] > β, z ∈ U ⇒ f ∈
T0(δ), where

a) if β ∈ [−1, 0] and γ > 1, then δ = δ1 =
2(β + γ)

2γ + β + 1
= 1− 1− β

2γ + β + 1

b) if β ∈ [0, 1) and γ > 0, then δ = δ2 =
2γ

2γ − β + 1
= 1− 1− β

2γ − β + 1
.

From Corollary 2.1 and 2.2, together with Remark A, we obtain

Corollary 2.3. If f ∈ N ; then

Re[f ′(z) + γzf ′′(z)] > β, z ∈ U ⇒
∣∣∣∣arg

(
zf ′′(z)
f ′(z)

+ 1
)∣∣∣∣ < δ, z ∈ U,

Re[f ′(z) + γzf ′′(z)] > β, z ∈ U ⇒
∣∣∣∣arg

zf ′(z)
f(z)

∣∣∣∣ < λ, z ∈ U,

where

a) δ =
1− β

γ + β
when β ∈ [−1, 0) and γ > 1− 2β;

b) δ =
1− β

γ
when β ∈ [0, 1) and γ > 1− β;

c) λ =
1− β

2γ + β + 1
when β ∈ [−1, 0) and γ > 1;

d) λ =
1− β

2γ − β + 1
when β ∈ [0, 1) and γ > 0.

Theorem 3. Let f ∈ N , β ∈ [−1, 1), γ = −β; then

Re[f ′(z) + γzf ′′(z)] > β, z ∈ U ⇒ Re
zf ′(z)
f(z)

> 0, z ∈ U.
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Proof. As in the proof of the Theorem 2, from Re[f ′(z) + γzf ′′(z)] > β we
obtain (17) and by using Theorem A we have that Re[zf ′(z)/f(z)] > 0 holds
if

(21)
∞∑

j=2

jaj ≤ 1.

Comparing (17) and (21) we find that (21) holds if

j ≤ j[1 + γ(j − 1)]
1− β

.

But this is equivalent to β + γ ≥ 0 and this completes the proof. ¤

4. INTEGRAL VERSIONS

Let Lc : A → A be the integral operator defined by f = Lc(g), where
c ∈ (−1,∞), g ∈ A and

f(z) =
c + 1
zc

∫ z

0
tc−1g(t) dt.

In the particular case c = 1 we obtain the Libera integral operator L1. A
simple computation shows that

f ′(z) +
1

c + 1
zf ′′(z) = g′(z), z ∈ U

and because of this relationship Theorem 2 and Theorem 3 can be written in
the following integral version.

Theorem 2’. If f = Lc(g), where g ∈ N satisfies Reg′(z) > β, z ∈ U, then
Re [zf ′′(z)/f ′(z) + 1] > α, z ∈ U, where

a) α = α1 =
2β + 2βc− c

1 + β + βc
when β ∈ [−1, 0] and c ∈ (−1, 0];

b) α = α2 = β + βc− c , when β ∈ [0, 1) and c ∈ (0,∞).

Theorem 3’. Let g ∈ N , let f = Lc(g), where c = −(1 + β)/β and

β ∈ [−1, 1), β 6= 0; then Re[g′(z)] > β, z ∈ U ⇒ Re zf ′(z)
f(z) > 0, z ∈ U.

5. PARTICULAR CASES

The next implications are consequences of Corollary 1.2, 1.4, 2.2, 2.3 or
Theorem 3 and they improve (in the case of functions in N ) the implications
(1), (2), (3) and (4), for z ∈ U .

Re[f ′(z) + zf ′′(z)] > −1 ⇒ Re
zf ′(z)
f(z

> 0

Re[f ′(z) + zf ′′(z)] >
−1
3
⇒ Re

zf ′(z)
f(z

>
1
2
⇒

∣∣∣∣arg
zf ′(z)
f(z)

∣∣∣∣ < arcsin(
1
2
) =

π

6
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Re[f ′(z) + zf ′′(z)] > 0 ⇒
∣∣∣∣arg

zf ′(z)
f(z)

∣∣∣∣ < arcsin(
1
3
) ' 19.47◦

Re[f ′(z) + zf ′′(z)] > 0 ⇒ Re
zf ′(z)
f(z

>
1
2
⇒

∣∣∣∣arg
zf ′(z)
f(z)

∣∣∣∣ < arcsin(
1
2
) =

π

6

Re[f ′(z) +
1
2
zf ′′(z)] >

−1
2
⇒ Re

zf ′(z)
f(z

> 0

Re[f ′(z)− 1
2
zf ′′(z)] >

1
2
⇒ Re

zf ′(z)
f(z

> 0

Re[f ′(z) +
1
2
zf ′′(z)] > 0 ⇒

∣∣∣∣arg
zf ′(z)
f(z)

∣∣∣∣ < arcsin(
1
2
) =

π

6
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Univ., Res. Sem., 7/1991, 47–54.

Received December 15, 2004 Faculty of Mathematics and Computer Science
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