REGULAR REFRACTION PROPERTY OF THE PARABOLIC LENS

PETRU T. MOCANU

Abstract

We show that any parabolic lens has the regular refraction property of index γ (with respect to its focus) if and only if $0 \leq \gamma \leq \sqrt{2}$.

MSC 2000. 30C45, 78A05.
Key words. Starlike curve, convex curve, parabolic lens, regular.

1. Preliminaries

Let Γ be a smooth curve with a parametrization $z=z(t), t \in[a, b]$. We suppose that Γ is a directed arc, the direction being that determined as t increases.

The arc Γ is said to be starlike (with respect to the point $\alpha \notin \Gamma$) if $\arg [z(t)-$ $\alpha]$ is a nondecreasing function of t, i.e. if

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \arg [z(t)-\alpha] \geq 0, t \in[a, b] .
$$

For simplicity we will suppose that $\alpha=0$. Let Γ be starlike and let R be the radius vector from the origin to the point $z(t) \in \Gamma$. Let N be the outer normal to Γ at the point $z(t)$ and denote by ω the angle between N and R. Let consider the vector V starting from $z(t)$ such that

$$
\begin{equation*}
\sin \psi=\gamma \sin \omega, \tag{1}
\end{equation*}
$$

where ψ is the angle between N and V and γ is a given positive number.
From the optical point of view, we remark that if Γ separates two media with different indices of refraction and R and V are the trajectories of light in these two media, then (1) is the well-known refraction law.

We say that the curve Γ has the regular refraction property of index, written $\Gamma \in R P(\gamma)$, iff the argument of the vector V is a nondecreasing function of t on $[a, b]$, i.e.

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \arg V(t) \geq 0, t \in[a, b] \tag{2}
\end{equation*}
$$

The above definition was given in [1] and [2] in the case $\gamma \in[0,1]$.
If we let $\chi=\arg V$ and $\varphi=\arg z(t)$, then

$$
\begin{equation*}
\chi=\varphi+\omega-\psi . \tag{3}
\end{equation*}
$$

We have

$$
\varphi^{\prime}=\operatorname{Im} \frac{z^{\prime}}{z}, \quad \omega^{\prime}=\operatorname{Im}\left[\frac{z^{\prime \prime}}{z^{\prime}}-\frac{z^{\prime}}{z}\right], \quad \psi^{\prime}=\frac{\gamma \cos \omega}{\left(1-\gamma^{2}+\gamma^{2} \cos ^{2} \omega\right)^{1 / 2}} \omega^{\prime}
$$

Hence, by using (3), the inequality (2) is equivalent to

$$
\begin{equation*}
\gamma\left(\operatorname{Im} \frac{z^{\prime}}{z}\right)^{2}+\left[\sqrt{\Delta}-\gamma \operatorname{Im} \frac{z^{\prime}}{z}\right] \operatorname{Im} \frac{z^{\prime \prime}}{z^{\prime}} \geq 0, t \in[a, b] \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta=\left(1-\gamma^{2}\right)\left|\frac{z^{\prime}}{z}\right|^{2}+\gamma^{2}\left(\operatorname{Im} \frac{z^{\prime \prime}}{z^{\prime}}\right)^{2} \tag{5}
\end{equation*}
$$

Since the curvature of Γ at the point $z(t)$ is given by

$$
K(t)=\frac{1}{\left|z^{\prime}\right|} \operatorname{Im} \frac{z^{\prime \prime}}{z^{\prime}}
$$

we deduce that if the curve Γ is convex and $\gamma \in[0,1]$ then Γ has the regular refraction property of index γ, i.e. $\Gamma \in R P(\gamma)$.

If $\gamma>1$, then we have to put first the condition $\Delta \geq 0$, where Δ is given by (5), and then to check the inequality (4).

2. Main result

For a given starlike curve Γ a natural problem is to find the largest interval [$\left.\gamma_{0}, \gamma_{1}\right]$, $\gamma_{0}<1<\gamma_{1}$, such that $\Gamma \in R P(\gamma)$ for all $\gamma \in\left[\gamma_{0}, \gamma_{1}\right]$. We shall call this interval regular refraction interval of the curve Γ. If Γ is convex then $\gamma_{0}=0$ and we have to find the maximum value of γ_{1} such that $\Gamma \in R P(\gamma)$ for all $\gamma \in\left[0, \gamma_{1}\right]$. We solved this problem in the case of the ellipse [3]. Now we will find the regular refraction interval for a segment of parabola. We shall call parabolic lens the segment of the parabola $y^{2}=2 p x$, corresponding to $0 \leq x \leq p / 2$.

Theorem 1. The regular refraction interval of a parabolic lens (with respect to its focus) is given by $[0, \sqrt{2}]$.

Proof. Without loss of generality we can suppose that the parabolic lens is given by the equation

$$
\begin{equation*}
z=-2 t+\mathrm{i}\left(1-t^{2}\right), t \in[-1,1] . \tag{6}
\end{equation*}
$$

From (6) we easily deduce

$$
\operatorname{Im} \frac{z^{\prime}}{z}=\frac{2}{1+t^{2}}
$$

and

$$
\left|\frac{z^{\prime}}{z}\right|^{2}=\frac{4}{1+t^{2}}
$$

We also have

$$
\frac{z^{\prime \prime}}{z^{\prime}}=\frac{\mathrm{i}}{1+\mathrm{i} t}
$$

and

$$
\operatorname{Im} \frac{z^{\prime \prime}}{z^{\prime}}=\frac{1}{1+t^{2}}
$$

From (5) we deduce $\Delta=\frac{4}{1+t^{2}}\left[1-\gamma^{2} \frac{t^{2}}{1+t^{2}}\right]$ and the condition $\Delta \geq 0$ becomes $\gamma^{2} \leq 1+\frac{1}{t^{2}}, t \in[-1,1]$.

Hence $\Delta \geq 0$, for all $t \in[-1,1]$, if and only if $\gamma \leq \sqrt{2}$. On the other hand, the inequality (4) is equivalent to

$$
\frac{4 \gamma}{\left(1+t^{2}\right)^{2}}+\left[\sqrt{\Delta}-\frac{2 \gamma}{1+t^{2}}\right] \frac{1}{1+t^{2}}=\frac{1}{1+t^{2}}\left[\sqrt{\Delta}+\frac{2 \gamma}{1+t^{2}}\right] \geq 0
$$

which holds for all $t \in[-1,1]$. Hence Γ has the regular refraction property of index γ if and only if $0 \leq \gamma \leq \sqrt{2}$.

The regular refraction property of the lens is illustrated, for $\gamma=\sqrt{2}$, in the following figure:

REFERENCES

[1] Mocanu, P. T., Conformal mappings and refraction law, Babeş-Bolyai Univ. Fac. of Math. and Phys., The XVIII-th National Conf. on Geometry and Topology, Preprint 2 (1989), 113-116.
[2] Mocanu, P. T., C ${ }^{1}$-maps and refraction law, Bull. St. Inst. Polytechnic, Cluj-Napoca, 33 (1990), 11-14.
[3] Mocanu, P. T., Regular refraction property of the ellipse, Bull. Math. Soc. Sc. Math. Roumanie, 45 (93), (2002), 39-43.

Received November 25, 2004

"Babes-Bolyai" University
Faculty of Mathematics and Computer Science
1 M. Kogălniceanu Str.
400084 Cluj-Napoca, Romania
E-mail: pmocanu@math.ubbcluj.ro

