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Let Rn is the n-dimensional Euclidean space of points x′ = (x1, ..., xn),
|x′|2 =

∑n
i=1 x2

i and denote by x = (x′, t) = (x1, . . . , xn, t) a point in Rn+1.
An almost everywhere positive and locally integrable function ω(t), t ∈ R, will
be called a weight. We shall denote by Lp,ω(Rn+1) the set of all measurable
function f on Rn+1 such that the norm

‖f‖Lp,ω(Rn+1) ≡ ‖f‖p,ω;Rn+1 =
(∫

Rn+1

|f(x)|pω(t)dx

)1/p

, 1 ≤ p < ∞,

is finite.
Let us now endow Rn+1 with the following parabolic metric introduced by

Fabes and Riviére in [4]

(1) d(x, y) = ρ(x− y), where ρ(x) =

√
|x′|2 +

√
|x′|4 + 4t2

2
.

A ball with respect to the metric d centered at zero and of radius r is just the
ellipsoid

Er(0) =
{

x ∈ Rn+1 | |x
′|2

r2
+

t2

r4
< 1

}
.

Obviously, the unit sphere with respect to this metric coincides with the unit
sphere in Rn+1, i.e.

∂E1(0) ≡ Σn+1 =
{

x ∈ Rn+1 | |x| =
( n∑

i=1

x2
i + t2

)1/2
= 1

}
.

Let d̃(x, y) = ρ̃(x − y), ρ̃(x) = max(|x′|, |t|1/2), and I be a parabolic cylin-
der centered at some point x and with radius r, that is I ≡ Ir(x) = {y ∈
Rn+1 : |x′ − y′| < r, |t − τ | < r2}. It is easy to see that for any ellipsoid
Er there exist cylinders I and I with measures comparable to rn+2 and such
that I ⊂ Er ⊂ I. Obviously, this implies an equivalence of both metrics and
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the topologies induced by them. Later we shall use this equivalence without
making reference to, except required.

It is worth noting that ρ(x) has been employed in the study of singular
integral operators with Calderón-Zygmund kernels of mixed homogeneity (see
[4]).

Definition 1. A function K defined on Rn+1\{0}, is said to be a parabolic
Calderon-Zygmund (PCZ) kernel in the space Rn+1 if

i) K ∈ C∞(Rn+1 \ {0}) ;
ii) K(rx′, r2t) = r−(n+2)K(x′, t) for each r > 0, x = (x′, t) ∈ Rn+1 \ {0};
iii)

∫
Σn+1

K(x)dσ = 0 , where dσ is the element of area of the sphere Σn+1.

Let K be a parabolic Calderon–Zygmund kernel and T be the corresponding
integral operator Tf(x) = p.v.

∫
Rn+1 K(x − y)f(y)dy. We establish bounded-

ness in weighted Lp space parabolic Calderon–Zygmund integral operators.

Theorem 1. Let p ∈ (1,∞), K be a Calderon–Zygmund kernel and T be the
corresponding integral operator. Moreover, let ω(t), ω1(t) be weight functions
on R and the following three conditions are satisfied:

(a) there exists b > 0 such that

sup
|t|/4<|τ |≤4|t|

ω1(τ) ≤ b ω(t) for a.e. t ∈ R,

(b) A ≡ supτ>0

(∫
|t|>2|τ | ω1(t)|t|−pdτ

)(∫
|t|<|τ | ω

1−p′(t)dt
)p−1

< ∞,

(c) B ≡ supτ>0

(∫
|t|<|τ | ω1(t)dt

)(∫
|t|>2|τ | ω

1−p′(t)|t|−p′dt
)p−1

< ∞.

Then there exists a constant c, independent of f , such that

(2)
∫

Rn+1

|Tf(x)|pω1(t)dx′dt ≤ c

∫

Rn+1

|f(x)|pω(t)dx′dt

for all f ∈ Lp,ω(Rn+1). Moreover, condition (a) can be replaced by the condi-
tion

(a1) there exists b > 0 such that

ω1(t)

(
sup

|t|/4≤|τ |≤4|t|

1
ω(t)

)
≤ b for a.e. t ∈ R.

Proof. For k ∈ Z we define Ek = {x ∈ Rn+1 : 2k < |t| ≤ 2k+1}, Ek,1 =
{x ∈ Rn+1 : |t| ≤ 2k−1}, Ek,2 = {x ∈ Rn+1 : 2k−1 < |t| ≤ 2k+2}, Ek,3 = {x ∈
Rn+1 : |t| > 2k+2}. Then Ek,2 = Ek−1 ∪Ek ∪Ek+1 and the multiplicity of the
covering {Ek,2}k∈Z is equal to 3.
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Given f ∈ Lp,ω(Rn+1), we write

|Tf(x)| =
∑

k∈Z

|Tf(x)|χEk
(x) ≤

∑

k∈Z

|Tfk,1(x)|χEk
(x)

+
∑

k∈Z

|Tfk,2(x)|χEk
(x) +

∑

k∈Z

|Tfk,3(x)|χEk
(x)

≡ T1f(x) + T2f(x) + T3f(x),

(3)

where χEk
is the characteristic function of the set Ek, fk,i = fχEk,i

, i = 1, 2, 3.
We shall estimate ‖T1f‖Lp,ω1

. Note that for x ∈ Ek, y ∈ Ek,1 we have

|τ | ≤ 2k−1 ≤ |t|/2.

Moreover, Ek ∩ suppfk,1 = ∅ and |t− τ | ≥ |t|/2. Hence

T1f(x) ≤ c1

∑

k∈Z

(∫

Rn+1

|fk,1(y)|
ρ(x− y)n+2

dy

)
χEk

(t)

≤ c1

∫

Rn

∫

|τ |<|t|/2

|f(y)|
ρ(x− y)n+2

dy

≤ c2

∫

Rn

∫

|τ |<|t|/2

|f(y)|(|x′ − y′|+ |t|1/2
)n+2 dy′dτ

for any x ∈ Ek. Using this last inequality we have

∫

Rn+1

|T1f(x)|pω1(t)dx′dt

≤ c2

{∫

Rn+1

(∫

Rn

∫

|τ |<|t|/2

|f(y)|(|x′ − y′|+ |t|1/2
)n+2 dy′dτ

)p

ω1(t)dx

}1/p

.

For x = (x′, t) ∈ Rn+1 let

I(t) =
∫

Rn

(∫

|τ |<|t|/2

∫

Rn

|f(y′, τ)|
(|x′ − y′|+ |t|1/2)n+2

dy

)p

dx′

=
∫

Rn

(∫

|τ |<|t|/2

(∫

Rn

|f(y′, τ)|
(|x′ − y′|+ |t|1/2)n+2

dy′
)

dτ

)p

dx′.
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Using the Minkowski and Young inequalities we obtain

I(t) ≤
[∫

|τ |<|t|/2

(∫

Rn

|f(y′, τ)|pdy′
)1/p (∫

Rn

dy′

(|y′|+ |t|1/2)n+2

)
dτ

]p

=

(∫

|τ |<|t|/2
‖f(·, τ)‖p,Rndτ

)p (∫

Rn

dy′

(|y′|+ |t|1/2)n+2

)p

=
c3

|t|p
(∫

|τ |<|t|/2
‖f(·, τ)‖p,Rndτ

)p (∫

Rn

dy′

(|y′|+ 1)n+2

)p

=
c4

|t|p
(∫

|τ |<|t|/2
‖f(·, τ)‖p,Rndτ

)p

.

Integrating over R we get

∫

Rn+1

|T1f(x)|pω1(t)dx′dt ≤ c5

∫

R
ω1(t)|t|−p

(∫

|τ |<|t|/2
‖f(·, τ)‖p,Rndτ

)p

dt.

Since A < ∞, the Hardy inequality

∫

R
ω1(t)|t|−p

(∫

|τ |<|t|/2
‖f(·, τ)‖p,Rndτ

)p

≤ C

∫

R
‖f(·, τ)‖p

p,Rnω(τ)dτ

holds and C ≤ c′A where c′ depends only on p. In fact the condition A < ∞ is
necessary and sufficient for the validity of this inequality, (see [2], [9]). Hence,
we obtain

(4)
∫

Rn+1

|T1f(x)|pω1(t)dx′dt ≤ c

∫

R
‖f(·, τ)‖p

p,Rnω(τ)dτ = c‖f‖p
Lp,ω(Rn+1)

.

Let us estimate ‖T3f‖Lp,ω1
. As is easy to verify, for x ∈ Ek, y ∈ Ek,3 we have

|τ | > 2|t| and |t− τ | ≥ |τ |/2. For x ∈ Ek we obtain

T3f(x) ≤ c2

∫

Rn

∫

|τ |>2|t|

|f(y)|(
|x′ − y′|+ |τ |1/2

)n+2 dy′dτ.

Using this last inequality we have

‖T3f‖Lp,ω1 (Rn+1)

≤ c2





∫

Rn+1




∫

Rn

∫

|τ |>2|t|

|f(y)|(
|x′ − y′|+ |τ |1/2

)n+2 dy′dτ




p

ω(t)dx





1/p

.
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For x = (x′, t) ∈ Rn+1 let

I1(t) =
∫

Rn

(∫

|τ |>2|t|

∫

Rn

|f(y′, τ)|
(|x′ − y′|+ |τ |1/2)n+2

dy

)p

dx′

=
∫

Rn

(∫

|τ |>2|t|

(∫

Rn

|f(y′, τ)|
(|x′ − y′|+ |τ |1/2)n+2

dy′
)

dτ

)p

dx′.

Using the Minkowski and Young inequalities we obtain

I1(t) ≤
[∫

|τ |>2|t|

(∫

Rn

|f(y′, τ)|pdy′
)1/p

(∫

Rn

dy′

(|y′|+ |τ |1/2)n+2

)
dτ

]p

=

(∫

|τ |>2|t|
‖f(·, τ)‖p,Rndτ

)p (∫

Rn

dy′

(|y′|+ |τ |1/2)n+2

)p

= c3

(∫

|τ |>2|t|
|τ |−p‖f(·, τ)‖p,Rndτ

)p (∫

Rn

dy′

(|y′|+ 1)n+2

)p

= c4

(∫

|τ |>2|t|
|τ |−p‖f(·, τ)‖p,Rndτ

)p

.

Integrating over R we get

∫

Rn+1

|T3f(x)|pω1(t)dx′dt ≤ c5

∫

R
ω1(t)

(∫

|τ |>2|t|
‖f(·, τ)‖p,Rn |τ |−p dτ

)p

dt.

Since B < ∞, the Hardy inequality

∫

R
ω1(t)

(∫

|τ |>2|t|
‖f(·, τ)‖p,Rnτ−p dτ

)p

≤ C ′
∫

R
‖f(·, τ)‖p

p,Rnω(τ)dτ

holds and C ′ ≤ c′B where c′ depends on n and p. In fact the condition B < ∞
is necessary and sufficient for the validity of this inequality (see [2], [9]). Hence,
we obtain

(5) ‖T3f‖Lp,ω1(Rn+1) ≤ c

(∫

R
‖f(·, τ)‖p

p,Rnω(τ)dτ

)1/p

= c‖f‖p
Lp,ω(Rn+1)

.



188 F.M. Mushtagov 6

Finally, we estimate ‖T2f‖Lp,ω1
. By the Lp(Rn+1) boundedness of T [3] we

have
∫

Rn+1

|T2f(x)|pω1(t)dx =
∫

Rn+1

(∑

k∈Z

|Tfk,2(x)|χEk
(t)

)p

ω1(t)dx

=
∫

Rn+1

(∑

k∈Z

|Tfk,2(x)|p χEk
(t)

)
ω1(t)dx =

∑

k∈Z

∫

Ek

|Tfk,2(x)|p ω1(t)dx

≤
∑

k∈Z

sup
x∈Ek

ω1(t)
∫

Rn+1

|Tfk,2(x)|p dx ≤ ‖T‖p
∑

k∈Z

sup
x∈Ek

ω1(t)
∫

Rn+1

|fk,2(x)|p dx

= ‖T‖p
∑

k∈Z

sup
y∈Ek

ω1(τ)
∫

Ek,2

|f(x)|pdx,

where ‖T‖ ≡ ‖T‖Lp(Rn+1)→Lp(Rn+1). Since, for x ∈ Ek,2, 2k−1 < |t| ≤ 2k+2, we
have by condition (a)

sup
y∈Ek

ω1(τ) = sup
2k−1<|τ |≤2k+2

ω1(τ) ≤ sup
|t|/4<|τ |≤4|t|

ω1(τ) ≤ bω(t)

for almost all x ∈ Ek,2. Therefore
∫

Rn+1

|T2f(x)|pω1(t)dx ≤

(6) ≤ ‖T‖pb
∑

k∈Z

∫

Ek,2

|f(x)|pω(t)dx ≤ c6

∫

Rn+1

|f(x)|pω(t)dx,

where c6 = 3‖T‖pb, since the multiplicity of covering {Ek,2}k∈Z is equal to 3.
Inequalities (3), (4), (5), (6) imply (2) which completes the proof. ¤

Remark 1. Note that, Theorem 2 for singular integral operators with
Calderon-Zygmund kernels was proved in [11], if ω(x),ω1(x) be weight func-
tions on Rn and for singular integral operators, defined on homogeneous groups
G in [10], [6] (see also [7]), if ω(x), ω1(x) be weight functions on G.

Theorem 2. Let p ∈ (1,∞), K be a parabolic Calderon–Zygmund kernel
and T be the corresponding integral operator. Moreover, let ω(t) be a weight
function on (0,∞), ω1(t) be a positive increasing function on (0,∞) and let
following conditions be satisfied:

(a’) there exist b1 > 0 such that

sup
t/4<τ≤4t

ω1(τ) ≤ b1 ω(t) for a.e. t > 0,

(b’) A′ ≡ supτ>0

(∫∞
2τ ω1(t)t−pdτ

) (∫ τ
0 ω1−p′(t)dt

)p−1
< ∞.
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Then there exists a constant c > 0 such that for all f ∈ Lp,ω(Rn+1)

(7)
∫

Rn+1

|Tf(x)|pω1(|t|)dx′dt ≤ c

∫

Rn+1

|f(x)|pω(|t|)dx′dt.

Proof. Suppose that f ∈ Lp,ω(Rn+1) and ω1 are positive increasing functions
on (0,∞) and ω(t),ω1(t) satisfied the conditions (a′), (b′).

Without loss of generality we can suppose that ω1 may be represented by

ω1(t) = ω1(0+) +
∫ t

0
ψ(λ)dλ,

where ω1(0+) = limt→0 ω1(t) and ω1(t) ≥ 0 on (0,∞). In fact there exists a
sequence of increasing absolutely continuous functions $n such that $n(t) ≤
ω1(t) and limn→∞$n(t) = ω1(t) for any t ∈ (0,∞) ( see [8], [7], [1], [5] for
details ).

We have

∫

Rn+1

|Tf(x)|pω1(|t|)dx′dt = ω1(0+)
∫

Rn+1

|Tf(x)|pdx

+
∫

Rn+1

|Tf(x)|p
(∫ |t|

0
ψ(λ)dλ

)
dx = J1 + J2.

If ω1(0+) = 0, then J1 = 0. If ω1(0+) 6= 0 by the boundedness of T in
Lp(Rn+1) thanks to (a′)

J1 ≤ ‖T‖pω1(0+)
∫

Rn+1

|f(x)|pdx

≤ ‖T‖p

∫

Rn+1

|f(x)|pω1(|t|)dx′dt ≤ b1‖T‖p

∫

Rn+1

|f(x)|pω(|t|)dx′dt.

After changing the order of integration in J2 we have

J2 =
∫ ∞

0
ψ(λ)

(∫

Rn

∫

|t|>λ
|Tf(x)|pdx′dt

)
dλ

≤ 2p−1

∫ ∞

0
ψ(λ)

(∫

Rn

∫

|t|>λ
|T (fχ{|t|>λ/2})(x)|pdx′dt

+
∫

Rn

∫

|t|>λ
|T (fχ{|t|≤λ/2})(x)|pdx′dt

)
dλ = J21 + J22.
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Using the boundedness of T in Lp(Rn+1) we obtain

J21 ≤ c7

∫ ∞

0
ψ(t)

(∫

Rn

∫

|τ |>λ/2
|f(y′, τ)|pdy′dτ

)
dt

= c7

∫

Rn+1

|f(y)|p
(∫ ∞

2|τ |
ψ(λ)dλ

)
dy ≤ c7

∫

Rn+1

|f(y)|pω1(2|τ |)dy′dτ

≤ b1c7

∫

Rn+1

|f(y)|pω(|τ |)dy′dτ.

Let us estimate J22. For |t| > λ and |τ | ≤ λ/2 we have

|t|/2 ≤ |t− τ | ≤ 3|t|/2,

and so

J22 ≤ c8

∫ ∞

0
ψ(λ)

(∫

Rn

∫

|t|>λ

(∫

Rn

∫

|τ |≤2λ

|f(y)|
ρ(x− y)n+2

dy

)p

dx

)
dλ ≤

c9

∫ ∞

0
ψ(λ)

(∫

|t|>λ

∫

Rn

(∫

|τ |≤λ/2

∫

Rn

|f(y′, τ)|
(|x′ − y′|+ |t|1/2)n+2

dy

)p

dx′dt

)
dλ.

For x = (x′, t) ∈ Rn+1 let

J(t, λ) =
∫

Rn

(∫

|τ |≤λ/2

∫

Rn

|f(y′, τ)|
(|x′ − y′|+ |t|1/2)n+2

dy

)p

dx′

=
∫

Rn

(∫

|τ |≤λ/2

(∫

Rn

|f(y′, τ)|
(|x′ − y′|+ |t|1/2)n+2

dy′
)

dτ

)p

dx′.

Using the Minkowski and Young inequalities we obtain

J(t, λ) ≤
[∫

|τ |≤λ/2

(∫

Rn

|f(y′, τ)|pdy′
)1/p (∫

Rn

dy′

(|y′|+ |t|1/2)n+2

)
dτ

]p

=

(∫

|τ |≤λ/2
‖f(·, τ)‖p,Rndτ

)p (∫

Rn

dy′

(|y′|+ |t|1/2)n+2

)p

=
c3

|t|p
(∫

|τ |≤λ/2
‖f(·, τ)‖p,Rndτ

)p (∫

Rn

dy′

(|y′|+ 1)n+2

)p

=
c4

|t|p
(∫

|τ |≤λ/2
‖f(·, τ)‖p,Rndτ

)p

.
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Integrating in (0,∞)× {t ∈ R : |t| > λ} we get

J22 ≤ c10

∫ ∞

0
ψ(λ)

(∫

|t|>λ

(∫

|τ |≤λ/2
‖f(·, τ)‖p,Rndτ

)p
dt

|t|p
)

dλ

= c11

∫ ∞

0
ψ(λ)λ−p+1

(∫

|τ |≤λ/2
‖f(·, τ)‖p,Rndτ

)p

dλ.

Note that
∫ ∞

2t
ψ(τ)τ−p+1dτ = p

∫ ∞

2t
ψ(τ)dτ

∫ ∞

τ
λ−pdλ

= p

∫ ∞

2t
λ−pdλ

∫ λ

2t
ψ(τ)dτ ≤ p

∫ ∞

2t
λ−pω1(λ)dλ, t > 0.

The Hardy inequality
∫ ∞

0
ψ(λ)λ−p+1

(∫

|τ |≤λ/2
‖f(·, τ)‖p,Rndτ

)p

dλ ≤ C

∫

R
‖f(·, τ)‖p

p,Rnω(|τ |)dτ

for p ∈ (1,∞) is characterized by the condition C ≤ c′A′′ (see [2], [9]), where

A′′ ≡ sup
τ>0

(∫ ∞

2τ
ψ(t)t−p+1dt

)(∫ τ

0
ω1−p′(t)dt

)p−1

< ∞.

Condition (b′) of the theorem guarantees that A′′ < pA′ < ∞. Hence,
applying the Hardy inequality, we obtain

J22 ≤ c12

∫ ∞

0
‖f(·, τ)‖p

p,Rnω(τ)dτ ≤ c12

∫

Rn+1

|f(x)|pω(|t|)dx′dt.

Combining the estimates of J1 and J2, we get (7) for ω1(t) = ω1(0+) +∫ t
0 ψ(τ)dτ . By Fatou’s theorem on passing to the limit under the Lebesgue

integral sign, this implies (7). The theorem is proved.

Theorem 3. Let p ∈ (1,∞), K be a parabolic Calderon–Zygmund kernel
and T be the corresponding operator. Moreover, ω(t) be a weight function on
(0,∞), ω1(t) be a positive decreasing function on (0,∞) and condition (a′)
and

(c′) B′ ≡ sup
τ>0

(∫ τ

0
ω1(t)dτ

)(∫ ∞

2τ
ω1−p′(t)t−p′dt

)p−1

< ∞.

be satisfied. Then inequality (7) is valid.

Proof. Without loss of generality we can suppose that ω1 may be represented
by ω1(t) = ω1(+∞)+

∫∞
t ψ(τ)dτ, where ω1(+∞) = limt→∞ ω1(t) and ω1(t) ≥

0 on (0,∞). In fact there exists a sequence of decreasing absolutely continuous
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functions $n such that $n(t) ≤ ω1(t) and limn→∞$n(t) = ω1(t) for any
t ∈ (0,∞) ( see [8], [7], [1], [5] for details ). We have

∫

Rn+1

|Tf(x)|pω1(|t|)dx′dt = ω1(+∞)
∫

Rn+1

|Tf(x)|pdx

+
∫

Rn+1

|Tf(x)|p
(∫ ∞

|t|
ψ(τ)dτ

)
dx = I1 + I2.

If ω1(+∞) = 0, then I1 = 0. If ω1(+∞) 6= 0 by the boundedness of T in
Lp(Rn+1)

I1 ≤ ‖T‖ω1(+∞)
∫

Rn+1

|f(x)|pdx

≤ ‖T‖
∫

Rn+1

|f(x)|pω1(|t|)dx′dt ≤ b1‖T‖
∫

Rn+1

|f(x)|pω(|t|)dx′dt.

After changing the order of integration in J2 we have

I2 =
∫ ∞

0
ψ(λ)

(∫

Rn

∫

|t|<λ
|Tf(x)|pdx′dt

)
dλ

≤ 2p−1

∫ ∞

0
ψ(λ)

(∫

Rn

∫

|t|<λ
|T (fχ{|t|<2λ})(x)|pdx′dt

+
∫

Rn

∫

|t|<λ
|T (fχ{|t|≥2λ})(x)|pdx′dt

)
dλ = I21 + I22.

Using the boundedness of T in Lp(Rn+1) we obtain

I21 ≤ c7

∫ ∞

0
ψ(λ)

(∫

Rn

∫

|τ |<2λ
|f(y′, τ)|pdy′dτ

)
dλ

= c7

∫

Rn+1

|f(y)|p
(∫ ∞

|τ |/2
ψ(λ)dλ

)
dy

≤ c7

∫

Rn+1

|f(y)|pω1(|τ |/2)dτdy′

≤ b1c7

∫

Rn+1

|f(y)|pω(|τ |)dτdy′.

Let us estimate J22. For |t| < λ and |τ | ≥ 2λ we have

|τ |/2 ≤ |t− τ | ≤ 3|τ |/2,
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and so

J22 ≤ c8

∫ ∞

0
ψ(λ)

(∫

Rn

∫

|t|<λ

(∫

Rn

∫

|τ |≥2λ

|f(y)|
ρ(x− y)n+2

dy

)p

dx

)
dλ

≤ c9

∫ ∞

0
ψ(λ)

(∫

|t|<λ

∫

Rn

(∫

|τ |≥2λ

∫

Rn

|f(y′, τ)|
(|x′ − y′|+ |τ |1/2)n+2

dy

)p

dx′dt

)
dλ.

For x = (x′, t) ∈ Rn+1 let

J(t, λ) =
∫

Rn

(∫

|τ |≥2λ

∫

Rn

|f(y′, τ)|
(|x′ − y′|+ |τ |1/2)n+2

dy

)p

dx′

=
∫

Rn

(∫

|τ |≥2λ

(∫

Rn

|f(y′, τ)|
(|x′ − y′|+ |τ |1/2)n+2

dy′
)

dτ

)p

dx′.

Using the Minkowski and Young inequalities we obtain

J(t, λ) ≤
[∫

|τ |≥2λ

(∫

Rn

|f(y′, τ)|pdy′
)1/p (∫

Rn

dy′

(|y′|+ |τ |1/2)n+2

)
dτ

]p

= c3

(∫

|τ |≥2λ
|τ |−1‖f(·, τ)‖p,Rndτ

)p (∫

Rn

dy′

(|y′|+ 1)n+2

)p

= c4

(∫

|τ |≥2λ
|τ |−1‖f(·, τ)‖p,Rndτ

)p

.

Integrating in (0,∞)× {t ∈ R : |t| < λ} we get

J22 ≤ c10

∫ ∞

0
ψ(λ)

(∫

|t|<λ

(∫

|τ |≥2λ
|τ |−1‖f(·, τ)‖p,Rndτ

)p

dt

)
dλ

= 2c10

∫ ∞

0
ψ(λ)λ

(∫

|τ |≥2λ
|τ |−1‖f(·, τ)‖p,Rndτ

)p

dλ.

The Hardy inequality∫ ∞

0
ψ(λ)λ(

∫

|τ |≥2λ
|τ |−1‖f(·, τ)‖p,Rndτ)pdλ ≤ C

∫

R
‖f(·, τ)‖p

p,Rnω(|τ |)dτ

for p ∈ (1,∞) is characterized in [2] and [9] by the condition C ≤ c′′B′′, where

B′′ ≡ sup
τ>0

(∫ τ

0
ψ(t)dτ

)(∫ ∞

2τ
ω1−p′(t)t−p′dt

)p−1

< ∞.

Note that
∫ t

0
ψ(λ)λdλ =

∫ t

0
ψ(λ)dλ

∫ λ

0
dτ =

∫ t

0
dτ

∫ t

τ
ψ(λ)dλ ≤

∫ t

0
ω1(τ)dτ.
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Condition (c′) of the theorem guarantees that B′′ ≤ B′ < ∞. Hence, apply-
ing the Hardy inequality, we obtain

J22 ≤ c11

∫ ∞

0
‖f(·, t)‖p

p,Rnω(t)dt ≤ c11

∫

Rn+1

|f(x)|pω(|t|)dx′dt.

Combining the estimates of J1 and J2, we get (7) for ω1(t) = ω1(+∞) +∫∞
t ψ(τ)dτ . By Fatou’s theorem on passing to the limit under the Lebesgue

integral sign, this implies (7). The theorem is proved.

Remark 2. Note that, the weighted pair (ω(t), ω1(t)) satisfying conditions
(b) or (c) is equivalent to the weighted pair (ω(|t|), ω1(|t|)) satisfying conditions
(b′) or (c′) respectively.
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