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A SECOND-KIND INTEGRAL EQUATION METHOD FOR STOKES
FLOW PAST SMOOTH OBSTACLES IN A CHANNEL

MIRELA KOHR

Abstract. In this paper we obtain a compound double-layer representation for
Stokes flow due to the motion of a solid particle in an ambient flow located
in a two-dimensional channel. Our indirect method is an extension of the well
known Completed Double Layer Boundary Integral Equation Method of Power
and Miranda [18] from the case of Stokes flow due to the motion of a solid particle
in a viscous incompressible fluid of infinite expanse to the case of Stokes flow in
a two-dimensional channel. The problem is reduced to the study of a system of
Fredholm integral equations of the second kind. We prove that this system has a
unique continuous solution. The numerical results are presented for Stokes flow
due to the motion of a circular obstacle in a two-dimensional channel between
two parallel solid walls. We also include some conclusions which refer to the
effect of the walls on the considered Stokes flow.
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1. INTRODUCTION

The motion of a body of arbitrary shape near a plane wall at small Reynolds
number has a long record in the fluid dynamics research. For example, Power,
Miranda and Gonzéles [19] proposed a boundary integral formulation for the
flow due to the motion of a body of arbitrary shape near a plane wall at small
Reynolds number. Their formulation is given in terms of a system of Fredholm
integral equations of the first kind, since the solution of the corresponding
boundary value problem is sought in the form of a single-layer potential. The
problem of determining the Stokes flow due to the translational motion of a
solid particle of arbitrary shape near a plane wall was treated by Hsu and
Ganatos [7]. They used the boundary integral representation of the velocity
field in terms of the boundary velocity and traction. Recently, Phan-Thien et
al. [17] as well as Power and Power [20] extended the Completed Double Layer
Boundary Integral Equation Method (CDLBIEM) of Power and Miranda [18]
to the problem of Stokes flow due to the slow motion of a particle of arbitrary
shape near a plane wall (see also [21], Section 6.2.3). Ganatos et al. [4], [5]
presented exact solutions for Stokes flow due to the creeping motion of a sphere
of arbitrary size and position between two plane parallel walls. Pozrikidis [22]
obtained Greeen’s function of Stokes flow due to a point force located in a
two-dimensional channel. This function vanishes on the walls of the channel.
Also, it has been extensively used in the boundary integral formulation of
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many problems which refer to Stokes flow past or due to the motion of a solid
obstacle in a two-dimensional channel (see e.g. [11], [23]). Kohr [8] proposed
a boundary integral equation method for asymmetric Stokes flow between two
parallel planes. Also, we gave an extension of the CDLBIEM to the problem of
Stokes flow past a cylinder of arbitrary cross-section in a half-plane (see [10]).
In addition, we have obtained an indirect boundary integral method for Stokes
flow due to the translational motion of a solid particle in a two-dimensional
channel (see [11]).

Note that Power and Miranda’s method [18] removes the marginal eigenval-
ues of the spectrum of the double-layer integral operator (which appears into
a boundary integral representation of Stokes flow in terms of a double-layer
potential without any additional term), but leaves unchanged the rest of the
eigenvalues. In fact, the CDLBIEM is a completion plus a deflation procedure
that leads to a bounded and invertible integral operator (with a spectral radius
strictly less than one), and thus iterative solution strategies are guaranteed to
converge to a unique solution.

2. THE MATHEMATICAL FORMULATION OF THE PROBLEM

A viscous incompressible flow with velocity and pressure fields U, and pe,
located in a two-dimensional channel D = {x € R? : —h < x5 < h}, is
perturbed by the slow motion with velocity U of a solid particle Q'. Let us
assume that the boundary C of Q! is a closed Lyapunov curve (i.e. it has a
continuously varying normal vector; for details see e.g. [15], Chapter 16), and
that the velocity field U is a continuous vector function on C.

The boundary of the channel D is determined by the walls Ly and Ly given
byILUZ{XERQI.TQ:—h}, le{x€R2:x2:h}.

The velocity field Uy, of the undisturbed flow is an admissible solution of
the system of continuity and Stokes equations in D, and satisfies the following
boundary condition: Uy (x) =0 for x € Ly U L.

Let us assume that the resulting flow due to the presence of the solid particle
in the basic flow is a Stokes flow. Then the velocity and pressure fields of the
disturbance flow, u and p, have to satisfy the Stokes system of equations

(1) V-ux)=0, xcQ, —Vpx)+upViux)=0, xcQ

where 2 is the flow domain whose boundary is determined by Lg, L1 and C,
and g is the dynamic viscosity of the fluid. In addition, we have to require
the boundary conditions

(2) u(x)=-Ux(x)+Ux) for xe C, u(x)=0 for x € LoU Lj.
Moreover, we assume that the flow fields u and p vanish at infinity such that

(3)  JuE)|[Vux)| = o(lx|™), [p(x)llux)| = o|x| ™) as |x| — oo,
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where |x| = (22 + 23)/? is the Euclidean distance between the current point
x = (1, x2) in the flow field and the origin of a frame of Cartesian coordinates
(1, x2), located midway the walls.

Note that the far field conditions (3) are sufficient to deduce the uniqueness
of the classical solution of the present boundary value problem.

Remark. Let f and g be two functions defined in a neighbourhood of a
point xg (which can be oo). Then the condition f(x) = o(g(x)) as x — Xy
means that the ratio |f(x)|/|g(x)| tends to zero as x — xq.

3. GREEN’S FUNCTION OF STOKES FLOW

Let G(Gj;) denote Green’s function of Stokes flow due to a point force
acting at a point x in the unbounded domain D and let q be the correspond-
ing pressure vector. Note that G and q satisfy the following equations and
conditions:

) 0*Gij(y,x)  9g;(y,x)

= —4m;0(y —x) for —h<y2 <h

Yk Oy, Ay
(2) W:Ofor —h<ys <h
(3) Gij(y,x) =0 for x€ LoU Ly
(4) Gij(y,x) =0, qi(y,x) =0 as [y| — oo,

where ¢ is the two-dimensional delta function or Dirac’s distribution, and d;;
is the Kronecker symbol, i.e. 6;; = 1 for ¢ = j, and 6;; = 0 for 7 # j.

Note that in eqns (1) and (2) we have used the repeated index summation
convention. From now on, we take into account this rule.

Let us define the stress tensor T, associated to Green’s function G, as

follows: Tj1(y,x) = —6iq;(y,x) + ac”;ky’x) + 8G'” (y =),
Green’s function G was obtained by Pozrikidis [22] (See also [23], pp. 96-98,
or the forthcoming book [12], Chapter 2). The expression of this function is
given in [22] and [23].
The function G satisfies the symmetry property G;(y,x) = Gji(x,y) and

(5) Gij(y,x) — 0 as [x| — o0, Gjj(x,y) =0 for x € Ly U L.
Also, we mention the following properties (see e.g. [12], Chapter 2):

(6) q(y,x) =0 for x € LoU Ly, Tiji(y,x) =0 for x € LoU Ly,

(7) ¢i(x,y) — 0, Tiji(y,x) — 0 as [x| — oco.
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4. BOUNDARY INTEGRAL REPRESENTATION OF THE SOLUTION

Next, using the CDLBIEM, we determine the disturbance velocity field u
in the form

M) w60 =3 [ T 0o e)d) +

1 [aGiQ(X,XC) . 6Gi1(x,xc)

81‘16 81’20
where 1, B2 and 73 are real constants, ® = (¢1, p2,0) is an unknown con-
tinuous vector density on C, X, = (Z1¢, T2.,0) is an arbitrary point located
inside C' (for example, x. can be chosen as the centre of mass of the solid
particle), and n is the outward unit normal vector to C. The first term on the
right-hand side of eqn (1) is a double-layer potential with the density ®/(4r),
the second term represents the velocity field due to a point force located at
x. and with the strength 5 = (1, 32,0), and the third term is the velocity
field of a couplet (i.e. a singularity of Stokes flow) located at the point x. and
having the strength v = (0,0, ~3). For the following arguments we choose the
constants 31, B2 and 3 in the form

) @:L%mmmwmwzﬁﬁwmmwm =12

For convenience, we have considered the two-dimensional vectors x, x. and
® as three-dimensional vectors of the form x = (z1,x2,0), X, = (Z1¢, T2c, 0)
and ® = (¢, ¢2,0). Also, the vector functions U*, k = 1,2,, 3, represent the
velocity fields of the three linearly independent rigid body motions in R? and
are given by

1
mGz‘j (x, %) 3

+ 73, X €,

8T

(3) U' =(1,0,0), U?=(0,1,0), U®=(22,—1,0).
Further, we seek the pressure field p as follows:
1
@ =1 [ Pabey)m)s ) + -axx)s,
i Jo 47
1 GQQ (X7 XC) aql (X7 Xc)
il _ . Q0
+87r [ 0%1¢ 0% 7 X €5

where the functions P;;, are the components of the pressure tensor P associated
to the stress tensor T, i.e. P and T determine a fundamental solution of Stokes
flow in D. More exactly, we have (see e.g. [23], pp. 81-82, 93, or [12], Section
3.2):

(5)

for x #vy.
Now, using the relations (1)—(4), (5), (6), (7), and (5), we deduce that the

functions u and p, given by the boundary integral representations (1) and (4),
satisfy the Stokes system of equations (1), u vanishes on the walls Ly and L,

air]zk (y7 X)

OPn(x.y) O*Tir(y, %)
o0x;

ox; 0L mOTm, =0

=0, and —
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and u and ¢ vanish at infinity such that the far field conditions (3) are satisfied.
On the other hand, the double-layer potential - [, Tjix(y, x)nk(y)¢;(y)di(y),
x € D\ C has a jump across the contour C, given by the following formulas
(see e.g. [12], Chapter 3):

(6) lim - /C Ty (y, )k (y) 65 (y)di(y)

x—x0€eC 47

PV
= 2 dix0) + 4 /C Tk (y, xo)nk ()5 ()i (y),

where the plus sign applies for the external side of C', in the direction of
the unit normal vector, and the minus sign otherwise. Therefore, applying
the boundary condition (2) to the flow field given by the boundary integral
representation (1), and using the above jump formulas, we obtain the following
system of boundary integral equations with unknown ®:

1 1 PV
M) 5000+ 1 [ Tl m@)e; 6)d) + Gk x5

47

1 GGZQ (X, Xc) . anl (X, XC)
8T

1
A

o, T v3 = —Uino(x) + Ui(x), x € C.

Note that the superscript PV stands for the principal value of the double-
layer potential (i.e. the value of the improper but convergent double-layer
potential at an arbitrary point x of C). For simplicity, we next omit this
symbol.

Further, we take into account the following decomposition formula:

(8) Tjin(y,x) = Tﬁk(y —x) + Tj.(y, %),

where Tﬁk are the components of the stress tensor T associated to the two-

4(yj_zj)(yi_4xi)(yk_$k)
r )
where r = |y — x|. Also, T7,, are the components of a continuous matrix

function required by the no-slip condition at the walls (i.e. Tjir(y,x) = 0
for x € Lo U Ly). The decomposition formula (8) yields that the kernel of
the double-layer integral operator, which appears in the system of eqns (7),
is weakly singular, and hence this operator is compact on C°(C) (the space
of continuous vector functions on C'). Consequently, Fredholm’s alternative
applies to the system of eqns (7) (see e.g. [13], Chapter 4). In view of this
result, the system of eqns (7) admits a unique continuous solution @ if and
only if the following homogeneous system has only the trivial solution in the
space CY(C):

©) 5009+ - [ Tl oy +

1 8Gi2(X,XC) o aGil(X,Xc)
ST

. . . S _
dimensional Stokeslet, given by the formula To, = —

1 0
@sz (Xa Xc)/Bj

0 .
=0, eC,i=1,2,
a$1c 81‘20 3 x ‘
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where 8} = [ Ui(Y)$h(y)di(y), 78 = [o UP(¥)o)(y)di(y), i = 1,2. Let us
assume that ®% = (¢Y, ¢J, 0) is a non-trivial continuous solution of the system
of eqns (9). Using this solution, we determine the fields u’ and p°, as follows:

10 06 = 1= [ T x0m ) 0U) + Gy k. x5

1 [8Gi2(x,xc) _8Gi1(X7XC):| 0

87['/J f)xlc 8@0 s
w 1
(11) p'(x) = 47TLij(x,y)nk(y)ég(y)dl(Y) + 05 %) 3]
1 [0g(x,%xc)  Oqi(x,%c)] o
e [ 01, dwee |

for x € Q. From equs (1), (2), (5), and (9), as well as the jump formulas (6),
we deduce that the fields u’ and p° determine a Stokes flow in the unbounded
domain € (as well as in the bounded domain Q') and u” vanishes on C. Also,
u? vanishes on Ly and L1, in view of the properties (5) and (6). In addition, the
fields u’ and p° satisfy the decay conditions (3). According to the uniqueness

of the solution of the boundary value problem (1)—(3), we deduce that
(12) w(x) =0, p’(x)=0 for x € Q.

Consequently, the total force and torque (with respect to the point x.) exerted
by the flow (u’, p°) on the boundary C vanish. On the other hand, it is known
that a double-layer potential with a well-defined boundary traction on C' does
not exert total force and torque on this curve (see e.g. [21], p. 168).
Let us now consider the vector field w® with the following components:
1 1 ({“)ng (X, Xc> _ anl (X, XC) 0

(18)  wf(x) = Gyl x) ) + :

8T 011 0x2c

for x € Q. In fact, w” is the sum of a two-dimensional point force located at x,
and with the strength 3 = (37, 89,0), and a two-dimensional couplet acting
at x. and having the strength v = (0,0,~Y). As we previously mentioned,
the point force and the couplet are fundamental solutions (or singularities) of
Stokes flow in the layer D. Moreover, the point force exerts a total force on C
equal to —3°, and zero total torque with respect to the point x.. The couplet
exerts zero total force on any contour (within the domain D) that encloses the
point x., and a total torque on C' with respect to the point x. equal to —+°
(for details see e.g. [23], Chapter 7, or [12], Chapter 2). Taking into account
these arguments, we conclude that the total force FO exerted by the Stokes
flow (u’, p%) on the solid obstacle is equal to —3°. But F = 0, in view of the
equations (12), and hence

(14) /C UL)Uy)di(y) =0, i=1.2
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Similarly, the total torque M® = (0,0, M) (with respect to the point x.)
exerted by the Stokes flow (u?, p®) on the solid obstacle is given by M? = —'yg,
and thus, in view of eqns (12),

(15) /C U (y)é(y)di(y) = 0.

According to the properties (14) and (15), we deduce that the homogeneous
system (9) takes the simplified form

1 1
16 3660+ 5 [ Tal0mmey)de) o, xeC
T Jo
Let I : C°(C) — C°C) be the identity operator and let K : C%(C) —
CY(C) be the double-layer integral operator given by

(K9),(0 = 5= [ Ty x)m ) ()y). x € C. % € CO(0).

It can be proved that the null space of the operator I+ K is three-dimensional,
and that a basis of this space is determined by the functions U?, i = 1,2, 3,
given by eqns (3) (see e.g. [12], Section 3.5). Therefore, there exist some real
constants 71, 12 and 13 such that the function ®°, which satisfies the system
of equations (16), can be written as follows:

3
(17) oY = anUk on C.
k=1

Now, from the relations (14), (15) and (17), we obtain the following homo-
geneous linear algebraic system with the unknowns 7;, 72 and 73:

3
(18) UF(x)U/(x)dl(x) =0, j=1,2,3.
;nk/c j

Since the functions U', U? and U? are linearly independent, the determinant
of the linear algebraic system (18) is non-zero, and hence this system has only
the trivial solution. Therefore, in view of (17), we deduce that ® = 0 on
C. However, this result is a contradiction to the assumption ®° # 0 on C.
Hence the homogeneous system of eqns (9) admits only the trivial solution
in the space CY(C). Finally, applying Fredholm’s alternative, we obtain the
following result:

Theorem 4.1 The non-homogeneous system of Fredholm integral equations
of the second kind (7) has a unique continuous solution ® on C. Moreover,
the boundary integral representations (1) and (4), obtained with this density,
determine the unique classical solution (u,p) of the boundary value problem
consisting of the system of eqns (1) subject to the boundary and far field con-
ditions (2)—(3).
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In addition, the total force F = (F1, F3,0) exerted by the flow (u+ Ueso,p+
Poo) on the solid obstacle is given by F; = —f;, i.e.,

(19) F= - /C 6 () Ui(y)diy), i=1.2.

5. NUMERICAL RESULTS

An apparent difficulty in the computation of the numerical solution of the
system of eqns (7) is that the kernels of the involved double-layer potentials
are weakly singular. In order to remove this difficulty we use the fact that U?,
U? and U? are the linearly independent eigenfunctions corresponding to the
eigenvalue —1 of the double-layer integral operator K. Therefore, we have the
following property (see e.g. [12], Section 3.5): 2 [, Tju(y, x)nk(y)di(y) =
—%5@-, x € C, which yields that the system of equations (7) can be written
in the form

1) g [ DX m)(6) ~ 8GN + G x),

1 |:an2 (X, Xc) . 8G11 (X, XC)
8T 0x1¢ 0o

Further, according to the decomposition formula (8), we deduce that the con-
tinuity behaviour of the double-layer potential on the left-hand side of eqn (1)
is provided only by the stress tensor T°. Moreover, taking into account the

property
(2) Ty, x)n(y) = Ti(y — ¥)ni(y) + T (v, %) (y)

_ _4(yj —x5)(yi — @) (ye — o) (y) + 15 (y, x)nk(y)

+ v = —Uio(x) + Ui(x), x€C.

!
or Or cos(n(y),y — x)
=—4—_— c
Ba;j 81'Z r + J’Lk(y’x)nk(y)
or Or Olnr
=4 + Tk (v, )i (y),

0w i On(y)
it follows that the double-layer integral in eqn (1) can be written in the form
3) [ Ty x5 (3) = ;)i y)

or or
=~ [ (6s(3) = 04 - S daly)

+ [ Ty me¥)(65(3) — 0,00)ly). x € C
Olnr ¢

since only) dl(y) = da(y) is the differential of plane angle at the point y.

Consequently, the first integral on the right-hand side of eqn (3) is a proper
integral in the new variable of integration (the second integral is a proper
integral, too) and hence the singularities of the double-layer integrals in the
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system of eqns (1) can be simply removed by setting their integrands equal to
zero when y = x.

12

10

h/a

Fig. 5.1 — Dependence of F’ and respectively Ff on the ratio h/a: parallel motion.

In order to reduce the system of eqns (1) to a linear algebraic system, we
use the boundary element method. We approximate the Lyapunov contour C'
by a closed polygonal line consisting of NV equal segments L;, j = 1,..., N.
We assume that on each segment Lj the functions ¢; are constant and equal
to their values ¢ = ¢;(xy) at the middle point x; of this segment. Further,
taking into account the relations (2) and supposing that the discretized form of
the system of eqns (1) is satisfied at each point x,, 7 = 1,..., N, we obtain the

following linear algebraic system with unknowns gb;-”, 7=1,2,m=1,...,N:
1 N
@ e (@5 — ¢§)/L Tiik(y, xr)n, (y)di(y)
m=1 m

Gl ) Zw/ UE(y)l(y)

]. 8Gi2(xr7x()) aGll X’I‘7XC m/ 3
8w { 01, 02 ] Z g Ui

= —Uiso(xy) + Ui(x,), r= ,...,N, 1=1,2.
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3.4

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
S

Fig. 5.2 — Dependence of the dimensionless drag force F’ on the dimensionless distance s
for h/a = 5.

In addition, we mention the property

) @7 =) | Ty x)m(y)dily) =0 for m =,
in view of the above removal procedure of excluding the singularities of the
double-layer potential.

On the other hand, for m # r, the integrals [; Tji(y, %, )nk(y)di(y) can
be numerically computed by using a Gaussian quadrature formula.

Now, from eqns (19) and the above discretization procedure we obtain

m

N .
(6) Fi=-)" cp;”/ Ul(y)di(y), i=1,2.
m=1

In the following numerical results the maximum value of N has been chosen
equal to 50.

e Let us now consider the case of a circular obstacle of radius a translating
parallel to the walls (i.e. U = (U,0,0)) in a quiescent incompressible New-
tonian fluid (i.e. Uy = 0). Assume that the centre of the circular obstacle
is located midway between the walls. Figure 5.1 shows the dependence of
the drag force F' = F/(4mpaU) on the ratio h/a. The results yield that F’
decreases when the ratio h/a increases.
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0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

S

Fig. 5.3 — Dependence of the dimensionless drag force F’ on the dimensionless distance s
for h/a = 10.

For large values of h/a, our numerical results can be compared with those
obtained by Faxen by means of the following formula (see [3]; [6], Chapter 7):

Fp 1
7 Fr= =
(0 Fr drpalU — In(h/a) — 0.9157 + 1.7244(a/h)2? — 1.7302(a/h)*’

where Fr denotes the magnitude of the dimensional force provided by Faxen.
All of these results are presented in Figure 5.1. We conclude that for h/a > 6
our numerical results are in good agreement with those provided by the formula
(7).

e Let us now assume that the centre of the circular obstacle is not located
midway between the walls, and let d’ be the distance from it to the lower wall
Lg. Also, let s be the dimensionless distance given by

d/

—_— i < (1/ < 2 — Q.

if a<d <h

Figures 5.2 and 5.3 present the dependence of the dimensionless drag force
F’' = F/(47palU) on the dimensionless distance s, for some value of the ratio
h/a € {5,10}. Each of these cases shows that for a given ratio h/a the smallest
value of F” is obtained for the highest value of s, i.e. when the centre of the
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Fig. 5.4 — Dependence of the dimensionless drag force F’ on the dimensionless distance s
for ¢ = 10.

circular obstacle is located midway between the walls. Also, the drag force F’
becomes highest when the obstacle approaches one of the walls.
Figure 5.4 shows the dependence of the dimensionless drag force F’' =

F/(4rpalU) on the dimensionless distance s = c%, for a < d < h and

¢ = d'/a fixed. We deduce that F’ increases as s increases (i.e. 2h/a de-
creases) and becomes smallest for s = 0, i.e. when the distance 2h between
the walls tends to infinity. Consequently, the presence of the upper wall Ly
plays an key role in the behaviour of the dimensionless drag force F’, which
takes the smallest value (for ¢ fixed) when the boundary of the flow domain
consists only of the contour C' and a single wall L.

e Let us now consider the case of a circular obstacle of radius a translating in
a direction perpendicular to the walls in a quiescent incompressible Newtonian
fluid. For s = 1/2, i.e. when the centre of the circular obstacle is located
midway between the walls, and for large values of the ratio h/a, our numerical
results can be compared with those obtained by Westberg by means of the
following formula (see [6], Chapter 7):

Q Fiy= b = 1

W drpaU — In(h/a) — 0.62026 + 1.04207(a/h)2
Note that Fyy is the magnitude of the dimensional force provided by Westberg,
and U is the magnitude of the velocity of the obstacle. Figure 5.5 shows the
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25+

15f

0.5

h/a

Fig. 5.5 — Dependence of F’ and respectively F}, on the ratio h/a: perpendicular motion

dependence of the drag force F' = F/(4wpal) on the dimensionless distance
h/a, as well as the corresponding results provided by the Westberg formula (9).
We conclude that for A/a > 6 our numerical results are in good agreement with
those provided by the Westberg formula (9). In addition, the dimensionless
drag force F' = F/(4mpalU) decreases when the dimensionless distance h/a
increases. We remark that in each of the above cases a higher number of
discretization elements yields comparable results with those obtained for N =
50.
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