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NONCONVEX MIXED QUASI VARIATIONAL INEQUALITIES
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Abstract. In this paper, we introduce a new class of mixed quasi variational
inequalities, known as nonconvex mixed quasi variational inequalities in the set-
ting of g-convexity. We suggest some algorithms for solving nonconvex mixed
quasi variational inequalities by using the auxiliary principle technique. The
convergence of the proposed methods either requires partially relaxed strongly
monotonicity or pseudomononicity. We also introduce the concept of well-
posedness for the nonconvex mixed quasi variational inequalities. As special
cases, we obtain a number of known and new results for solving various classes
of equilibrium and variational inequality problems. Our results can be considered
as a significant improvement of the previously known results.
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1. INTRODUCTION

Variational inequalities theory has witnessed an explosive growth in the-
oretic advances, algorithmic aspects and applications across all discipline of
pure and applied sciences. This theory provides a novel and unified treatment
of problems arising in economics, finance, transportation, network and struc-
tural analysis, elasticity and optimization. The ideas and techniques of this
theory are being used in a variety of diverse areas and proved to be productive
and innovative, see [1-25] and the references therein. Almost all the results
obtained so far in this area are in the setting of convexity. It has been noted
that these results may not hold in the nonconvex setting. In recent years,
the concept of convexity has been generalized in many directions, which has
potential and important applications in various fields . A significant general-
ization of the convex functions is the introduction of g-convex functions. It is
well known that the g-functions and g-convex sets may not be convex func-
tions and convex sets, see [3, 15, 24]. However, it can be shown that the class
of g-convex function have some nice properties, which the convex functions
have. In particular, it been shown [15] that the minimum of the g-functions
over the g-convex sets can be characterized by a class of variational inequali-
ties, which are called nonconvex (g-convezr ) variational inequalities. Inspired
and motivated by the recent research work going in this field, we consider a
new class of variational inequalities, which is called monconver mized quasi
variational inequalities, where the convex set is replaced by the so-called g-
convex set. For g = I, the indentity operator, we obtain the original mixed
quasi variational inequalities, which have been studied extensively in recent
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years, see [1, 2, 4-7, 18-20]. There are several numerical methods including
projection and its variant forms, Wiener-Hopf equations, descent and auxil-
iary principle for solving variational inequalities. On the other hand, there are
only few iterative methods for solving mixed quasi variational inequalities. It
is known that projection methods and variant forms including Wiener-Hopf
equations cannot be extended for mixed quasi variational inequalities involv-
ing the nonlinear (nondifferentiable) bifunctions. This fact has motivated to
use the auxiliary principle technique, which is mainly due to Lions and Stam-
pacchia [9]. Glowinski, Lions and Tremolieres [7] used this technique to study
the existence of a solution of the mixed variational inequalities. In recent
years, this technique has been used to suggest and analyze various iterative
methods for solving various classes of variational inequalities. It has been
shown that a substantial number of numerical methods can be obtained as
special cases from this technique, see [16-18, 21, 25| and references therein.
We again use the auxiliary principle to suggest a class of iterative methods
for solving nonconvex mixed quasi variational inequalities. The convergence
of these methods requires only that the operator is partially relaxed strongly
monotone, which is weaker than monotonicity. Consequently, we improve the
convergence results of previously known methods, which can be obtained as
special cases from our results. We also use the auxiliary principle technique to
suggest and analyze a proximal method for solving equilibrium problem, which
was introduced in Martinet [12] as a regularization of convex optimization in
Hilbert space. For the recent applications and developments of the proximal
methods, see, for example, [16, 17, 21, 23]. We prove that the convergence of
proximal method requires only pseudomonotonicity, which is a weaker condi-
tion. This clearly improves the known results. Since nonconvex mixed quasi
variational inequalities includes (nonconvex ) variational inequalities and com-
plementarity problems as special cases, results obtained in this paper continue
to hold for these problems. Our results can be considered an important and
significant extension of the known results for solving variational inequalities
and related optimization problems.

2. PRELIMINARIES

Let H be a real Hilbert space whose inner product and norm are denoted
by (-,-) and ||.|| respectively. Let K be a nonempty and closed set in H.
First of all, we recall the following concepts and results.

DEFINITION 1. Let K be any set in H. The set K is said to be g-convex,
if there exists a function g : K — K such that

g(u) +t(glv) —g(u) e K, ¥V wu,veK,tel0,1].

Note that every convex set is g-convex, but the converse is not true, see [3,
24].
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From now onward, we assume that K is a g-convex set, unless otherwise
specified.

DEFINITION 2. The function f: K — H is said to be g-convex, if

flg(u) +t(g(v) —g(w)) < (1—1)f(g(u))
+tf(g(v)). Yu,ve K,tel0,1].

Clearly every convex function is g-convex, but the converse is not true, see
[24].

DEFINITION 3. A function f is said to be strongly g-convex on the g-convex
set K with modulus p > 0, if, Vu,v € K, t € [0, 1],
flg(u) +t(g(v) —g(u)) < (1 —1)f(g(u))+tf(g(v))
—t(1 = pullglv) — glu)|*.

Using the convex analysis techniques, one can easily show that the differ-
entiable g-convex function F' is strongly g-convex function if and only if

Fla() = Flg(w) = (F'(g(u)), 9(v) — g(w)) + pllg(v) — g(u)]*

or

(f'(g(w) = f'(9(v)), 9(u) = g(v)) = 2ullg(v) = g(u)|?,
that is, f'(g(u)) is a strongly monotone operator.

It is well known [3, 24] that the g-convex functions are not convex function,
but they have some nice properties which the convex functions have. Note
that for g = I, the g-convex functions are convex functions and definition 3 is
a well known result in convex analysis.

For a given nonlinear continuous operator 7' : K — H, consider the prob-
lem of finding u € K such that

(1) (Tg(u),g(v) = g(w) + ¢(g(v), g(u)) = (g(u), g(u)) = 0,V € K,

where ¢(.,) : Hx H — RU{oo} is a continuous bifunction in both variables.
Inequality (1) is known as the nonconvexr mized quasi variational inequality. It
is worth mentioning that nonconvex mixed quasi variational inequalities (1) are
quite different from the so-called general mixed quasi variational inequalities.
For the applications and numerical methods of general mixed quasi variational
inequalities, see [18, 19] and the references therein.

If g = I, the indentity operator, then the g-convex set K becomes the convex
set K, and consequently the nonconvex mixed quasi variational inequalities (1)
are equivalent to finding u € K such that

(2) (Tu,v —u) + p(v,u) —e(u,u) >0, V vekK,
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which are known as the mixed quasi variational inequalities. Mixed quasi
variational inequalities have been studied extensively in recent years, see [,
2, 4-8, 13, 14, 18-20].
We remark that if K (u) is a closed convex-valued set in H and
|0, if ue K(u)
lu,u) = { 400, otherwise,
is the indicator function of K, then the problem (3) is equivalent to finding
u € K(u)
(3) (T'(g(u)), g(v) = g(u)) 20, Vve K(u),
which is called the nonconvex quasi general variational inequality. In partic-
ular, if K(u) = K, the convex set and g = I, the identity operator, then one
can obtain the original variational inequality, that is, find v € K such that
(4) (Tu,v—u)y >0, YvekK,

introduced and studied by Stampacchia [22] in 1964. In brief, for a suitable
and appropriate choice of the operators T, g, and the space H, one can obtain
a wide class of variational inequalities and complementarity problems. This
clearly shows that problem (1) is quite general and unifying one. Furthermore,
problem (1) has important applications in various branches of pure and applied
sciences, see [1-25].

We also need the following concepts.

DEFINITION 4. The function T : K — H is said to be:
(i) partially relaxed strongly monotone, if there exists a constant a > 0 such
that

(T(9(w) = T(g(v)),9(2) = g(v)) = allg(z) — g(W)|*, Vu,v,2 € K.

(ii) monotone, if

(T(g(uw)) = T(9(v)), 9(u) — g(v)) 20, Vu,ve K,
(iii) pseudomonotone, if

(T'(g(w)), 9(v) = g(u)) + (v, u) = (u,u) =0

.

(T(g(v)),g(u) — g(v)) + ¢(v,u) — p(u,u) >0, Yu,v e K.
(iv) hemicontinuous, if Yu,v € K,t € [0, 1], the mapping

(T'(g(u) +t(g(v) — g(u)), g(v) — g(u)))

is continuous.

We remark that if z = wu, then partially relaxed strongly monotonicity
is exactly monotonicity of the operator T. For g = I, the indentity oper-
ator, then Definition 4 reduces to the standard definition of partially re-
laxed strongly monotonicity, monotonicity, and pseudomonotonicity. It is
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known that monotonicity implies pseudomonotonicity, but not conversely.
This implies that the concepts of partially relaxed strongly monotonicity and
pseudomonotonicity are weaker than monotonicity.

LEMMA 1. Let T be pseudomonotone, hemicontinuous and the bifunction
©(.,.) is g-convex with respect to second argument. Then the nonconver mized
quasi variational inequality (1) is equivalent to finding u € K such that

6)  (T(9(v)),9(v) = g(u)) + (v, u) — p(u,u) = 0, Vv e K.

Proof. Let u € K be a solution of (1). Then
<T(g(u)),g(v) - g(U)> + (,O(U,U) - QO(U,U) > 0, Vo e K

which implies

(T'(9(v), 9(v) = g(w)) + ¢(v,u) = p(u,u) 20, VveK,

since T is pseudomonotone.
Conversely, let u € K satisfy (5). Since K is a g-convex set, Yu,v € K,t €

[0,1], g(ve) = g(u) + t(g(v) — g(u)) = (1 = )g(u) + tg(v) € K.
Taking g(v) = g(v¢) in (5), we have
t{T(g(ve), 9(u) —g(v)) < wl(g(ve), g(u)) — p(g(u)), g(u))
(6) < tHe(g(v), g(w) — @(g(u), g(u))},

where we have used the fact that the bifunction ¢(.,.) is g-convex with respect
to the second argument.
Dividing the inequality (6) by and taking the limit as ¢t — 0, we have
(T(g(w)), 9(v) — g(u)) + ©(g(v), g(u)) — p(g(u).g(u)) = 0,Yv € K,
the required result. O
REMARK 1. Problem (5) is known as the dual nonconvex mixed quasi varia-

tional inequality. Lemma 1 can be viewed as a generalization and an extension
of Minty’s Lemma.

3. ITERATIVE SCHEMES

In this section, we suggest and analyze some new iterative methods for
solving the problem (1) by using the auxiliary principle technique of Glowinski,
Lions and Tremolieres [7] as developed by Noor [16-18] in recent years.

For a given u € K, consider the problem of finding a unique w € K satisfying
the auxiliary variational inequality

(pT(g(u)) + E'(g(w)) = E'(g(u)),g(v) — g(w))
(7) +pp(g(v), g(w)) — pp(g(w), g(w)) >0, Vo € K,
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where p > 0 is a constant and E’(u) is the differential of a strongly g-convex
function E at v € K. Problem (7) has a unique solution, since the function £
is strongly g-convex function.

REMARK 2. The function B(w,u) = E(g(w)) — E(g(u)) — (E'(g(u)), g(w) —
g(u)) associated with the g-convex function E(u) is called the generalized
Bregman function. We note that if g = I, then B(w,u) = E(w) — E(u) —
(E'(u),w — u) is the well known Bregman function. For the applications of
the Bregman function in solving variational inequalities and complementarity
problems, see[16, 25] and the references therein.

We note that if w = u, then clearly w is a solution of the nonconvex mixed
quasi variational inequality (1). This observation enables us to suggest the fol-
lowing method for solving the nonconvex mixed quasi variational inequalities

(1).

ALGORITHM 1. For a given ug € H, compute the approrimate solution w1
by the iterative schemes

(8) (pT(g(un)) + E'(g(un+1)) — E'(g(un)), 9(v) — g(un+1))
+ pp(9(v), g(uni1)) — pe(g(unta), g(unt1)) 2 0, Vv € K,
where p > 0 is a constant.
Note that if ¢ = I, the identity operator, the g-convex set K becomes a

convex set K, then Algorithm 1 reduces to a method for solving the mixed
quasi variational inequalities (2).

ALGORITHM 2. For a given ug € H, compute u,1 by the iterative scheme
(pT'(un) + E'(tny1) — El(“ﬂ):” — Unt1)
+ C,O(U,Un+1) - So(un+1aun+1) >0, YWweK,
which appears to be a new one.

For suitable and appropriate choice of the operators and the space H, one
can obtain various new and known methods for solving equilibrium, variational
inequalities and complementarity problems.

For the convergence analysis of Algorithm 1, we need the following result.
The analysis is in the spirit of Noor [17].

THEOREM 1. Let E(u) be a strongly g-conver with modulus > 0. and
the operator T is partially relaxed strongly monotone with constant o > 0. If
the bifunction ¢(.,.) is skew-symmetric and 0 < p < g, then the approximate
solution up41 obtained from Algorithm 1 converges to a solution of (1).

Proof. Let u € K be a solution of (1). Then
9) (Tg(u), g(v) — g(w)) + ¢(9(v),9(w)) = p(g(u), g(u)) = 0, Vo € K.
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Now taking v = up+1 in (9) and v = u in (8), we have

(10) (T'(g(w)), g(unt1) — g(u)) + p(g(uni1), g(w)) = @(g(u), g(u)).

and
(A1) (pT(gun)) + E'(g(uns1) — E'(g(un)), o) — gluims1))
+p{e(9(un+1), g(unt1)) — w(g(u), g(unt1)) > 0.
We now consider the function
(12)  B(u,w) = E(g(u)) - E(g(w)) — (E'(9(w)), g(u) — g(w))
> Bllglu) — g(w)|,
using strongly g-convexity of E. Now combining (10), (11) and (12), we have
B(u7 un) - B(u, unJrl) = E(g(un+1)) - E(g(un))

—(E"(g(un)), g(unt1) — g(un)
H(E (g(tnr1)) — E'(g(un)), 9(u) — g(unt1))

> ﬁHg(un—&-l) - g(un)Hz
H(E (g(uns1)) — E'(g(un)), g(u) — g(tnt1))
> Bllg(uns1) — glun)|?
+p(T'(g(un)) — T(g(w)), g(unt1 — g(w)))
+p{p(g(w), g(u)) — ¢(g(u), g(unt1))
—p(g(un+1), g(u)) + 0(g(un+1), g(un+1)) }
> {8 — pa}llg(unt1) — g(un)|®

+p{p(g(u), g(u)) — (g(u), g(un+1))
—p(g9(un+t1), 9(u)) + ©(g(unt1), g(unt1))}
> {8 — pa}|lg(uni1) — glun)|?,

where we have used the fact that T is partially relaxed strongly monotone
with constant o > 0 and the bifunction ¢(.,.) is skew-symmetric.

If wpy1 = uy, then clearly u, is a solution of the nonconvex problem (2.1).
Otherwise, for 0 < p < g, it follows that B(u, uy) — B(u, un+1) is nonnegative,
and we must have

lim |[upy1 — unl| = 0.
n—oo

Now using the technique of Zhu and Marcotte [25], it can be shown that the
entire sequence {uy} converges to the cluster point u satisfying the nonconvex
mixed quasi variational inequalities (1). O

We now show that the auxiliary principle technique can be used to suggest
and analyze a proximal method for solving nonconvex mixed quasi variational
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inequalities (1). We show that the convergence of the proximal method re-
quires only the pseudomonotonicity, which is a weaker condition than monotonic-
ity.

For a given u € K consider the auxiliary problem of finding a unique w € K
such that

(13) (pT(g(w)) + E'(9(w)) = E'(g(u), 9(v) — g(w))
+r{p(9(v), 9(w)) = p(g(w), g(w))} = 0, ¥ € K,
where p > 0 is a constant. Note that if w = u, then w is a solution of (1). This

fact enables us to suggest the following iterative method for solving nonconvex
mixed quasi variational inequalities (1).

ALGORITHM 3. For a given ug € H, compute the approximate solution w41
by the iterative scheme

(14) (PT(g(un+1)) + E'(g(un+1)) — E'(g(un)), g(v) — g(un+1))
+p{p(9(v), 9(uns1) — ©(g(tns1), 9(uns1))} >0, Vo € K.

Algorithm 3 is known as the proximal method for solving nonconvex prob-
lem (1). For g = I, where I is the identity operator, the g-convex set K
becomes the convex set K and we obtain a proximal method for the mixed
quasi variational inequality (2), that is,

ALGORITHM 4. For a given ug € H, compute the approzimate solution i1
by the iterative scheme

(pT (unt1) + E'(uns1) — E'(un), v — tnt1)
+p{o(v, ung1) — @(Unt1,Uungp1) >0, Vv € K,

which appears to be a new one. Note that E’(u) is the differential of a
differentiable strongly convex function F at u € K.

In a similar way, one can obtain a variant form of proximal methods for
solving variational inequalities and complementarity problems as special cases.

We now study the convergence analysis of Algorithm 3 using the technique
of Theorem 1. For the sake of completeness and to convey an idea of the
techniques involved, we sketch the main points only.

THEOREM 2. Let E(u) be a strongly g-convex with modulus 3 > 0. and the
operator T' be pseudomonotone. If the bifunction o(.,.) is skew-symmetric,
then the approzimate solution uyyiobtained from Algorithm 3 converges to a
solution of (1).

Proof. Let u € K be a solution of (1). Then

(T(g(u)), g(v) — g(u)) + ©(g(v), g(uw)) > p(g(u), g(u)), Vv € K,
which implies that

(15) (T(g(v)),g(v) — g(w)) + ¢(g(v), g(u)) = ¢(g(u), g(u)),Vv € K,
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since T is pseudomonotone.
Taking v = up41 in (15), we have

(16) (T(9(un+1)), g(unt1) — g(u)) + @(g(unt1), g(u)) > @(g(u), g(u)).

Now as in Theorem 1, we have

B(uyun) - B(uvun-i-l) = FE g(un+l)) E(g(un))

(
—(E'(g9(un)), 9(unt1) — g(un
H(E (g(un+1)) — E'(g(un)), g(u) — g(unt1))
> Ollg ( n+1) g(un)|?
< g(uny1)) — E’(g(un)),g(u) — g(un+1))
> ﬂHg(un+1)— g(un)|I* + p{e(g(u), g(u))

(
—p(g(u), g(uny) — (g(unt1), g(u))
+e(g(unt1), 9(unt1))}
> Bllg(untr) — g(un)|?,
using (16) and the fact that the bifunction ¢(.,.) is skew-symmetric.

If upy1 = uy, then clearly u, is a solution of the nonconvex problem (1).
Otherwise, it follows that B(u,uy,) — B(u, up+1) is nonnegative , and we must
have

lim |[upy1 — unl| = 0.
n—oo

Now using the technique of Zhu and Marcotte [25], it can be shown that the
entire sequence {u, } converges to the cluster point u satisfying the nonconvex
mixed quasi variational inequality (1). O

4. WELL-POSEDNESS

In recent years, much attention has been given to introduce the concept of
well-posedness for variational inequalities, see [8, 10, 11, 16] and the references
therein. In this Section, we introduce the similar concepts of well-posedness
for nonconvex mixed quasi variational inequalities (1). The results obtained
can be considered as a natural generalization of previous results of [8, 10, 11,
16]. For this purpose, we need the following concepts.

For a given € > 0, we consider the sets

Ale) ={u € K : (Tg(u),g(v) —g(u)) + ©(g(v),9(w)) = ¢(g(u), g(u))
> —ellg(v) —g(u)ll, Vve K}

and

Ble) ={ue K :(Tg(v),9(v) —g(u)) + #(g(v),9(w)) —¢(g(u), g(u))
> —ellg(v) = g(u)ll, vve K}
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For a nonempty set X C H, we define the diameter of X, denoted by D(X),
as

D(X) =sup{flv—ul; Vu,ve X}
DEFINITION 5. We say that the nonconvex mixed quasi variational inequal-
ity (1) is well-posed, if and only if
A(e) #¢ and D(A(e)) — 0,as € — 0.

For ¢ = I, we obtain the correspeonding definition of well-posedness for
mixed quasi variational inequalities (2), which is a natural extension of the
one considered by Lucchetti and Patrone [10, 11] for variational inequalities.

THEOREM 3. Let the operator T be pseudomonotone hemicontinuous and
let the bifunction ¢(.,.) be g-convez in the second argument. Then

A(e) = B(e).

Proof. Let u € K be such that

(Tg(u),g(v) —g(u)) + @(g9(v),g(u)) —@(g(u),g(u))
> —ellg(v) — gw)ll, Vve K,

which implies that
(Tg(v),9(v) —g(u)) + »(g(v),g(u)) — @(g(u),g(u))

(17) > —ellg(v) —g(u)ll, VveK,
since T is pseudomonotone.

Thus
(18) A(e) C Ble).

Conversely, let u € K such that (17) hold. Since K is a g-convex set, Yu,v €
K,te0,1], g(v) = g(u) +t(g(v) —g(u)) = (1 —t)g(u) + tg(v) € K.

Taking g(v) = g(v¢) in (17)and using the g-convexity of ¢(.,.) in the second
argument, we have

t{(Tg(ve),9(v) — g(u)) + @(g(v),g(uw)) = @(g(u),g(u))}
> —tellg(v) — g(u)].

Dividing the above inequality by ¢ and letting ¢ — 0, we have

(Tg(u),g(v) — g(w) + ¢(g(v), g(u)) — (g(u), g(u)) = —€llg(v) — g(u)|
which implies that

(19) B(e) C Ale).
Thus from (17) and (19), we have
A(e) = B(e),

the required result. O
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THEOREM 4. If the bifunction is lower semicontinuous, that is,
p(Un, un) — p(u,u)
as n — n, then the set B(e) is closed under the assumptions of Theorem 3.
Proof. Let {u, : n € N} C B(e) be such that g(u,) — g(u) in K as
n — oo. This implies that g(u,) € K and
(Tg(v),9(v) = g(un)) + ¢(9(v), 9(un)) = (g(un); g(un))
> —€llg(v) —glun)ll, Vv e K.
Taking the limit in the above inequality as n — oo, we have
(Tg(v),9(v) =g(w) + ¢(9(v),9(w)) = (g(u), g(u))
> —ellg(v) —g(w)ll, YveK,

which implies that uv € K, since K is a closed and g-convex set. Consequently,
it follows that the set B(e) is closed. O

Using essentially the technique of Goeleven and Mantague [8], we can prove
the following results. To convey an idea and for the sake of completeness, we
include their proofs.

THEOREM 5. Let T' be pseudomonotone and hemicontinuous. If ¢(.,.) is
g-convezx in the second argument and the problem (1) is well-posed, then the
nonconvexr mized quasi variational inequality (1) has a unique solution

Proof. Let us define the sequence {uy : k € N} by g(ug) € A(1/k). Let
€ > 0 be sufficiently small and let m,n € N such that n > m > % Then

() ca(L)cao
Jutn — | < D (A (i)) ,

which implies that the sequence {u,} is a Cauchy sequence and it converges,
that is, up — w in K. From Theorem 3 and Theorem 4, we know that the
set A(e) is a closed set. Thus

u € U€>0A(€),

so that u is solution of the nonconvex problem (1). From the second condi-
tion of well-posedness, we see that the solution of the nonconvex mixed quasi
variational inequality (1) is unique. O

Thus

THEOREM 6. Let all the assumptions of Theorem 3 hold. If A(e) # 0,Ve > 0,
A(e) is bounded for some €y, and g is a Lipschitz continuous function with
constant > 0, then the nonconvex mized quasi variational inequality (1) has
at least one solution.
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Proof. Let u, € A(1/n). Then A(1/n) C A(e), for n large enough. Thus
for some subsequence u,, — u € K, we have

(Tg(v),9(v) —g(un)) + ¢(g(v),g(un))
> plg(um), glun)) = llg(e) = glum)l, Vo€ K

I
2 ¢(g(un), g(un)) = —Alvll + ¢}, Vo€ K.
Taking the limit as n — oo, we have

{Tg(v), g(v) = g(w)) + ¢(g(v), g(u)) = p(g(u), g(u)) = 0,
which implies that g(u) € B(0) = A(0), by Theorem 3. This shows that

g(u) € A(0), from which it follows that the nonconvex problem (1) has at
least one solution. O

REMARK 3. I. If the nonconvex problem (1) has a unique solution, then it
is clear that A(e) # 0,Ve > 0 and NesoA(e) = {uo}.

II. It is known that [11] if the variational inequality (4) has a unique
solution, then it is not well-posed.

III. From Theorem 5, we conclude that the unique solution of the non-
convex problem (1) can be computed by using the nonconvex mixed quasi
e-variational inequality, that is, find ue € K such that

(Tg(ue) , g(v) —g(ue)) +»(g(v), g(ue))
—p(g(ue), g(ue)) > —ellg(v) — g(ud)ll, veK.
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