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REGULAR REFRACTION PROPERTY OF THE PARABOLIC
LENS

PETRU T. MOCANU

Abstract. We show that any parabolic lens has the regular refraction property
of index γ (with respect to its focus) if and only if 0 ≤ γ ≤ √

2.
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1. Preliminaries
Let Γ be a smooth curve with a parametrization z = z(t), t ∈ [a, b]. We

suppose that Γ is a directed arc, the direction being that determined as t
increases.

The arc Γ is said to be starlike (with respect to the point α /∈ Γ) if arg[z(t)−
α] is a nondecreasing function of t, i.e. if

d
dt

arg[z(t)− α] ≥ 0, t ∈ [a, b].

For simplicity we will suppose that α = 0. Let Γ be starlike and let R be
the radius vector from the origin to the point z(t) ∈ Γ. Let N be the outer
normal to Γ at the point z(t) and denote by ω the angle between N and R.
Let consider the vector V starting from z(t) such that

(1) sinψ = γ sinω,

where ψ is the angle between N and V and γ is a given positive number.
From the optical point of view, we remark that if Γ separates two media

with different indices of refraction and R and V are the trajectories of light in
these two media, then (1) is the well-known refraction law.

We say that the curve Γ has the regular refraction property of index, written
Γ ∈ RP (γ), iff the argument of the vector V is a nondecreasing function of t
on [a, b], i.e.

(2)
d
dt

arg V (t) ≥ 0, t ∈ [a, b]

The above definition was given in [1] and [2] in the case γ ∈ [0, 1].
If we let χ = arg V and ϕ = arg z(t), then

(3) χ = ϕ + ω − ψ.

We have

ϕ′ = Im
z′

z
, ω′ = Im

[
z′′

z′
− z′

z

]
, ψ′ =

γ cosω

(1− γ2 + γ2 cos2 ω)1/2
ω′
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Hence, by using (3), the inequality (2) is equivalent to

(4) γ

(
Im

z′

z

)2

+
[√

∆− γ Im
z′

z

]
Im

z′′

z′
≥ 0, t ∈ [a, b],

where

(5) ∆ = (1− γ2)
∣∣∣∣
z′

z

∣∣∣∣
2

+ γ2

(
Im

z′′

z′

)2

.

Since the curvature of Γ at the point z(t) is given by

K(t) =
1
|z′| Im

z′′

z′
,

we deduce that if the curve Γ is convex and γ ∈ [0, 1] then Γ has the regular
refraction property of index γ, i.e. Γ ∈ RP (γ).

If γ > 1, then we have to put first the condition ∆ ≥ 0, where ∆ is
given by (5), and then to check the inequality (4).

2. Main result
For a given starlike curve Γ a natural problem is to find the largest interval

[γ0, γ1], γ0 < 1 < γ1, such that Γ ∈ RP (γ) for all γ ∈ [γ0, γ1]. We shall call
this interval regular refraction interval of the curve Γ. If Γ is convex then
γ0 = 0 and we have to find the maximum value of γ1 such that Γ ∈ RP (γ)
for all γ ∈ [0, γ1]. We solved this problem in the case of the ellipse [3]. Now
we will find the regular refraction interval for a segment of parabola. We shall
call parabolic lens the segment of the parabola y2 = 2px, corresponding to
0 ≤ x ≤ p/2.

Theorem 1. The regular refraction interval of a parabolic lens (with respect
to its focus) is given by [0,

√
2].

Proof. Without loss of generality we can suppose that the parabolic lens is
given by the equation

(6) z = −2t + i
(
1− t2

)
, t ∈ [−1, 1].

From (6) we easily deduce

Im
z′

z
=

2
1 + t2

and ∣∣∣∣
z′

z

∣∣∣∣
2

=
4

1 + t2
.

We also have
z′′

z′
=

i
1 + it

and

Im
z′′

z′
=

1
1 + t2

.
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From (5) we deduce ∆ = 4
1+t2

[
1− γ2 t2

1+t2

]
and the condition ∆ ≥ 0 be-

comes γ2 ≤ 1 + 1
t2

, t ∈ [−1, 1].
Hence ∆ ≥ 0, for all t ∈ [−1, 1], if and only if γ ≤ √

2. On the other hand,
the inequality (4) is equivalent to

4γ

(1 + t2)2
+

[√
∆− 2γ

1 + t2

]
1

1 + t2
=

1
1 + t2

[√
∆ +

2γ

1 + t2

]
≥ 0,

which holds for all t ∈ [−1, 1]. Hence Γ has the regular refraction property of
index γ if and only if 0 ≤ γ ≤ √

2. ¤
The regular refraction property of the lens is illustrated, for γ =

√
2, in the

following figure:
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