REGULAR REFRACTION PROPERTY OF THE PARABOLIC LENS

PETRU T. MOCANU

Abstract. We show that any parabolic lens has the regular refraction property of index γ (with respect to its focus) if and only if $0 \le \gamma \le \sqrt{2}$. MSC 2000. 30C45, 78A05. Key words. Starlike curve, convex curve, parabolic lens, regular.

1. Preliminaries

Let Γ be a smooth curve with a parametrization $z = z(t), t \in [a, b]$. We suppose that Γ is a directed arc, the direction being that determined as t increases.

The arc Γ is said to be starlike (with respect to the point $\alpha \notin \Gamma$) if $\arg[z(t) - \alpha]$ is a nondecreasing function of t, i.e. if

$$\frac{\mathrm{d}}{\mathrm{d}t} \arg[z(t) - \alpha] \ge 0, \ t \in [a, b].$$

For simplicity we will suppose that $\alpha = 0$. Let Γ be starlike and let R be the radius vector from the origin to the point $z(t) \in \Gamma$. Let N be the outer normal to Γ at the point z(t) and denote by ω the angle between N and R. Let consider the vector V starting from z(t) such that

(1)
$$\sin \psi = \gamma \sin \omega,$$

where ψ is the angle between N and V and γ is a given positive number.

From the optical point of view, we remark that if Γ separates two media with different indices of refraction and R and V are the trajectories of light in these two media, then (1) is the well-known refraction law.

We say that the curve Γ has the regular refraction property of index, written $\Gamma \in RP(\gamma)$, iff the argument of the vector V is a nondecreasing function of t on [a, b], i.e.

(2)
$$\frac{\mathrm{d}}{\mathrm{d}t} \arg V(t) \ge 0, \ t \in [a, b]$$

The above definition was given in [1] and [2] in the case $\gamma \in [0, 1]$. If we let $\chi = \arg V$ and $\varphi = \arg z(t)$, then

(3)

$$\varphi' = \operatorname{Im} \frac{z'}{z}, \qquad \omega' = \operatorname{Im} \left[\frac{z''}{z'} - \frac{z'}{z} \right], \qquad \psi' = \frac{\gamma \cos \omega}{(1 - \gamma^2 + \gamma^2 \cos^2 \omega)^{1/2}} \omega'$$

 $\chi = \varphi + \omega - \psi.$

Hence, by using (3), the inequality (2) is equivalent to

(4)
$$\gamma \left(\operatorname{Im} \frac{z'}{z}\right)^2 + \left[\sqrt{\Delta} - \gamma \operatorname{Im} \frac{z'}{z}\right] \operatorname{Im} \frac{z''}{z'} \ge 0, \ t \in [a, b],$$

where

(5)
$$\Delta = (1 - \gamma^2) \left| \frac{z'}{z} \right|^2 + \gamma^2 \left(\operatorname{Im} \frac{z''}{z'} \right)^2.$$

Since the curvature of Γ at the point z(t) is given by

$$K(t) = \frac{1}{|z'|} \operatorname{Im} \frac{z''}{z'},$$

we deduce that if the curve Γ is convex and $\gamma \in [0, 1]$ then Γ has the regular refraction property of index γ , i.e. $\Gamma \in RP(\gamma)$.

If $\gamma > 1$, then we have to put first the condition $\Delta \ge 0$, where Δ is given by (5), and then to check the inequality (4).

2. Main result

For a given starlike curve Γ a natural problem is to find the largest interval $[\gamma_0, \gamma_1], \gamma_0 < 1 < \gamma_1$, such that $\Gamma \in RP(\gamma)$ for all $\gamma \in [\gamma_0, \gamma_1]$. We shall call this interval regular refraction interval of the curve Γ . If Γ is convex then $\gamma_0 = 0$ and we have to find the maximum value of γ_1 such that $\Gamma \in RP(\gamma)$ for all $\gamma \in [0, \gamma_1]$. We solved this problem in the case of the ellipse [3]. Now we will find the regular refraction interval for a segment of parabola. We shall call parabolic lens the segment of the parabola $y^2 = 2px$, corresponding to $0 \le x \le p/2$.

THEOREM 1. The regular refraction interval of a parabolic lens (with respect to its focus) is given by $[0, \sqrt{2}]$.

Proof. Without loss of generality we can suppose that the parabolic lens is given by the equation

(6)
$$z = -2t + i(1 - t^2), t \in [-1, 1].$$

From (6) we easily deduce

$$\operatorname{Im} \frac{z'}{z} = \frac{2}{1+t^2}$$

and

$$\left|\frac{z'}{z}\right|^2 = \frac{4}{1+t^2}.$$

We also have

$$\frac{z''}{z'} = \frac{\mathrm{i}}{1 + \mathrm{i}t}$$

and

$$\operatorname{Im} \frac{z''}{z'} = \frac{1}{1+t^2}.$$

From (5) we deduce $\Delta = \frac{4}{1+t^2} \left[1 - \gamma^2 \frac{t^2}{1+t^2} \right]$ and the condition $\Delta \ge 0$ becomes $\gamma^2 \le 1 + \frac{1}{t^2}, t \in [-1, 1].$

Hence $\Delta \ge 0$, for all $t \in [-1, 1]$, if and only if $\gamma \le \sqrt{2}$. On the other hand, the inequality (4) is equivalent to

$$\frac{4\gamma}{(1+t^2)^2} + \left[\sqrt{\Delta} - \frac{2\gamma}{1+t^2}\right] \frac{1}{1+t^2} = \frac{1}{1+t^2} \left[\sqrt{\Delta} + \frac{2\gamma}{1+t^2}\right] \ge 0,$$

which holds for all $t \in [-1, 1]$. Hence Γ has the regular refraction property of index γ if and only if $0 \leq \gamma \leq \sqrt{2}$.

The regular refraction property of the lens is illustrated, for $\gamma = \sqrt{2}$, in the following figure:

REFERENCES

- [1] MOCANU, P. T., Conformal mappings and refraction law, Babes-Bolyai Univ. Fac. of Math. and Phys., The XVIII-th National Conf. on Geometry and Topology, Preprint 2 (1989), 113-116.
- [2] MOCANU, P. T., C¹-maps and refraction law, Bull. St. Inst. Polytechnic, Cluj-Napoca, **33** (1990), 11–14.
- [3] MOCANU, P. T., Regular refraction property of the ellipse, Bull. Math. Soc. Sc. Math. Roumanie, 45 (93), (2002), 39-43.

Received November 25, 2004

3

"Babeş-Bolyai" University Faculty of Mathematics and Computer Science 1 M. Kogălniceanu Str. 400084 Cluj-Napoca, Romania *E-mail:* pmocanu@math.ubbcluj.ro